海洋科学  2018, Vol. 42 Issue (1): 11-14   PDF    
http://dx.doi.org/10.11759/hykx20171011018

文章信息

金久才, 崔文连, 张杰, 孙立娥. 2018.
JIN Jiu-cai, CUI Wen-lian, ZHANG Jie, SUN Li-e. 2018.
无人船系统应用于水库水样离岸采集——以棘洪滩水库为例
Water sampling from reservoirs in offshore districts using an unmanned surface vehicle: an application for the Ji-hong-tan reservoir
海洋科学, 42(1): 11-14
Marina Sciences, 42(1): 11-14.
http://dx.doi.org/10.11759/hykx20171011018

文章历史

收稿日期:2017-10-11
修回日期:2017-12-20
无人船系统应用于水库水样离岸采集——以棘洪滩水库为例
金久才1, 崔文连2, 张杰1, 孙立娥2     
1. 国家海洋局第一海洋研究所, 山东 青岛 266061;
2. 青岛市环境监测中心站, 山东 青岛 266003
摘要:水库水质监测是水库水质评价的重要依据, 通常需要现场采水样后带回实验室进行检测与分析。然而一些特殊情况下, 例如库区无船、情况复杂等, 只能获得沿岸水样, 导致水质监测结果无法代表水库整体水质质量。本文针对水库的水样离岸采集, 基于自研发的无人船系统, 设计集成了采水泵, 并利用无人船位点跟踪技术, 实现了远距离定点遥控采水样功能。在青岛棘洪滩水库, 利用该系统, 设置了两个采样点(离岸50 m和离岸1300 m), 并成功获取了水样。在实验室内, 利用分光光度计、离子色谱仪、电感耦合等离子体质谱仪等设备, 完成了所采集水样的水质分析。实验结果表明, 无人船应用于水库水样离岸采集具有可行性、实用性。
关键词无人船    水库水样离岸采集    水质监测    
Water sampling from reservoirs in offshore districts using an unmanned surface vehicle: an application for the Ji-hong-tan reservoir
JIN Jiu-cai1, CUI Wen-lian2, ZHANG Jie1, SUN Li-e2     
1. First Institute of Oceanography, State Oceanic Administration, Qingdao 266061, China;
2. Central station of environment monitoring of Qingdao, Qingdao 266003, China
Abstract: Water quality monitoring is an important method to evaluate the quality of water in a reservoir, and in situ water sampling is required for subsequent testing and analysis of the drawn samples in a lab. However, in some special cases, where there are no boats in the reservoir or in a complicated district, water is only sampled at the shore. This results in an inaccurate evaluation of the water quality of a reservoir. In this paper, a water pump system is designed and integrated into our unmanned surface vehicle (USV) to solve the water sampling problem of reservoirs in offshore districts. Waypoint following for autonomous control is used to achieve remote water sampling from the plan points. In our experiment, water is sampled successfully at two plan points which are 50 m and 1300 m offshore at the Ji-hong-tan reservoir. In the lab, the quality of the water samplings is analyzed using a spectrophotometer, an ion chromatograph, and inductively coupled plasma mass spectrometry. It is shown that water sampling from a reservoir in an offshore district using an USV is viable and practical.
Key words: Unmanned ship    offshore collection of reservoir water    water quality monitoring    

水库水质是地表水环境保护的重要内容, 其监测数据是反映水质污染程度的重要依据, 监测数据的准确性将对环境保护措施制定与执行产生重要影响。水质环境监测工作主要包括点位布设、水样采集与保存、实验室分析、数据处理和综合评价等5个环节, 其中水样采集是环境监测工作的基础, 其影响到监测数据的代表性、准确性、可比性和完整性。目前水质采样方法主要为人工现场取样, 具体操作流程主要依据《地表水和污水监测技术规范》(HJ/T91-2002)。对于水库水样采集, 常常受制于现场条件以及成本, 一般只在水库入口和出口处的堤岸设置采样点位, 这种采样方式的主要缺点是水样代表性差。因此, 地表水体离岸监测点位取样是困扰环境监测的一个难题。

无人船(USV, Unmanned Surface Vehicle)是一种新型的多功能无人监测平台, 其依托小型船舶, 装载定位、导航与控制设备, 可搭载多种监测传感器, 以遥控或自主的工作方式, 在走航过程中进行连续性监测。无人船工作于水面, 大部分表面原位和剖面测量传感器均可搭载, 例如CTD、叶绿素、溶解氧、流速仪、单/多波束测深仪、ADCP等, 可应用于浅水湖泊、近岸、岛礁周边等复杂区域甚至大洋的多要素同步测量。近10年来, 国内外已开发了多个无人船系统用于环境监测, 例如英国普利茅斯大学开发了无人船“Springer”, 搭载了水质监测传感器, 应用于海洋环境监测[1]。弗罗里达理工大学开发了“ASMV”无人船式浮标, 搭载了温盐、气象、化学分析仪和荧光计, 用于浮游植物监测[2]。澳大利亚CSIRO ICT中心和昆士兰大学联合研发了水质监测无人船, 通过加装水下测量杆, 实现水质剖面测量[3]。意大利国家研究理事会智能系统自动化研究所研制了两款水样采集无人船“SESAMO”和“Charlie”用于海洋表层水样采集, 已在南极区域开展了相关实验[4]

本文针对水库水样离岸采集的需求, 基于自研发的无人船系统, 设计集成了水泵水样采集设备, 实现了远距离遥控水样离岸采集。以青岛棘洪滩水库为例, 开展了水样采集实验, 并对水样进行了实验室分析。

1 无人船水样采集系统

自研发的无人船系统“USBV”是由岸基控制单元和无人船单元两部分组成, 二者之间采用数传电台建立测量数据回传和控制命令下达链接, 目前已应用于水深测量、抵近监视和水声通信等[5]

无人船“USBV”质量约130 kg, 长约2.8 m, 宽约1.5 m, 续航能力约20 km, 船速在0~1.5 m/s范围内可调, 通信距离超过10 km。无人船电源使用24 V和12 V锂电池组, 分别为推进系统和主控及传感器系统供电。无人船船体采用双体双推进方式, 可进行前进、后退和转向遥控。在自动控制方面, 具备无人船航向、位置、路径等自动控制功能, 即按照岸基控制单元发送的期望航向、GPS位点和航线完成自动测量。目前“USBV”主要搭载了GPS、电子罗盘、姿态仪、测深仪、水上与水下摄像机、CTD、小型气象仪等传感器。为实现无人船水样采集, 利用无刷电动水泵、继电器和信号灯, 集成了一套无人船控制的水样采集设备。所选用的水泵是一种可抽空气型的12V 5W无刷电动水泵, 最大抽水流量为1 L/min。利用无人船主控系统控制水样采集时间和电机转速, 实现对水样采集容量的控制。在无人船水样采集过程, 使用岸基控制单元向无人船发送需要采样的GPS位置, 无人船自动到达该位置并停船, 然后发送水样采集命令, 信号灯亮起, 完成水样采集任务后, 水泵停止, 信号灯熄灭。无人船及水样采集如图 1所示。

图 1 无人船及水样采集 Fig. 1 USBV and water sampling
2 实验及分析 2.1 无人船水样采集

为验证无人船水样采集性能, 于2015年7月15至17日在青岛棘洪滩水库进行了无人船水样采集实验。该水库作为引黄济青调蓄水库, 是一个人工修建的八边形水库, 水库周长14 km, 水深大约10 m。由于库区内无船舶, 青岛市环境监测中心站每月例行水样采集只能在出水口和入水口进行, 无法获取湖区内水样。在2015年7月15日实验过程中, 无人船从水库南面的斜坡放下, 设置了第一个水样采集GPS位点(36°20′36.32″N, 120°12′29.06″E), 离岸约50 m, 完水样采集后, 设置了第二个水样采集GPS位点(36°21′16.93″N, 120°12′31.04″ E), 离岸约1300 m。实验中, 水样采集瓶使用空矿泉水瓶, 约500 mL, 采样时间约为45 s。在两次定点采样中, 位点跟踪精度均设置为6 m, 即无人船自动到达所设置的采样点周围6米范围内自动停船。图 2给出了两次水样采集的无人船航行轨迹, 基本上可以直接到达采样位点, 而且均成功完成了水样采集, 然后带回实验室进行水样分析。在上述两个位点的水样采集中, 使用了无人船的位点跟踪。为了验证无人船的长距离的自动采样能力, 7月17日进行了无人船直线自动跟踪实验, 无人船航行轨迹见图 3, 轨迹总长约4.3 km。在图 4图 5中, 分别给出了无人船搭载的小型气象仪获取的典型的风速、风向、气温的连续测量数据。

图 2 两次水样采集无人船轨迹 Fig. 2 USV's path for water sampling of two points

图 3 长距离直线自动追踪轨迹 Fig. 3 Line following result for long distance

图 4 无人船实测风速-风向 Fig. 4 Velocity and direction of wind by USBV

图 5 无人船实测气温变化 Fig. 5 Air temperature by USBV
2.2 水样实验室分析

在完成无人船采水样实验后, 将所采集的两瓶500mL水样带回实验室, 参照《水和废水监测分析方法》(第四版), 进行水质分析, 所使用的分析方法及仪器见表 1

表 1 水样实验室分析方法和仪器 Tab. 1 Analysis method and device for a water sample in the laboratory
要素 分析方法 仪器
总氮 碱性过硫酸钾消解紫外分光光度法 TU 1901双光束紫外可见分光光度计
硝酸盐氮 离子色谱法 离子色谱仪PIC-10A
亚硝酸盐氮 分光光度法 723N分光光度计
氨氮 纳氏试剂分光光度法 723N分光光度计
总磷 钼酸铵分光光度法 723N分光光度计
重金属 电感耦合等离子体质谱法 电感耦合等离子体质谱NexION300X

在实验过程中, 利用无人船搭载的小型气象仪、测深仪和CTD(温度、深度、电导率测量仪), 同步测量了两个采样点的环境数据。综合实验室水样分析结果, 表 2给出了棘洪滩水库无人船水样水质监测结果。其中, 位置、气温、风速、风向、水深、水温、电导率数据是由无人船现场直接测量得到, 而总氮、硝酸盐氮、亚硝酸盐氮、氨氮、总磷、重金属(包括锰、铁、铜、锌、镉、铅)是通过实验室分析无人船所采集水样而获得。据《地表水环境质量评价办法》(试行)[6], 地表水水质评价指标不包括水温、总氮和粪大肠菌群, 两个采样点位的水质均达地表水Ⅰ类标准, 水质安全。对比两个采样点的水质参数数据可以发现, 两采样点水质参数变化不大, 相比于采样点1(离岸50 m), 不考虑总氮的情况下, 采样点2(离岸1300 m)的硝酸盐氮、亚硝酸盐氮、氨氮、总磷低于或等于采样点1测量值, 而重金属采样点2测量值大于采样点1测量值。相比于以往只在入水口和排水口取样, 本次水样测量更能代表库区水质概况。综合以往岸边水样分析结果, 可判定棘洪滩水库水质安全。

表 2 水质监测结果 Tab. 2 The results of water monitoring
采样点1 采样点2
时间 2015-07-15 13: 7: 55 2015-07-15
13: 49: 18
位置 36°20′36.32″N 120°12′29.06″E 36°21′16.93″N 120°12′31.04″E
距岸 50 m 1300 m
气温/℃ 35.17 35.71
风速/(m/s) 2.84 1.74
风向/° 280.99 256.96
水深/m 7.27 9.15
水温/℃ 28.70 28.82
电导率/(mS/cm) 1.09 1.09
总氮/(mg/L) 2.82 2.96
硝酸盐氮/(mg/L) 2.64 2.63
亚硝酸盐氮/(mg/L) 0.016 0.016
氨氮/(mg/L) 0.14 0.11
总磷/(mg/L) 0.01 0.01
铜/(μg/L) 1.09 1.13
铁/(μg/L) 2.10 2.26
锰/(μg/L) 未检出 未检出
锌/(μg/L) 未检出 未检出
镉/(μg/L) 未检出 未检出
铅/(μg/L) 未检出 未检出
3 结语与讨论

利用自研发的无人船系统, 设计集成了水样采集设备, 在青岛棘洪滩水库开展了水样采集应用实验。实验结果表明, 利用无人船采集的水样, 完成水样实验室分析后, 能够有效地监测水库水质。水样采集无人船为水库水样离岸采集及监测提供一种新颖的技术手段。未来该手段可应用于近海水样采集, 降低作业成本和风险。

参考文献
[1]
Naeem W, Xu T, Sutton R, et al. The design of a navigation, guidance, and control system for an unmanned surface vehicle for environmental monitoring[J]. Proceedings of the Institution of Mechanical Engineers, Part M:Journal of Engineering for the Maritime Environment, 2008, 222(2): 67-79. DOI:10.1243/14750902JEME80
[2]
Wood S, Rees M, Pfeiffer Z. An Autonomous Self-Mooring Vehicle for Littoral & Coastal Observations[C]//Oceans, Aberdeen Scotland: Aberdeen Press, 2007. https://ieeexplore.ieee.org/document/4302216/?reload=true&arnumber=4302216&punumber%3D4302188
[3]
Dunbabin M, Grinham A and Udy J. An Autonomous Surface Vehicle for Water Quality Monitoring[C]//Australasian Conference on Robotics and Automation(ACRA), Sydney, Australia, 2009.
[4]
Caccia M, Bono R, Bruzzone Ga.Design and Preliminary Sea trials of SESAMO an Autonomous Surface Vessel for the Study and Characterization of the Air-sea interface Interface[M].Tech Rep, CNR-IAN, 2003.
[5]
金久才, 张杰, 邵峰, 崔廷伟. 一种海洋环境监测无人船系统及其海洋应用[J]. 海岸工程, 2015, 34(3): 87-92.
Jin Jiucai, Zhang Jie, Shao Feng, Cui Tingwei. An unmanned ship system of marine environmental monitoring and marine applications[J]. Coastal Engineering, 2015, 34(3): 87-92.
[6]
国家环境保护总局. 地表水环境质量评价办法(试行)[S]. 中国标准出版社, 2011.
State Environmental Protection Administration. Methods for evaluating the quality of surface water environment(Trial)[S]. Peijing: China Standard Press, 2011.