﻿ 基于无人机/无人艇的最优动态覆盖观测技术
 海洋科学  2018, Vol. 42 Issue (1): 106-111 PDF
http://dx.doi.org/10.11759/hykx20171011015

#### 文章信息

YAO Peng, QI Sheng-bo, LI Ming. 2018.

Optimal dynamic coverage for UAV/USV surveillance

Marina Sciences, 42(1): 106-111.
http://dx.doi.org/10.11759/hykx20171011015

### 文章历史

Optimal dynamic coverage for UAV/USV surveillance
YAO Peng, QI Sheng-bo, LI Ming
College of Engineering, Ocean University of China, Qingdao 266100, China
Abstract: In this paper, we propose a path optimization method with the objective of maximum surveillance to solve the problem of achieving optimal dynamic coverage in the surveillance of the sea surface by unmanned aerial vehicles (UAVs) and unmanned surface vehicles (USVs). We propose a layer-based framework that includes regional decomposition, subregion allocation, and path planning. First, based on the previously obtained information density, we utilize the Gaussian mixture model (GMM) to extract regional features with respect to several subregions. Next, we sequence these subregions and allocate them to UAVs or USVs to simplify the complex cooperative optimization problem into several single-UAV/USV path planning problems. Then, we plan each agent's path using the concurrent receding horizon control (RHC) method. Simulation results indicate that the proposed GMM–RHC method achieves higher surveillance efficiency.
Key words: unmanned aerial vehicle (UAV)    unmanned surface vehicle (USV)    optimal dynamic coverage for surveillance    path optimization

1 最优动态覆盖观测问题建模

 图 1 无人机/无人艇运动示意图 Fig. 1 Diagram of UAV/USV motion

 $G_{}^t(m) = 1-{\left( {1-{g_{\rm{A}}}} \right)^{L_{\rm{A}}^t(m)}}{\left( {1-{g_{\rm{s}}}} \right)^{L_{\rm{s}}^t(m)}}$ (1)

 $A_{{\rm{allocation}}}^* = \arg \max (EA)$ (14)
2.4 基于并行RHC的单无人机/无人艇航路规划

 图 2 基于并行RHC的单机覆盖搜索航路规划示意图 Fig. 2 Search path voverage of single agent by concurrent RHC a.航路初始化; b.覆盖观测航路 a. Initialized path; b surveillance path coverage
3 仿真结果

 图 3 基于GMM-RHC的无人机/无人艇覆盖观测示意图 Fig. 3 UAV/USV coverage by GMM-RHC a.信息密度分布图; b. GMM近似结果; c.覆盖航路 a. Information density map; b. GMM results; c. path coverage

 图 4 基于RHC的无人机/无人艇覆盖观测示意图 Fig. 4 UAV/USV coverage by RHC

 图 5 采用不同方法的无人机/无人艇覆盖观测收益曲线 Fig. 5 Payoff curve of UAV/USV using different methods
4 结论

 [1] Galceran E, Carreras M. A survey on coverage path planning for robotics[J]. Robotics and Autonomous Systems, 2013, 61(12): 1258-1276. DOI:10.1016/j.robot.2013.09.004 [2] Song C, Feng G, Fan Y, et al. Decentralized adaptive awareness coverage control for multi-agent networks[J]. Automatica, 2011, 47(12): 2749-2756. DOI:10.1016/j.automatica.2011.09.006 [3] 孙昌浩, 段海滨. 基于进化势博弈的多无人机传感器网络K-覆盖[J]. 中国科学:技术科学, 2016, 46(10): 1016-1023. Sun Changhao, Duan Haibin. An evolutionary potential game theoretic approach for the K-COVER problem in multi-UAV sensor networks[J]. Scientia Sinica Technologica, 2016, 46(10): 1016-1023. [4] Gupta V, Chung T H, Hassibi B, et al. On a stochastic sensor selection algorithm with applications in sensor scheduling and sensor coverage[J]. Automatica, 2006, 42(2): 251-260. DOI:10.1016/j.automatica.2005.09.016 [5] 宋程. 移动传感器网络的动态覆盖与聚集[D]. 合肥: 中国科学技术大学, 2012. Song Cheng. Dynamic coverage and rendezvous for mobile sensor networks[D]. Hefei: University of Science and Technology of China, 2012. [6] 陈海, 何开锋, 钱炜祺. 多无人机协同覆盖路径规划[J]. 航空学报, 2016, 37(3): 928-935. Chen Hai, He Kaifeng, Qian Weiqi. Cooperative coverage path planning for multiple UAVs[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(3): 928-935. [7] Acar E U, Choset H, Lee J Y. Sensor-based coverage with extended range detectors[J]. IEEE Transactions on Robotics, 2006, 22(1): 189-198. DOI:10.1109/TRO.2005.861455 [8] Choi M H. Optimal underwater coverage of a cellular region by autonomous underwater vehicle using line sweep motion[J]. Journal of Electrical Engineering and Technology, 2012, 7(6): 1023-1033. DOI:10.5370/JEET.2012.7.6.1023 [9] 朱心科, 俞建成, 王晓辉. 水下滑翔机自适应覆盖采样[J]. 机器人, 2012, 34(5): 566-573. Zhu Xinke, Yu Jiancheng, Wang Xiaohui. Adaptive coverage sampling of underwater glider[J]. Robot, 2012, 34(5): 566-573. [10] Lanillos P, Gan S K, Besada-Portas E, et al. Multi-UAV target search using decentralized gradient-based negotiation with expected observation[J]. Information Sciences, 2014, 282: 92-110. DOI:10.1016/j.ins.2014.05.054 [11] 严卫生, 左磊, 崔荣鑫, 等. 洋流干扰下的多自主水面无人船最优覆盖控制[J]. 西北工业大学学报, 2014, 32(5): 769-774. Yan Weisheng, Zuo Lei, Cui Rongxin, et al. Coverage control of multiple autonomous underwater vehicle with disturbance by ocean currents considered[J]. Journal of Northwestern Polytechnical University, 2014, 32(5): 769-774. [12] Li Y, Chen H, Er M J, et al. Coverage path planning for UAVs based on enhanced exact cellular decomposition method[J]. Mechatronics, 2011, 21(5): 876-885. DOI:10.1016/j.mechatronics.2010.10.009 [13] Yao P, Wang H, Ji H. Gaussian mixture model and receding horizon control for multiple UAV search in complex environment[J]. Nonlinear Dynamics, 2017, 88(2): 903-919. DOI:10.1007/s11071-016-3284-1 [14] Fraley C, Raftery A E. Model-based clustering, discriminant analysis, and density estimation[J]. Journal of the American statistical Association, 2002, 97(458): 611-631. DOI:10.1198/016214502760047131