海洋科学  2018, Vol. 42 Issue (12): 37-46   PDF    
http://dx.doi.org/10.11759/hykx20180928001

文章信息

顾智强, 张振华, 徐琰雯, 顾梦娇, 徐强, 朱自强, 钟伯坚. 2018.
GU Zhi-qiang, ZHANG Zhen-hua, XU Yan-wen, GU Meng-jiao, XU Qiang, ZHU Zi-qiang, ZHONG Bo-jian. 2018.
南极绿藻中类菌胞素氨基酸对UV-B胁迫的响应
Study of response of mycosporine-like amino acids in Antarctic green algae to UV-B radiation
海洋科学, 42(12): 37-46
Marine Sciences, 42(12): 37-46.
http://dx.doi.org/10.11759/hykx20180928001

文章历史

收稿日期:2018-09-28
修回日期:2018-11-19
南极绿藻中类菌胞素氨基酸对UV-B胁迫的响应
顾智强, 张振华, 徐琰雯, 顾梦娇, 徐强, 朱自强, 钟伯坚     
南京师范大学 生命科学学院 江苏省生物多样性与生物技术重点实验室, 江苏 南京 210023
摘要:南极上空臭氧层的破坏导致了紫外辐射日益增强,高强度的UV-B辐射会造成细胞中DNA的损伤,影响蛋白质、脂类和色素的代谢过程。生长在南极的绿藻具有一系列防御机制以应对增强的UV-B辐射,其中类菌胞素氨基酸(Mycosporine-like amino acids,MAAs)是一类重要的紫外防御物质。为探究类菌胞素氨基酸对UV-B辐射的响应,本文以南极冰藻(Chlamydomonas sp.ICE-L)、针丝藻(Raphidonema nivale Lagerheim,NIES-2290)和胶球藻(Coccomyxa subellipsoidea E.Acton,NIES-2166)三种生活在南极的绿藻为材料,采用UV-B辐射胁迫(强度0.35 W/m2,短时处理3 h),并通过液相色谱-质谱联用法检测类菌胞素氨基酸的种类和含量的变化。Mycosporine-glycine为三种南极绿藻中共有的MAAs,在UV-B辐射胁迫下三种南极绿藻中Mycosporine-glycine含量变化不尽相同,表明不同的南极绿藻中MAAs对UV-B辐射的响应各有其特性。首次在绿藻(南极冰藻和胶球藻)中检测到Gadusol。Gadusol作为MAAs的合成前体,它的合成积累使得生活在海冰环境的南极冰藻和胶球藻具有良好的抗UV-B辐射能力。其中南极冰藻抗紫外能力最强,这可能得益于不同MAAs间的动态转化,含量升高的Palythine及Usujirene/Palythene可能对南极冰藻的紫外屏蔽起着至关重要的作用。
关键词类菌胞素氨基酸(MAAs)    UV-B辐射    液相色谱-质谱联用技术    南极绿藻    
Study of response of mycosporine-like amino acids in Antarctic green algae to UV-B radiation
GU Zhi-qiang, ZHANG Zhen-hua, XU Yan-wen, GU Meng-jiao, XU Qiang, ZHU Zi-qiang, ZHONG Bo-jian     
Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
Abstract: The destruction of the ozone layer over Antarctica has led to an increase in UV-B radiation, and Antarctic green algae possess a series of defense mechanisms to cope with this enhanced UV-B radiation, of which photo-protective mycosporine-like amino acids (MAAs) are one of the most important. In this study, we used three Antarctic green algae (Chlamydomonas sp. ICE-L, Raphidonema nivale Lagerheim and Coccomyxa subellipsoidea E.Acton) to investigate the response of MAAs to UV-B radiation. To delineate the qualitative and quantitative features of MAAs under UV-B radiation (0.35 W/m2, 3 hours), we used a liquid chromatograph-mass spectrometer (LC-MS). Mycosporine-glycine is a common MAA among the three Antarctic green algae. The mycosporine-glycine content varies in the three algae under UV-B radiation stress, which indicates species-specific responses of MAAs to UV-B radiation. The existence of gadusol was detected for the first time in Antarctic green algae (Chlamydomonas sp. ICE-L and Coccomyxa subellipsoidea E.Acton). Gadusol is a synthetic MAA precursor, and its accumulation might contribute to the UV-B radiation resistance in Chlamydomonas sp. ICE-L and Coccomyxa subellipsoidea E.Acton. Dynamic transformation between different MAAs might account for the most significant UV-B radiation resistance of Chlamydomonas sp. ICE-L. The increased contents of palythine and usujirene/palythene are likely to play important roles in the UV shielding of Chlamydomonas sp. ICE-L.
Key words: mycosporine-like amino acids    UV-B    liquid chromatograph-mass spectrometer    antarctic green algae    

地球大气层中分布着厚度仅有0.3 cm的臭氧层, 臭氧层几乎吸收了到达大气层全部的UV-C和90%左右的UV-B辐射[1-2], 现代工业生产和人们的生活中大量使用的氟氯烃和哈龙等卤素有机化合物, 再加上两极地区极端气候可能导致了臭氧层的严重破坏[3]。臭氧层的破坏致使到达地表的UV-B辐射增强。经大量研究证实, UV-B辐射会对藻类造成不同程度的伤害[4], 高强度的UV-B辐射可以直接伤害细胞中的DNA、蛋白质、脂类和色素, 还会激发产生自由基的活性物质, 这些物质会进一步对细胞造成更大的伤害[5]。生活在南极的藻类为应对高强度的UV-B辐射形成了一系列的防御机制, 类菌胞素氨基酸(MAAs)是其中重要的紫外防御物质。

MAAs的基本骨架是环己烯酮, Gadusol和4-deoxygadusol (4-DG)是MAAs的前体物质, 可以与不同氨基酸发生缩合反应产生多种类型的MAAs[6], 其结构上存在共轭双键和侧链上的活性基团, 在310~360 nm波长范围内具有极强的紫外吸收特性[7]。目前, 已经在多种海藻中发现MAAs, 短波长的辐射会刺激MAAs的合成[8], 它在海藻中主要发挥紫外防护和生长调控的作用[9]。藻类中MAAs对紫外辐射的响应已有不少研究, 但具体机制尚不清楚, MAAs生物合成的机制和紫外辐射对MAAs的作用规律亟待进一步研究。Karsten U等[10]研究发现, 生长于北极的红藻在不同的紫外条件下, MAAs的种类和含量会有明显的变化, 证明了紫外辐射对MAAs合成积累的作用。Moisan和Mitchell [11]在对南极棕囊藻(Phaeocystis)的研究中发现, MAAs的总量随紫外辐射强度增强而增加, 呈正相关变化趋势, 而单种MAAs随紫外辐射强度的变化相对独立。Sinha [12]在对红藻(Gracilaria cornea)的研究中发现, MAAs对UV-B和高温等环境胁迫因子具有较高的稳定性。同时有研究发现, MAAs的合成与UV-B响应可能存在种属和环境特异性[13]

除了良好的抗紫外辐射活性, 许志恒[14]及贺庆梅[15]等发现紫菜和江蓠中的MAAs还具有很好的抗氧化活性。良好的抗紫外辐射和抗氧化特性使得天然的紫外吸收化合物MAAs可作为护肤品中的防紫外剂[16]。实验表明, 加入5%的MAAs(主要含有Prophyra-334和Shinorine)的面霜, 其防紫外效力相当于1%UV-A滤光片和4%UV-B滤光片的效力, 远远超过人们日常所需的紫外保护[17]

在色谱分析中, 通过比较MAAs的保留时间和紫外吸收光谱, 可以鉴别出特定的已知化学结构的MAAs[18]。在本研究中, 我们选择采用质谱检测分析, 基于电喷雾电离质谱(Electrospray ionization mass spectrometry, ESI-MS)分析的高效液相色谱法可以在缺乏标准品的情况下准确的鉴别单种MAAs, 特征碎裂模式可以用于检验MAAs结构的多样性[19]。液相色谱-质谱联用(Liquid chromatograph-mass spectrometer, LC-MS)技术有助于检测鉴定样品中已知结构的MAAs, 同时也可鉴别新发现的MAAs的结构[20]

1 材料与方法 1.1 南极绿藻藻种

本研究选取的三株南极绿藻分别来自中国第十八次南极科学考察, 从采集的南极海冰中分离纯化的一株绿藻:南极冰藻(Chlamydomonas sp. ICE-L); 从日本藻种库(NIES)购买的采样地点为南极的两株绿藻:针丝藻(Raphidonema nivale Lagerheim, NIES- 2290)和胶球藻(Coccomyxa subellipsoidea E.Acton, NIES-2166)。

1.2 培养及UV-B辐照处理

南极冰藻的培养方法:将南极冰藻接种于Provasoli海水培养基[21]中, 置于可控温光培养箱中, 温度5℃, 光强40 μmol photons/(m2· s), 光照周期14 h光/10 h暗, 培养至对数生长期。针丝藻及胶球藻的培养方法: C培养基[22], 温度20℃, 光强为40 μmol photons/(m2· s), 光照周期为10 h光/14 h暗, 培养至对数生长期。

UV-B辐照处理设置参照文献[23]和[24]。已知藻类对紫外辐射的响应在3 h内最为活跃, 经过预实验的探究, 最终确定UV-B辐照强度为: 0.35 W/m2, 处理时间为3 h, 在该条件下藻种材料能保持较高的活性。将培养至对数生长期的南极绿藻离心富集, 均分成湿重为0.5 g的两等份, 用30 mL培养液混匀并加入到直径10 cm的培养皿中, 分别置于光合有效辐射(PAR)和PAR+UV-B (0.35 W/m2)照射条件下处理3 h, UV-B强度通过紫外辐照计测定。实验重复3次, 用STATISTIC软件对实验数据进行单因子方差检验(One-way ANOVA)。

1.3 MAAs的提取

8 000 r/min离心5 min收集藻体, 蒸馏水洗涤3次。加入20 mL色谱纯甲醇, 冰浴超声破碎20 min, 4℃过夜提取。8 000 r/min离心5 min取上清液, 45℃旋转蒸发, 将残留物溶于10 mL蒸馏水。8 000 r/min离心5 min, 取上清液冷冻干燥重溶于1 mL蒸馏水, 上清液通过0.2 μm滤膜, 置于–20℃保存备用。

1.4 MAAs的LC-MS检测

MAAs样品的液相色谱分析条件:紫外检测器, 检测波长330 nm, XDB-C18柱(5 μm, 4.6 mm×250 mm), 流动相: A: 1 mmol/L醋酸铵+0.1%乙酸(V/V); B:色谱纯乙腈, 流速0.6 mL/min, 从0到30 min, 有机相乙腈洗脱体积从5%增加到70%, 30 min到40 min乙腈体积保持在70%。每个样品测定之间平衡10 min。液相色谱洗脱条件见表 1

表 1 液相色谱流动相洗脱条件 Tab. 1 Conditions for liquid chromatography mobile- phase elution
时间/min 流动相A/% 流动相B/%
0 95 5
30 30 70
40 30 70

MAAs样品的质谱分析条件: ESI(大气压电喷雾电离)源, 正离子模式, 毛细管电压4500 V, 喷雾气压3.10×105 pa, 干燥气温度325℃, 干燥气流速11.0 L/min, 破碎电压135 V, 全扫描荷质比范围为100~1000。

1.5 UV-B辐照胁迫下南极绿藻光合作用能力检测

PSІІ最大光化学量子产量[Optimal/maximal photochemical efficiency of PSІІ in the dark; Fv/Fm= (FmF0)/Fm], 可以反映PSІІ反应中心光能转换效率, 胁迫条件下该参数呈现明显下降的趋势, 因此我们用Fv/Fm值表征南极绿藻受到UV-B胁迫的程度[25]

将培养至对数生长期的三种南极绿藻暗处理20 min后, 在暗处用叶绿素荧光仪(AquaPen-C100, Photon Systems Instruments)测定叶绿素荧光参数:初始荧光(F0)和最大荧光产量(Fm), 并计算最大光化学量子产量: Fv/Fm, 重复3次。然后置于强度为0.35 W/m2的UV-B辐照条件下照射3 h, 测定FmF0, 重复3次。用STATISTIC软件对实验数据进行单因子方差检验(One-way ANOVA), 不同上标字母表示处理间差异显著(P < 0.05)。

2 结果与分析 2.1 南极绿藻中MAAs的鉴定

采用液相色谱-质谱联用法(LC-MS)分析和鉴定南极绿藻中化学结构已知的MAAs。由于绿藻中MAAs浓度较低[26], 难以在色谱图上形成明显的峰值, 我们采用提取离子色谱法(Extracted ion chromatography, EIC)来鉴定南极绿藻中的MAAs。

在三种南极绿藻中分别检测到了不同种类的MAAs(表 2)。在南极冰藻(图 1, 2)中, 检测到了5种MAAs: Usujirene/Palythene, Palythenic acid, Palythine, Mycosporine-glycine, Mycosporine-taurine和Gadusol, 其中Gadusol只在UV-B辐射处理组中检测到, 表明UV-B辐射可能诱导了Gadusol的合成积累(图 2)。在针丝藻(图 3)中, 检测到了4种MAAs: Palythinol/ Mycosporine-2-glycine, Mycosporine-taurine, Prophyra- 334和Mycosporine-glycine。在胶球藻(图 4)中, 同样检测到了4种MAAs: Usujirene/Palythene, Mycosporine-taurine, Gadusol和Mycosporine-glycine。Mycosporine-glycine是这三种南极绿藻共有的MAAs, 在甲藻和珊藻中也有报道, 表明该种MAAs在低等的藻类中可能广泛存在[24, 27-28]

表 2 三种南极绿藻中检测到的MAAs Tab. 2 Summary of MAAs detected in three Antarctic green algae
藻类 类菌胞素氨基酸 正离子峰([M+H]+) 保留时间(RT)/min
南极冰藻 Usujirene/Palythene 285 3.9
Palythenic acid 329 4.2
Palythine 245 4.3
Gadusol 205 14.7
Mycosporine-glycine 246 24.6
针丝藻 Mycosporine-taurine 296 4.4
Palythinol/Mycosporine-2-glycine 303 13.1
Prophyra-334 347 24.4
Mycosporine-glycine 246 24.9
胶球藻 Usujirene/Palythene 285 3.9
Mycosporine-taurine 296 4.4
Gadusol 205 14.7
Mycosporine-glycine 246 24.9

图 1 南极冰藻中检测到MAAs的MS图谱 Fig. 1 MS spectra of MAAs detected in Chlamydomonas sp. ICE-L

图 2 保留时间在14.6 min时, 南极冰藻在PAR、PAR+UV-B处理下的MS质谱图 Fig. 2 MS spectra of Chlamydomonas sp. ICE-L under PAR and PAR+UV-B treatments at 14.6 min retention time

图 3 针丝藻中检测到MAAs的MS图谱 Fig. 3 MS spectra of MAAs detected in Raphidonema nivale Lagerheim

图 4 胶球藻中检测到MAAs的MS图谱 Fig. 4 MS spectra of MAAs detected in Coccomyxa subellipsoidea E. Acton
2.2 南极绿藻中MAAs对UV-B辐照的响应

经UV-B辐照处理后, 南极冰藻中Usujirene/ Palythene及Palythine的含量均升高, 相反Palythenic acid及Mycosporine-glycine的含量均有下降, 且Usujirene/Palythene和Mycosporine-glycine的含量远高于南极冰藻中其他3种MAAs(图 5)。此外, UV-B辐照处理还诱导了Gadusol的产生, 南极冰藻中MAAs总量升高可能得益于Gadusol的合成积累。

图 5 PAR和PAR+UV-B辐照处理组南极冰藻中各MAAs的提取离子色谱峰面积和 Fig. 5 Sums of various MAA EIC peak areas in Chlamydomonas sp. ICE-L under PAR and PAR+UV-B treatments

针丝藻经UV-B辐照处理后MAAs总量略微下降, 其中Mycosporine-taurine含量最高(EIC峰面积1.41×107), 而Palythinol/Mycosporine-2-glycine的含量甚微(EIC峰面积5.42×105)。针丝藻经UV-B辐照处理后Mycosporine-glycine含量显著下降(P < 0.01), 此外Prophyra-334含量也显著低于对照组(P < 0.01), 而Palythinol/Mycosporine-2-glycine及Mycosporine- taurine的含量均略高于对照组(图 6)。

图 6 PAR和PAR+UV-B辐照处理组针丝藻中各MAAs的提取离子色谱峰面积和 Fig. 6 Sums of various MAA EIC peak areas in Raphidonema nivale Lagerheim under PAR and PAR+UV-B treatments

胶球藻在UV-B辐照处理后, Mycosporine- glycine的含量显著升高(P < 0.01), Usujirene/Palythene及Mycosporine-taurine的含量在UV-B辐照处理后均下降, Gadusol含量变化甚微。胶球藻中MAAs总量升高的原因可能是Mycosporine-glycine含量升高(图 7)。

图 7 PAR和PAR+UV-B辐照处理组胶球藻中各MAAs的提取离子色谱峰面积和 Fig. 7 Sums of various MAA EIC peak areas in Coccomyxa subellipsoidea E.Acton under PAR and PAR+UV-B treatments
2.3 南极绿藻UV-B辐射胁迫下光合作用的表征

经强度为0.35 W/m2的UV-B辐照3 h后, 三种南极绿藻的Fv/Fm值均下降, 其中针丝藻受胁迫最明显: Fv/Fm由初始值0.61降至0.14, 仅为初始值的22.3%。然而, 南极冰藻及胶球藻的Fv/Fm值分别由初始值0.48和0.74降至0.33和0.39, 分别为初始值的70%和52.5%(图 8), 表明南极冰藻和胶球藻相较于针丝藻有较强的抗UV-B能力, 其中南极冰藻的抗UV-B辐照能力最为突出。

图 8 南极绿藻叶绿素荧光参数Fv/Fm经UV-B处理前后的变化; *表示与对照相比显著性差异(P < 0.05) Fig. 8 Changes in Fv/Fm of three Antarctic green algae before and after UV-B treatment; the asterisk indicates a significant difference between each treatment and the control(P < 0.05)
3 讨论

在三种南极绿藻中都检测到了MAAs, 但不同的藻中含有的MAAs的种类并不相同, 其中Mycosporine-glycine是这三种南极绿藻共有的MAAs (图 1, 3, 4)。Portwich A和Garcia-Pichel F[29]的研究表明Mycosporine-glycine是其他次级MAAs的前体, Mycosporine-glycine的积累是其他次级MAAs的合成必要条件(例如Shinorine)。此外, 在南极冰藻及胶球藻中均检测到了Gadusol (图 2/图 4), 且南极冰藻中Gadusol是在UV-B辐照诱导下产生的。Gadusol存在于多种海洋和陆生生物中, 海洋鱼类的卵巢和发育中的仔鱼[30-32]、海胆[33]、海绵[9]中均有Gadusol的报道, 但在藻类中还没有相关报道。Gadusol是MAAs合成的前体, 是莽草酸途径的中间产物3-脱氢醌(3-dehydroquinate, DHQ)的转化物[34], Gadusol的积累很可能是藻体响应UV-B辐射而增强其MAAs合成的结果。此外, Gadusol具有良好的紫外屏蔽和抗氧化作用, 氧化后的Gadusol具有类似于抗坏血酸的性质[31], 它的还原性猝灭反应(reductive quenching reactivity)活性被认为是生物抗氧化的潜在机制[35], Gadusol对水溶性自由基的高抗氧化能力使得含量丰富的鱼卵成为人类消费和功能性食品生产的原料来源[32]

针丝藻经UV-B胁迫MAAs总量呈现下降趋势, Fv/Fm值也大幅下降, 其中Prophyra-334及Mycosporine-glycine含量显著下降, 表明其抵抗UV-B胁迫的能力较弱, 可能在该强度的UV-B胁迫下藻体已经开始死亡。胶球藻和南极冰藻经UV-B胁迫MAAs总量升高, 表明这两种南极绿藻相较于针丝藻有较高的抗UV-B胁迫的能力, 我们推测Gadusol的合成和积累可能是胶球藻和南极冰藻具有良好紫外屏蔽能力的原因之一。南极冰藻表现出最强的抗UV-B胁迫的能力, 我们发现经UV-B处理后, 南极冰藻中Mycosporine-glycine及Palythenic acid的含量下降, 与Palythine及Usujirene/Palythene的含量升高存在一一对应的转化关系[18, 36], 据此推测不同MAAs间的动态转化也可能是南极冰藻具有良好抗逆性的原因之一, Palythine和Usujirene/Palythene的含量升高可能对南极冰藻的紫外屏蔽起着重要的作用。

在UV-B辐照处理下, 三种南极绿藻中Mycosporine-glycine的含量变化各异(图 5, 6, 7), 这可能是由于Mycosporine-glycine作为前体与其他次级MAAs相互转换的结果。Inamura E等[26]研究表明不同种类MAAs含量的变化(例如Shinorine和Palythene)是因为MAAs前体转化为其他次级MAAs, 且在低强度紫外条件下, 这些MAAs的转变有助于总体MAAs对紫外的吸收。

4 结论

本研究检测到南极冰藻中含有五种MAAs: Usujirene/Palythene、Palythenic acid、Palythine、Mycosporine-glycine和Gadusol, 其中Gadusol是UV-B辐照诱导产生的。针丝藻中含有四种MAAs: Palythinol/ Mycosporine-2-glycine、Mycosporine-taurine、Prophyra- 334和Mycosporine-glycine。胶球藻中含有四种MAAs: Usujirene/Palythene、Mycosporine-taurine、Gadusol和Mycosporine-glycine。三种南极绿藻的MAAs种类并不相同, 并且在UV-B辐射胁迫下三种南极绿藻中各种MAAs的含量变化不尽相同, 表明不同的南极绿藻中MAAs的种类和MAAs对UV-B辐射的响应具有物种特异性的特点。此外, 我们首次在南极绿藻(南极冰藻和胶球藻)中检测到了Gadusol的存在, 而Gadusol作为MAAs的合成前体, 它的合成积累使得生活在海冰环境的南极冰藻和胶球藻具有良好的抗UV-B辐射能力。其中南极冰藻具有最强的抗紫外能力, 这可能得益于不同MAAs间的动态转化, Palythine和Usujirene/Palythene的含量升高可能对南极冰藻的紫外屏蔽起着重要的作用。在UV-B胁迫下不同种类MAAs间的动态转化十分重要, 未来有待进一步探究南极绿藻中不同MAAs间的动态转化对UV-B胁迫的响应机制。

致谢: 感谢国家海洋局第一海洋研究所缪锦来研究员提供部分藻种。

参考文献
[1]
Frederick J E, Snell H E. Ultraviolet-radiation levels during the Antarctic spring[J]. Science, 1988, 241(4864): 438-440. DOI:10.1126/science.241.4864.438
[2]
Sinha R P, Hader D P. UV-induced DNA damage and repair:a review[J]. Photochemistry Photobiology Science, 2002, l(4): 225-236.
[3]
Jana P K, Saha I, das P, et al. Long-term ozone trend and its effect on night airglow intensity of Li 6708Å at Ahmedabad (23°N, 72.5°E), India and Halley Bay (76°S, 27°W), British Antarctic Service Station[J]. Indian Journal Physics, 2010, 84(1): 41-53. DOI:10.1007/s12648-010-0003-5
[4]
Bischof K, Gomez I, Molis M, et al. Ultraviolet radiation shapes seaweed communities[J]. Reviews in Environmental Science and Biotechnology, 2006, 5(2-3): 141-166. DOI:10.1007/s11157-006-0002-3
[5]
Buma A G J, Hannen E J, Veldhuis M J W, et al. UV-B induces DNA damage and DNA synthesis delay in the marine diatom Cyclotella sp[J]. Scientia Marine, 1994, 60: 101-106.
[6]
陈小兰, 邓国宾, 刘开庆, 等. 水生生物的紫外光防护剂——类菌胞素氨基酸[J]. 植物学报, 2006, 23(1): 78-86.
Chen Xiaolan, Deng Guobin, Liu Kaiqing, et al. UV-protective Metabolites in Aquatic Organisms-Mycosporine-like Amino Acids[J]. Bulletin of Botany, 2006, 23(1): 78-86.
[7]
Carreto J I, Carignan M O. Mycosporine-Like Amino Acids:Relevant Secondary Metabolites. Chemical and Ecological Aspects[J]. Marine Drugs, 2011, 9(3): 387-446. DOI:10.3390/md9030387
[8]
Rastogi R P, Incharoensakdi A. UV radiation-induced biosynthesis, stability and antioxidant activity of mycosporine-like amino acids (MAAs) in a unicellular cyanobacterium Gloeocapsa sp. CU2556[J]. Journal of Photochemistry and Photobiology B:Biology, 2014, 130(130C): 287-292.
[9]
Bandaranayake W M, Bourne D J, Sim R G. Chemical Composition during Maturing and Spawning of the Sponge Dysidea herbacea, (Porifera:Demospongiae)[J]. Comparative Biochemistry and Physiology Part B:Biochemistry and Molecular Biology, 1997, 118(4): 851-859. DOI:10.1016/S0305-0491(97)00180-6
[10]
Karsten U, Bischof K, Hanelt D, et al. The effect of ultraviolet radiation on photosynthesis and ultraviolet-absorbing substances in the endemic Arctic macroalga Devaleraea ramentacea (Rhodophyta)[J]. Physiologia Plantarum, 1999, 105(1): 58-66.
[11]
Moisan T A, Mitchell B G. UV absorption by mycosporine-like amino acids in Phaeocystis antarctica Karsten induced by photosynthetically available radiation[J]. Marine Biology, 2001, 138(1): 217-227.
[12]
Sinha R P. Mycosporine-like amino acids in the marine red alga Gracilaria cornea - Effects of UV and heat[J]. Environmental and Experimental Botany, 2000, 43(1): 33-43. DOI:10.1016/S0098-8472(99)00043-X
[13]
Lim J L, Stern R S. High levels of ultraviolet B exposure increase the risk of non-melanoma skin cancer in psoralen and ultraviolet A-treated patients[J]. Journal of investigative dermatology, 2005, 124(3): 505-513. DOI:10.1111/j.0022-202X.2005.23618.x
[14]
许志恒.紫菜中抗紫外线活性物质的提取及其性质的研究[D].青岛: 中国海洋大学, 2010.
Xu Zhiheng. Extraction and characterization of auti-ultraviolet Substances from Porphyra yezoensis[D]. Qingdao: Ocean University of China, 2010. http://cdmd.cnki.com.cn/Article/CDMD-10423-1011027080.htm
[15]
贺庆梅.海藻中紫外线吸收物质的制备与特性的研究[D].青岛: 中国海洋大学, 2008.
He Qingmei. Study on preparation and character of UV absorbing compound in seaweeds[D]. Qingdao: Ocean University of China, 2008. http://cdmd.cnki.com.cn/Article/CDMD-10423-2008175021.htm
[16]
郭婷婷, 王春华, 关万春, 等. 坛紫菜甲醇提取物屏蔽紫外能力的研究[J]. 浙江农业学报, 2011, 23(3): 593-597.
Guo Tingting, Wang Chunhua, Guan Wanchun, et al. Study on the ability of shielding ultraviolet-ray from methand extract of Porphyra haitanensis[J]. Acta Agriculturae Zhejiangensis, 2011, 23(3): 593-597. DOI:10.3969/j.issn.1004-1524.2011.03.031
[17]
Care S. Mycosporine-like amino acids:Natural UV-screening compounds from red algae to protect the skin against photoaging[J]. SÖFW-Journal, 2003, 129: 38-42.
[18]
Carreto J I, Carignan M O, Montoya N G. A high-resolution reverse-phase liquid chromatography method for the analysis of mycosporine-like amino acids (MAAs) in marine organisms[J]. Marine Biology, 2005, 146(2): 237-252. DOI:10.1007/s00227-004-1447-y
[19]
Whitehead K, Hedges J I. Analysis of mycosporine-like amino acids in plankton by liquid chromatography electrospray ionization mass spectrometry[J]. Marine Chemistry, 2002, 80(1): 27-39.
[20]
Hartmann A, Becker K, Karsten U, et al. Analysis of Mycosporine-Like Amino Acids in Selected Algae and Cyanobacteria by Hydrophilic Interaction Liquid Chromatography and a Novel MAA from the Red Alga Catenella repens[J]. Marine Drugs, 2015, 13(10): 6291-6305. DOI:10.3390/md13106291
[21]
Provasoli L. Media and prospects for the cultivation of marine algae[C]. Cultures and Collections of Algae. Proceedings of the Us-Japan Conference, Hakone, September. Japanese Society for Plant Physiology, 1968: 63-75.
[22]
Ichimura T. Sexual cell division and conjugation-papilla formation in sexual reproduction of Closterium stringosum[C]. International Seaweed Symposium. University of Tokyo Press, 1971: 208-214.
[23]
Peinado N K, Abdala Dguchi S. Ammonium and UV radiation stimulate the accumulation of mycosporine-like amino acids in Porphyra columbina (Rhodophyta) from Patagonia, Argentina[J]. Journal of Phycology, 2010, 40(2): 248-259.
[24]
Inamura E, Katayama T, Taguchi S. Absorption of Low-Dose Ultraviolet Radiation by Mycosporine-like Amino Acids Induced by the Dinoflagellate Prorocentrum micans[J]. Plankton and Benthos Research, 2017, 12(1): 15-24. DOI:10.3800/pbr.12.15
[25]
陈辰, 何小定, 秦金舟, 等. 4种含笑叶片叶绿素荧光参数Fv/Fm特性的比较[J]. 安徽农业大学学报, 2013, 40(1): 32-37.
Chen Chen, He Xiaoding, Qin Jinzhou, et al. Comparison of chlorophyll fluorescence Fv/Fm characteristics of four michelia trees[J]. Journal of Anhui Agricultural University, 2013, 40(1): 32-37.
[26]
Karsten U, Sawall T, Wiencke C. A survey of the distribution of UV-absorbing substances in tropical macroalgae[J]. Phycological Research, 2010, 46(4): 271-279.
[27]
Rosic N N. Phylogenetic analysis of genes involved in mycosporine-like amino acid biosynthesis in symbiotic dinoflagellates[J]. Applied Microbiology and Biotechnology, 2012, 94(1): 29-37. DOI:10.1007/s00253-012-3925-3
[28]
Carignan M O, Cardozo K H M, Oliveira-Silva D, et al. Palythine-threonine, a major novel mycosporine-like amino acid (MAA) isolated from the hermatypic coral Pocillopora capitata[J]. Journal of Photochemistry and Photobiology B:Biology, 2009, 94(3): 191-200. DOI:10.1016/j.jphotobiol.2008.12.001
[29]
Portwich A, Garcia-Pichel F. Ultraviolet and osmotic stresses induce and regulate the synthesis of mycosporines in the cyanobacterium Chlorogloeopsis PCC 6912[J]. Archives of Microbiology, 1999, 172(4): 187-192.
[30]
Grant P T, Plack P A, Thomson R H. Gadusol, a metabolite from fish eggs[J]. Tetrahedron Letters, 1980, 21(41): 4043-4044. DOI:10.1016/S0040-4039(00)92866-1
[31]
Plack P A, Fraser N W, Grant P T, et al. Gadusol, an enolic derivative of cyclohexane-1, 3-dione present in the roes of cod and other marine fish-Isolation, properties and occurrence compared with ascorbic acid[J]. Biochemical Journal, 1981, 199(3): 741-747. DOI:10.1042/bj1990741
[32]
Arbeloa E M, Uez M J, Bertolotti S G, et al. Antioxidant activity of gadusol and occurrence in fish roes from Argentine Sea[J]. Food Chemistry, 2010, 119(2): 586-591. DOI:10.1016/j.foodchem.2009.06.061
[33]
Yvonne V. Yuan, Neil D. Westcott, Chun Hu, et al. Mycosporine-like amino acid composition of the edible red alga, Palmaria palmata (dulse) harvested from the west and east coasts of Grand Manan Island, New Brunswick[J]. Food Chemistry, 2008, 112(2): 321-328.
[34]
Arbeloa E M, Bertolotti S G, Churio M S. Photophysics and reductive quenching reactivity of gadusol in solution[J]. Photochemical & Photobiological Sciences Official Journal of the European Photochemistry Association and the European Society for Photobiology, 2011, 10(1): 133-142.
[35]
Singh S P, Kumari S, Rastogi R P, et al. Mycosporine-like amino acids (MAAs):chemical structure, biosynthesis and significance as UV-absorbing/screening compounds[J]. Indian Journal of Experimental Biology, 2008, 46(1): 7-17.