
文章信息
- 王丹, RASHID Harunur. 2022.
- WANG Dan, RASHID Harunur. 2022.
- 长链烯酮在西北大西洋重建全新世气候变化的研究进展
- Progress in using the long-chain alkenones to reconstruct the Holocene climate changes in northwest Atlantic Ocean
- 海洋科学, 46(1): 181-191
- Marine Sciences, 46(1): 181-191.
- http://dx.doi.org/10.11759/hykx20201228005
-
文章历史
- 收稿日期:2020-12-28
- 修回日期:2021-01-29
在北大西洋海域, 墨西哥湾流(Gulf Stream, GS)及其延伸的北大西洋流(North Atlantic Current, NAC)从热带向高纬度海域传输暖而咸的海水, 影响了流经区域的水文条件变化, 并向上层大气释放热量和水汽, 因而北大西洋在调节全球气候中发挥着重要作用。NAC和伊尔明厄洋流(Irminger Current, IC)、西格陵兰洋流(West Greenland Current, WGC)以及拉布拉多洋流(Labrador Current, LC)共同构成副极地环流(Subpolar Gyre, SPG)的重要组成部分[1], 将北大西洋不同区域的环境变化联系起来。在北大西洋中高纬度海域, 北极淡水和极地冰盖融水的输入能够影响海洋环流的强弱, 进而对气候造成影响。北大西洋环境影响因素众多, 季节性差异较大, 是评估气候变化的重要区域。其中拉布拉多海不仅存在冷暖表层水的相互作用, 也是北大西洋两个海水下沉区域之一, 因而是气候研究的关键区域之一。常用的研究古气候变化的指标有: 有孔虫相关指标(组合特征、Mg/Ca比值和氧同位素δ18O等)[2-5]、硅藻(diatom)或沟鞭藻囊孢(dinocyst)组合[6-8]、四醚膜类脂物(glycerol dialkyl glycerol tetraethers, GDGTs)的古温标(TEX86)[9-10]、长链烯酮(简称, 烯酮)等。其中, 烯酮在古气候研究中已有广泛的应用, 一般是利用
全新世西北大西洋古气候变化的控制因素众多, 其中3个最主要的变化机制为: 1) 北半球65°N夏季太阳辐射的减弱是导致温暖的早全新世向较冷的晚全新世气候转变的主要机制之一[15-17]; 2) 来自极地或陆地残留冰盖的淡水输入通过改变海洋表层温度和盐度, 直接影响深层水的形成[18-19]。特别是有研究表明, 劳伦太德冰盖的Agassiz湖和Ojibway湖崩塌排泄的淡水引发了10.2 ka、8.2 ka等冷事件, 并削弱了深层水的形成[20-22]; 3) 末次冰期阶段, 北极锋从原本的南部位置撤退, 使得表层洋流(冷而淡的LC和暖而咸的NAC)重组和增强(图 1)。因此, 研究认为SPG强弱状态的转换取决于剩余冰盖排放的淡水量[18-19, 23]。表层洋流的重组显著影响了加拿大东部边缘以及更为广阔的北大西洋北部的SST[24]。而SST的重建有利于评估全新世以来的古气候变化。
![]() |
图 1 北大西洋区域地图 Fig. 1 North Atlantic Map 注: LC-拉布拉多洋流; EIC-东冰岛洋流; EGC-东格陵兰洋流; IC-伊尔明厄洋流; SPG-副极地环流; WGC-东格陵兰洋流; NAC-北大西洋流; Nfld-纽芬兰岛; 图中圆形的颜色对应年均SST |
在北大西洋, 烯酮不饱和度曾用于重建加拿大东部边缘海域、挪威海等区域的SST[4, 15, 25-27]。西北大西洋弗吉尼亚(Virginia)与纽芬兰岛(Newfoundland)之间的陆坡区域重建的温度变化显示, 陆坡上覆SST在~11 ka BP到0 ka BP期间降低了4~10 ℃[15, 28-29]。除了这一降温趋势, 烯酮在北大西洋其他海域重建的SST变化较为波动, 能记录一些影响范围较为广泛的气候变化事件, 如: 在公元1000—1350年间北大西洋的大范围海域出现的气候异常变暖, 即中世纪气候异常(medieval climate anomaly, MCA); 公元1350—1850年间气候异常寒冷的时期, 即小冰期(Little Ice Age, LIA)[26, 30]。近年来研究表明烯酮指标不仅可以作为温度指标, 在亚极地海域烯酮C37:4在C37中的占比(%C37:4)还可以指示其他海洋环境变化, 如: 冰融水、海冰覆盖[4, 31-34]。此外, %C37:4也可用于评估高海拔和高纬度含盐湖泊的表层盐度变化[35-36]。然而, 不同环境合成烯酮的定鞭藻种属有所不同, 含盐湖泊或盐湖、沿海地区中主要为Ⅱ组(如Isochrysis galbana和Tisochrysis lutea), Ⅰ组可见于高纬度淡水湖泊, 而海洋环境中的烯酮母源为Ⅲ组(E. huxleyi和G. oceanica)[34, 37-38], 也是本文主要提及的种类。本文主要总结了全新世长链烯酮指标(
长链烯酮(C37、C38、C39)主要由广泛分布在海洋表层的颗石藻Emiliania huxleyi和Gephyrocapsa oceanica合成[39-41]。古海洋温度重建主要是利用长链烯酮C37(C37:2、C37:3、C37:4), 它由37个碳原子组成, 分别有2、3或4个碳-碳双键。Brassell等人[42]最早提出这一指标, 将长链烯酮不饱和度表达为
在世界各个大洋中, 长链烯酮广泛用于重建古气候学变化。这在北大西洋海域已有相当多且早的应用, 不仅是因为该海域本身的研究意义, 也是因为这里具有不同的环境特征, 有利于探讨长链烯酮的应用差异。图 1, 表 1中列出了北大西洋海域(以西侧为主)烯酮的研究情况, 但图表中并未列出所有的数据, 仅列出位于30°N与80°N之间的重要数据点, 在文中有所使用。
从烯酮源生物的繁殖(烯酮合成季节)、栖息(透光层)和沉降过程着眼, 有利于评估烯酮指标(
Rodrigo-Gamiz等[54]结合了SPOM、沉降颗粒和表层沉积物这三种材料, 对亚极地海洋(冰岛附近)中的生物标志物进行分析, 指出了相应的使用限制。该研究通过连续一年对沉降颗粒的收集与分析, 发现烯酮通量(C37:2和C37:3)表现出季节性, 在早春和夏季出现峰值。研究又进一步通过比较表层沉积物中
Gould等[55]利用31个SPOM数据并大西洋已发表的数据, 采用理查德曲线(Richards curve)重新建立SPOM-
Filippova等[56]通过101个已发表的和51个新的北大西洋表层沉积数据, 探究了烯酮古温测定在校准方程末端低温范围的不确定性(图 2), 讨论了不饱和指数与SST之间的关系, 指出了回归模型中离散增加的原因。Filippova等[56]考虑到了C37:4在低温海域对不饱和度及其与SST的相关性的影响, 采用了三种烯酮指标分别为
![]() |
图 2 烯酮不饱和度 |
在北大西洋海域, 长链烯酮不饱和度重建过去SST的历史已有30年[15, 25, 57]。2007年, Sachs[15]利用
近年来, Moros等[32]和Lochte等[33]在全新世拉布拉多海两岸的低温环境中采用了烯酮指标, 但并没有用于重建古温, 而是利用%C37:4来反映海洋环境的变化。Rosell-Melé等[59]曾提出当%C37:4 > 5%时, 至少在北欧海沉积物中根据
研究中常通过对烯酮母源的培养实验来讨论
Prahl等[61]设计的两个15 ℃恒温下的E. huxleyi培养实验, 分别评估了营养盐和光照条件对烯酮浓度和
除了颗石藻培养实验, 该研究曾利用2个分别来自开放大洋和陆地边缘(continental margin)站点的深度剖面数据(温度、
横向平流(Lateral Advection)传输和差异的成岩作用(diagenesis)会导致表层沉积物中的烯酮信号和上层水体的SST产生空间上或短时间的不相符[48]。强大的表层洋流、较高的生产力和温度梯度会形成海水的横向传输, 导致外来烯酮的输入, 从而造成
众所周知, 烯酮大多是以颗石(coccospheres)的形式储存和沉降的, 最后以化石的形式保存在沉积物中。在这一过程中, 有人提出烯酮的溶解速率可能不同, 从而导致一定的温度偏差[49]。而表层沉积物中烯酮测定的SST的异常可能就是水体或表层沉积物中C37:2和C37:3不同的成岩作用导致的[48]。然而同时, 亦有研究认为成岩作用对于北大西洋中
正如先前所讨论的, 北大西洋采集的烯酮通量具有一定的季节性[53-55]。调查显示沉积物中烯酮通量(alkenone flux, μg/m2)最高的季节在全球海洋范围内都有不同, 主要受纬度、光照条件以及当地海洋学因素的影响[66]。烯酮通量的变化本质上和烯酮源生物的生长季节有关, 中高纬度海域的颗石藻通常在早春或夏季勃发[48, 56]。如果能够捕捉到烯酮信号的时间集中于某一特定季节, 那么其记录的温度也会偏向这一季节, 因此有研究认为烯酮在高纬度海域重建的SST不能简单的认为是年均SST[67]。早在1995年, Rosell-Melé等[49]就发现大西洋中
研究表明, 海洋环境中的C37:4主要出现在温度较低的海水中, Sicre等[65]和Bendle等[31]在北大西洋寒冷的极地海水(Arctic waters)中曾检测到含量较高的C37:4。Sikes等[69]也曾对大西洋、太平洋和南大洋的水体样品进行检测, 发现C37:4大多存在于盐度、温度都较低的水体中。Rosell-Melé等[59]最早提出%C37:4与盐度之间的函数关系; Sicre等[65]指出北大西洋%C37:4与盐度呈负相关(r2 = 0.78)。Bendle等[31]曾对%C37:4能否作为表层海水盐度指标进行评估, 认为其更适用于指示北大西洋淡水输入。Filippove等[56]曾推测, 融水输入导致盐度改变, 这可能会使藻类离开原本的耐盐区(salt tolerance zone), 导致了烯酮生物合成的改变。
在格陵兰西北岸的迪斯科湾, %C37:4的增加(最高可达28%)指示融水供应的增强; 其减少时, 融水通量也有相应的减少[32]。该研究区域海水盐度较低, 主要受格陵兰冰盖融水的影响。相似的, %C37:4在北极的北欧海和巴伦支海区域亦可指示寒冷北极水的输入[60]。此外, 在寒冷的拉布拉多海西北部, %C37:4还可用于指示海冰边缘环境, 当海冰覆盖减少时, C37:4的占比也有所降低, 与底栖有孔虫丰度指示的海冰信号相符[33]。在邻近的拉布拉多陆架南部, Lochte等[4]再次证明了高%C37:4(最高可达20%)指示海冰覆盖增多, 也可能是融水输入增强, %C37:4的降低反映海水温度的回升和海冰覆盖的减少。尽管此前仍有研究者对此提出异议[69], 但%C37:4指标仍有较为广泛的应用, 尤其是在受海冰影响且盐度较低的海域[31]。
5 总结与展望长链烯酮作为重建古海洋SST的指标, 在中高纬度低温区域由于受低温、低盐、低生产力等的影响, 这一指标的应用仍有所限制。本文总结了全新世北大西洋, 特别是更冷的西北大西洋长链烯酮的研究进展, 进而探讨烯酮重建古气候的影响因素以及在指示淡水和生物生产力上的应用。研究发现烯酮的应用主要受营养盐、横向平流、成岩作用、烯酮母源生长的季节性等因素的影响, 其中横向平流和季节性在温度较低的海域对指标的影响更大。营养盐胁迫和光照条件不足会限制烯酮的生产, 中尺度的涡旋和横向平流可能会将外来烯酮带到研究区域, 而成岩作用差异及季节性则可能会使
此外, 目前仅有拉布拉多海的两个研究利用%C37:4获取的盐度信息, 评估直接来自相邻陆地或海冰融化的淡水输入。在%C37:4广泛应用之前, 更多的数据仍有待收集, 特别是在拉布拉多海南部和纽芬兰大浅滩区域。且由于缺乏资料, %C37:4与淡水总量、持续时间、海冰厚度的关系目前尚不清楚。介于当前对北极冰川融化引起北极或西北太平洋, 如鄂霍次克海和白令海, 海洋学状况变化的持续关注, 当务之急是针对校准的末端低温范围进行培养实验。同时, 烯酮氢同位素在重建开放大洋过去的表层海水盐度方面的应用吸引了越来越多的关注[70-71]。总的来说, 长链烯酮指标(
[1] |
MYERS P G, DONNELLY C, RIBERGAARD M H. Structure and variability of the West Greenland Current in Summer derived from 6 repeat standard sections[J]. Progress in Oceanography, 2009, 80: 93-112. DOI:10.1016/j.pocean.2008.12.003 |
[2] |
RASHID H, BOYLE E A. Mixed-layer deepening during Heinrich Events: A multi-planktonic foraminiferal δ18O approach[J]. Science, 2007, 318(5849): 439-441. DOI:10.1126/science.1146138 |
[3] |
SALGUEIRO E, VOELKER A H L, MARTIN P A, et al. δ18O and Mg/Ca Thermometry in planktonic foraminifera: A multiproxy approach toward tracing coastal upwelling dynamics[J]. Paleoceanography and Paleoclimatology, 2020, 35: e2019PA003726. |
[4] |
LOCHTE A A, SCHNEIDER R, KIENAST M, et al. Surface and subsurface Labrador Shelf water mass conditions during the last 6000 years[J]. Climate of the Past, 2020, 16: 1127-1143. DOI:10.5194/cp-16-1127-2020 |
[5] |
叶孝贤, RASHIDHarunur. 北大西洋45°N区氧同位素3期以来上层水体性质的变化[J]. 海洋地质与第四纪地质, 2021, 41(3): 114-123. YE Xiaoxian, RASHID Harunur. Changes of the upper water column at the 45°N North Atlantic since marine isotope stage 3[J]. Marine Geology & Quaternary Geology, 2021, 41(3): 114-123. |
[6] |
KRAWCZYK D W, WITJOWSKI A, LIOYD J, et al. Late-Holocene diatom derived seasonal variability in hydrological conditions off Disko Bay, West Greenland[J]. Quaternary Science Reviews, 2013, 67: 93-104. DOI:10.1016/j.quascirev.2013.01.025 |
[7] |
MOCK T, OTILLAR R P, STRAUSS J, et al. Evolutionary genomics of the cold-adapted diatom Fragilariopsis cylindrus[J]. Nature, 2017, 541: 536-540. DOI:10.1038/nature20803 |
[8] |
OUELLET-BERNIER M M, DE VERNAL A, HILLAIRE-MARCEL C, et al. Paleoceanographic changes in the Disko Bugt area, West Greenland, during the Holocene[J]. The Holocene, 2014, 24(11): 1573-1583. DOI:10.1177/0959683614544060 |
[9] |
SCHOUTEN S, HOPMANS E C, SINNINGGHE DAMSTE J S. The organic geochemistry of glycerol dialkyl glycerol tetraether lipids: A review[J]. Organic Geochemistry, 2013, 54: 19-61. DOI:10.1016/j.orggeochem.2012.09.006 |
[10] |
SEKI O, BENDLE J A, HARADA N, et al. Assessment and calibration of TEX86 paleothermometry in the Sea of Okhotsk and sub-polar North Pacific region: Implications for paleoceanography[J]. Progress in Oceanography, 2014, 126: 254-266. DOI:10.1016/j.pocean.2014.04.013 |
[11] |
MARTRAT B, GRIMALT J O, SHACKLETON N J, et al. Four climate cycles of recurring deep and surface water destabilizations on the Iberian margin[J]. Science, 2004, 317: 502-507. |
[12] |
NAFFS B D A, HEFTER J, ACTON G, et al. Strengthening of North American dust sources during the late Pliocene (2.7 Ma)[J]. Earth and Planetary Science Letters, 2012, 317/318: 8-19. DOI:10.1016/j.epsl.2011.11.026 |
[13] |
RODRIGUES T, ALONSO-GARCÍA M, HODELL D A, et al. A 1-Ma record of sea surface temperature and extreme cooling events in the North Atlantic: A perspective from the Iberian Margin[J]. Quaternary Science Reviews, 2017, 172: 118-130. DOI:10.1016/j.quascirev.2017.07.004 |
[14] |
LI D W, ZHAO M X, TIAN J. Low-high latitude interaction forcing on the evolution of the 400 kyr cycle in East Asian winter monsoon records during the last 2.8 Myr[J]. Quaternary Science Reviews, 2017, 172: 72-82. DOI:10.1016/j.quascirev.2017.08.005 |
[15] |
SACHS J P. Cooling of northwest Atlantic slope waters during the Holocene[J]. Geophysical Research Letters, 2007, 34: L03609. |
[16] |
JIANG H, MUSCHELER R, BJÖRCK S, et al. Solar forcing of Holocene summer sea-surface temperatures in the northern North Atlantic[J]. Geology, 2015, 43(3): 203-206. DOI:10.1130/G36377.1 |
[17] |
ORME L C, MIETTINEN A, SEIDENKRANTZ M S, et al. Mid to late-Holocene sea-surface temperature variability off north-eastern Newfoundland and its linkage to the North Atlantic Oscillation[J]. The Holocene, 2021, 31(1): 3-15. DOI:10.1177/0959683620961488 |
[18] |
THORNALLEY D J R, ELDERFIELD H, MCCAVE N. Holocene oscillations in temperature and salinity of the surface subpolar North Atlantic[J]. Nature, 2009, 457: 711-714. DOI:10.1038/nature07717 |
[19] |
VAN NIEUWENHOVE N, PEARCE C, FAURSCHOU KNUDSEN M, et al. Meltwater and seasonality influence on Subpolar Gyre circulation during the Holocene[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2018, 502: 104-108. DOI:10.1016/j.palaeo.2018.05.002 |
[20] |
BARBER D C, DYKE A, HILLAIRE-MARCEL C, et al. Forcing of the cold event of 8 200 years ago by catastrophic drainage of Laurentide lakes[J]. Nature, 1999, 400: 344-348. DOI:10.1038/22504 |
[21] |
LEWIS L, DITCHFIELD P, PAL J N, et al. Grain size distribution analysis of sediments containing Younger Toba tephra from Ghoghara, Middle Son valley, India[J]. Quaternary International, 2012, 258: 180-190. DOI:10.1016/j.quaint.2011.12.002 |
[22] |
RASHID H, PIPER D J W, MANSFIELD C, et al. Signature of the Gold Cove event (10.2 ka) in the Labrador Sea[J]. Quaternary International, 2014, 352: 212-221. DOI:10.1016/j.quaint.2014.06.063 |
[23] |
RASHID H, MACKILLOP K, SHERWIN J, et al. Slope instability on a shallow contourite-dominated continental margin, southeastern Grand Banks, eastern Canada[J]. Marine Geology, 2017, 393: 203-215. DOI:10.1016/j.margeo.2017.01.001 |
[24] |
MOFFA-SÁNCHEZ P, MORENO-CHAMARRO E, REYNOLDS D J, et al. Variability in the northern North Atlantic and Arctic Oceans across the last two millennia: A review[J]. Paleoceanography and Paleoclimatology, 2019, 34: 1399-1436. DOI:10.1029/2018PA003508 |
[25] |
MOROS M, EMEIS K, RISEBROBAKKEN B, et al. Sea surface temperatures and ice rafting in the Holocene North Atlantic: Climate influences on northern Europe and Greenland[J]. Quaternary Science Reviews, 2004, 23: 2113-2126. DOI:10.1016/j.quascirev.2004.08.003 |
[26] |
SICRE M A, WECKSTRÖM K, SEIDENKRANTZ M S, et al. Labrador current variability over the last 2000 years[J]. Earth and Planetary Science Letters, 2014, 400: 26-32. DOI:10.1016/j.epsl.2014.05.016 |
[27] |
MOLLENHAUER G, BASSE A, KIM J H, et al. A four-year record of U37K'- and TEX86-derived sea surface temperature estimates from sinking particles in the filamentous upwelling region off Cape Blanc, Mauritania[J]. Deep-sea Research I, 2015, 97: 67-79. DOI:10.1016/j.dsr.2014.11.015 |
[28] |
KEIGWIN L D, SACHS J P, ROSENTHAL Y. A 1600-year history of the Labrador Current off Nova Scotia[J]. Climate Dynamics, 2003, 21: 53-62. DOI:10.1007/s00382-003-0316-6 |
[29] |
RASHID H, MARCHE B, VERMOOTEN M, et al. Comment on "Asynchronous variation in the East Asian winter monsoon during the Holocene" by Xiaojian Zhang, Liya Jin, and Na Li[J]. Journal of Geophysical Research: Atmospheres, 2016, 121: 1611-1614. DOI:10.1002/2015JD023983 |
[30] |
HALFAR J, ADEY W H, KRONZ A, et al. Arctic seaice decline archived by multicentury annual-resolution record from crustose coralline algal proxy[J]. PNAS, 2013, 110(49): 19737-19741. DOI:10.1073/pnas.1313775110 |
[31] |
BENDLE J, ROSELL-MELÉ A, ZIVERI P. Variability of unusual distributions of alkenones in the surface waters of the Nordic seas[J]. Paleoceanography, 2005, 20: PA2001. |
[32] |
MOROS M, LLOYD J M, PERNER K, et al. Surface and sub-surface multi-proxy reconstruction of middle to late Holocene palaeoceanographic changes in Disko Bugt, West Greenland[J]. Quaternary Science Reviews, 2016, 132: 146-160. DOI:10.1016/j.quascirev.2015.11.017 |
[33] |
LOCHTE A A, REPSCHLAGER J, SEIDENKRANTZ M, et al. Holocene water mass changes in the Labrador Current[J]. The Holocene, 2019, 29(4): 676-690. DOI:10.1177/0959683618824752 |
[34] |
邢磊, 杨欣欣, 肖睿. 长链烯酮的组合特征及其对盐度和母源种属指示意义的研究进展[J]. 中国海洋大学学报(自然科学版), 2019, 49(10): 79-87. XING Lei, YANG Xinxin, XIAO Rui. Progress of cpmpositions and indications of long-chain alkenones[J]. Periodical of Ocean University of China, 2019, 49(10): 79-87. |
[35] |
HE Y X, ZHAO C, WANG Z, et al. Late Holocene coupled moisture and temperature changes on the northern Tibetan Plateau[J]. Quaternary Science Reviews, 2013, 80: 47-57. DOI:10.1016/j.quascirev.2013.08.017 |
[36] |
LIU W G, LIU Z H, FU M Y, et al. Distribution of the C37 tetra-unsaturated alkenone in Lake Qinghai, China: A potential lake salinity indicator[J]. Geochimica et Cosmochimica Acta, 2008, 72(3): 988-997. DOI:10.1016/j.gca.2007.11.016 |
[37] |
LONGO W M, THEROUX S, GIBLIN A E, et al. Temperature calibration and phylogenetically distinct distributions for freshwater alkenones: Evidence from northern Alaskan lakes[J]. Geochimica et Cosmochimica Acta, 2016, 180: 177-196. DOI:10.1016/j.gca.2016.02.019 |
[38] |
ARAIE H, NAKAMURA H, TONEY J L, et al. Novel alkenone-producing strains of genus Isochrysis (Haptophyta) isolated from Canadian saline lakes show temperature sensitivity of alkenones and alkenoates[J]. Organic Geochemistry, 2018, 121: 89-103. DOI:10.1016/j.orggeochem.2018.04.008 |
[39] |
VOLKMAN J K, EGLINTON G, CORNER E D S, et al. Long-chain alkenes and alkenones in the marine coccolithophorid Emiliania huxleyi[J]. Phtochemistry, 1980, 19: 2619-2622. DOI:10.1016/S0031-9422(00)83930-8 |
[40] |
VOLKMAN J K, BARRETT S M, BLACKBURN S I, et al. Alkenones in Gephyrocapsa oceanica: Implication for studies of paleoclimate[J]. Geochimica et Cosmochimica Acta, 1995, 59(3): 513-520. DOI:10.1016/0016-7037(95)00325-T |
[41] |
MARLOWE I T, GREEN J C, NEAL A C, et al. Long chain (n-C37-C39) alkenones in the Prymnesiophycea. Distribution of alkenones and other lipids and their taxonomic significance[J]. British Phycological Journal, 1984, 19: 203-216. DOI:10.1080/00071618400650221 |
[42] |
BRASSELL S C, EGLINTON G, MARLOWE I T, et al. Molecular stratigraphy: a new tool for climatic assessment[J]. Nature, 1986, 320: 129-133. DOI:10.1038/320129a0 |
[43] |
PRAHL F G, WAKEHAM S G. Calibration of unsaturation patterns in long-chain ketone compositons for palaeotemperature assessment[J]. Nature, 1987, 330: 367-369. DOI:10.1038/330367a0 |
[44] |
PRAHL F G, MUEHLHAUSEN L A, ZAHNLE D L. Further evaluation of long-chain alkenones as indicators of paleoceanographic conditions[J]. Geochimica et Cosmochimica Acta, 1988, 52(9): 2303-2310. DOI:10.1016/0016-7037(88)90132-9 |
[45] |
LEE K E, LEE S, PARK Y, et al. Alkenone production in the East Sea/Japan Sea[J]. Continental Shelf Research, 2014, 74: 1-10. DOI:10.1016/j.csr.2013.12.003 |
[46] |
HARADA N, SATO M, SAKAMOTO T. Freshwater impacts recorded in tetraunsaturated alkenones and alkenone sea surface temperatures from the Okhotsk Sea across millennial-scale cycles[J]. Paleoceanography, 2008, 23: PA3201. |
[47] |
MÜLLER P J, KIRST G, RUHLAND G, et al. Calibration of the alkenone paleotemperature index U37K' based on core-tops from the eastern South Atlantic and the global ocean (60°N~60°S)[J]. Geochimica et Cosmochimica Acta, 1998, 62(10): 1757-1772. DOI:10.1016/S0016-7037(98)00097-0 |
[48] |
CONTE M H, SICRE M A, RÜHLEMANN C, et al. Global temperature calibration of the alkenone unsaturation index (U37K') in surface waters and comparison with surface sediments[J]. Geochemistry Geophysics Geosystems, 2006, 7(2): Q02005. |
[49] |
ROSELL-MELÉ A, EGLINTON G, PFLAUMANN U, et al. Atlantic core-top calibration of the U37K' index as a sea-surface paleotemperature indicator[J]. Geochimica et Cosmochimica Acta, 1995, 59(15): 3099-3107. DOI:10.1016/0016-7037(95)00199-A |
[50] |
PELEJERO C, CALVO E. The upper end of the U37K' temperature calibration revisited[J]. Geochemistry Geophysics Geosystems, 2003, 4(2): 1014. |
[51] |
VOLKMAN J K. Ecological and environmental factors affecting alkenone distributions in seawater and sediments[J]. Geochemistry Geophysics Geosystems, 2000, 1: 2000G. |
[52] |
ROSELL-MELÉ A, COMES P, MÜLLER P J, et al. Alkenone fluxes and anomalous U37K' values during 1989-1990 in the Northeast Atlantic (48°N, 21°W)[J]. Marine Chemistry, 2000, 71: 251-264. DOI:10.1016/S0304-4203(00)00052-9 |
[53] |
PRAHL F G, PILAKALN C H, SPARROW M A. Seasonal record for alkenones in sedimentary particles from the Gulf of Maine[J]. Deep-Sea Research Ⅰ, 2001, 48: 515-528. DOI:10.1016/S0967-0637(00)00057-1 |
[54] |
RODRIGO-GÁMIZ M, RAMPEN S W, DE HAAS H, et al. Constraints on the applicability of the organic temperature proxies U37K', TEX86 and LDI in the subpolar region around Iceland[J]. Biogeosciences, 2015, 12: 6573-6590. DOI:10.5194/bg-12-6573-2015 |
[55] |
GOULD J, KIENASTA M, DOWD M. Investigation of the U37K' vs. SST relationship for Atlantic Ocean suspended particulate alkenones: An alternative regression model and discussion of possible sampling bias[J]. Deep-Sea Research Part Ⅰ, 2017, 123: 13-21. DOI:10.1016/j.dsr.2017.02.007 |
[56] |
FILIPPOVA A, KIENAST M, FRANK M, et al. Alkenone paleothermometry in the North Atlantic: A review and synthesis of surface sediment data and calibrations[J]. Geochemistry Geophysics Geosystems, 2016, 17: 1370-1382. DOI:10.1002/2015GC006106 |
[57] |
CONTE M H, EGLINTON G, MADUEIRA L A S. Long-chain alkenones and alkyl alkenoates as paleotemperature indicators: Their production, flux and early sediment diagenesis in the eastern North Atlantic[J]. Advances in Organic Geochemistry, 1992, 19: 287-298. DOI:10.1016/0146-6380(92)90044-X |
[58] |
CABEDO-SANZ P, BELT S T, JENNINGS A E, et al. Variability in drift ice export from the Arctic Ocean to the North Icelandic Shelf over the last 8 000 years: A multi-proxy evaluation[J]. Quaternary Science Reviews, 2016, 146: 99-115. DOI:10.1016/j.quascirev.2016.06.012 |
[59] |
ROSELL-MELÉ A. Interhemispheric appraisal of the value of alkenone indices as temperature and salinity proxies in high latitude locations[J]. Paleoceanography, 1998, 13(6): 694-703. DOI:10.1029/98PA02355 |
[60] |
ŁĄCKA M, CAO M, ROSELL-MELÉ A, et al. Postglacial paleoceanography of the western Barents Sea: Implications for alkenone-based sea surface temperatures and primary productivity[J]. Quaternary Science Reviews, 2019, 224: 105973. DOI:10.1016/j.quascirev.2019.105973 |
[61] |
PRAHL F G, WOLFE G V, SPARROW M A. Physiological impacts on alkenone paleothermometry[J]. Paleoceanography, 2003, 18(2): 1025. |
[62] |
BENTALEB I, FONTUGNE M, BEAUFORT L. Long-chain alkenones and U37K' variability along a south- north transect in the Western Pacific Ocean[J]. Global and Planetary Change, 2002, 173-183. |
[63] |
CONTE M H, WEBER J C, KING L L, et al. The alkenone temperature signal in western North Atlantic surface waters[J]. Geochimica et Cosmochimica Acta, 2001, 65(23): 4275-4287. DOI:10.1016/S0016-7037(01)00718-9 |
[64] |
MAO L, PIPER D J W, SAINT-ANGE F, et al. Provenance of sediment in the Labrador Current: A record of hinterland glaciation over the past 125 ka[J]. Journal of Quaternary Science, 2014, 29(7): 650-660. DOI:10.1002/jqs.2736 |
[65] |
SICRE M A, BARD E, EZAT U, et al. Alkenone distributions in the North Atlantic and Nordic sea surface waters[J]. Geochemistry Geophysics Geosystems, 2002, 3(2): 10. |
[66] |
ROSELL-MELÉ A, PRAHL F G. Seasonality of U37K' temperature estimates as inferred from sediment trap data[J]. Quaternary Science Reviews, 2013, 72: 128-136. DOI:10.1016/j.quascirev.2013.04.017 |
[67] |
LEDUC G, SCHNEIDER R, KIM J H, et al. Holocene and Eemian sea surface temperature trends as revealed by alkenone and Mg/Ca paleothermometry[J]. Quaternary Science Reviews, 2010, 29: 989-1004. DOI:10.1016/j.quascirev.2010.01.004 |
[68] |
SEKI O, KAWAMURA K, IKEHARA M, et al. Variation of alkenone sea surface temperature in the Sea of Okhotsk over the last 85 kyrs[J]. Organic Geochemistry, 2004, 35: 347-354. DOI:10.1016/j.orggeochem.2003.10.011 |
[69] |
SIKES E L, SICRE M A. Relationship of the tetra-unsaturated C37 alkenone to salinity and temperature to salinity and temperature: Implications for paleoproxy applications[J]. Geochemistry Geophysics Geosystems, 2002, 3(11): 1-11. |
[70] |
GOULD J, KIENAST M, DWOD M, et al. An open-ocean assessment of alkenone δD as a paleo-salinity proxy[J]. Geochimica et Cosmochimica Acta, 2019, 246: 478-497. DOI:10.1016/j.gca.2018.12.004 |
[71] |
WEISS G M, SCHOUTEN S, SINNINGHE DAMSTÉ J S, et al. Constraining the application of hydrogen isotopic composition of alkenones as a salinity proxy using marine surface sediments[J]. Geochimica et Cosmochimica Acta, 2019, 250: 34-48. DOI:10.1016/j.gca.2019.01.038 |