海洋科学  2022, Vol. 46 Issue (9): 130-145   PDF    
http://dx.doi.org/10.11759/hykx20210815001

文章信息

叶嘉晖, 邱崇玉, 曾文轩, 史云峰, 赵牧秋, 韩秋影. 2022.
YE Jia-hui, QIU Chong-yu, ZENG Wen-xuan, SHI Yun-feng, ZHAO Mu-qiu, HAN Qiu-ying. 2022.
海草床沉积物有机碳研究综述
Review of organic carbon in seagrass bed sediment
海洋科学, 46(9): 130-145
Marina Sciences, 46(9): 130-145.
http://dx.doi.org/10.11759/hykx20210815001

文章历史

收稿日期:2021-08-15
修回日期:2022-01-18
海草床沉积物有机碳研究综述
叶嘉晖, 邱崇玉, 曾文轩, 史云峰, 赵牧秋, 韩秋影     
海南热带海洋学院崖州湾创新研究院, 热带海洋生物资源利用与保护教育部重点实验室, 海南省近岸海洋生态环境过程与碳汇重点实验室, 海南 三亚 572022
摘要:海草床具有重要的生态系统服务功能, 可以为海洋生物提供栖息地和食物来源, 同时还具有重要的碳储存功能, 海草床“蓝碳”功能日益受到学术界的重视, 据研究全球每年海草床的碳埋藏量高达(2.7~4.4)×107 MgC。近年来, 由于人类活动的影响, 世界范围内海草床衰退严重, 导致海草床沉积物有机碳储量降低。本文综述了全球海草床沉积物有机碳的来源、组分、储量以及指示作用; 从物理、化学和生物三方面讨论了影响海草床碳储量的环境因素。最后提出了未来主要研究方向, 主要包括加强海草床碳通量普查, 分析全球气候变化背景下海草床沉积物有机碳的变化机制, 明确海草床碳储量流失速率, 研究海岸带工程对海草床沉积物有机碳的影响。评估海草床沉积物有机碳储量及变化机制可以为全球海洋蓝碳研究提供科学依据。
关键词海草床    沉积物有机碳    来源    储量    环境因素    
Review of organic carbon in seagrass bed sediment
YE Jia-hui, QIU Chong-yu, ZENG Wen-xuan, SHI Yun-feng, ZHAO Mu-qiu, HAN Qiu-ying     
Yazhou Bay Innovation Institute, Key Laboratory of Utilization and Conservation for Tropical Marine Biore­sources of Ministry of Education, Key Laboratory for Coastal Marine Eco-environment Process and Carbon Sink of Hainan Province, Hainan Tropical Ocean University, Sanya 572022, China
Abstract: Seagrass beds provide important ecosystem services, such as supporting biodiversity and providing carbon storage. Several scientists have studied the carbon storage mechanisms of seagrass beds. The annual carbon sequestration of seagrass beds is (2.7~4.4)×107 MgC. Recently, seagrass beds have declined worldwide due to human activities, resulting in organic carbon storage reduction in seagrass sediment. This paper reviewed the research advancements of sediment organic carbon in seagrass beds, including the sources, components, storage, and environmental indicators. The environmental variations affecting carbon storage in seagrass beds were discussed from the three aspects of physics, chemistry, and biology. Finally, the primary research directions for the future study were proposed, including strengthening the carbon flux survey of seagrass beds, exploring the mechanism of sediment organic carbon change due to global climate change, defining the rate of carbon storage loss in seagrass beds, and studying the impact of coastal zone engineering on sediment organic carbon. Evaluating carbon storage mechanisms will provide the scientific basis for the blue carbon study in the oceans globally.
Key words: seagrass beds    sediment organic carbon    source    storage    environmental effects    

海草通常生活在潮间带和潮下带的浅水区域, 是一种广泛分布于热带以及温带海域的沉水性被子植物[1]。印度-太平洋区、热带大西洋区、温带北大西洋区、温带北太平洋区、温带南大洋区和地中海区为全球6个主要海草分布区[1], 共有6科72种海草[2]。热带地区海草种类较多[1], 热带印度-太平洋地区的海草种类多达25种, 而在温带北大西洋区, 仅有5种海草[3]。我国海草床主要有南海海草分布区和黄渤海海草分布区, 共有10属22种, 大约为全球海草种类的30%[4-5]。全球海草床覆盖面积约为(3~6)×105 km2[6-7], 据估算其生态系统服务价值约为每年每公顷34 000美元[8]。海草生态系统具有极其复杂的结构, 可以提供多种生态功能[9], 为海洋生物提供栖息地[10-11]和食物来源[12]。海草床还具有重要的碳储存功能, 近年来, 海草床“蓝碳”功能越来越受到学术界的重视[13-16]

海草是沿海生态系统中重要的碳汇[17], 可以通过光合作用吸收CO2[18]。通常情况下, 海草所固定的碳含量大于其代谢需要[19], 多余的有机碳大部分被运输到海草的根及根状茎, 最终通过环境作用将有机碳固存于沉积物中[20]。海草床可以通过释放生物质或者从凋落物释放溶解有机碳[21-22], 并通过水流作用输运到其他生态系统[23], 全球海草床年输出的溶解性有机碳高达(1.6~3.3)×108 MgC[19], 约占全球海草净初级生产力的46%[24]。Su等对广西珍珠湾海草床及其周围沉积物有机碳储量进行分析, 发现海草床沉积物有机碳含量显著高于无海草区域[25]。海草碎屑具有大量稳定组分和高沉积速率, 沉积物中的厌氧环境不利于微生物的生长, 使得沉积物有机碳长期储存[17, 26-28]。全球海草床不到海洋总面积的0.2%, 但全球海草床沉积物有机碳储量为139.7 MgC/ha, 并且每年碳埋藏量为(2.7~4.4)×107 MgC, 占到每年全球海洋碳汇的10%~18%[7, 20, 29], 显著高于大部分陆地生态系统[30], 可以缓解全球气候变化及其带来的负面影响[31]。我国海草床每年碳汇量约为(3.2~5.7)× 105 MgC[32]。山东桑沟湾鳗草海草床生态系统每年总固碳量约为290 MgC, 吸收碳的形式包括海草固碳、附生植物固碳、海草床捕获颗粒碳等, 其中, 海草固定的碳占到总固碳量的46%, 为54.35 MgC/ha[33]。通常温带地区海草床有机碳储量要高于热带地区, 可能是因为热带地区海草可以为更多生物提供食物和更高的海草碎屑分解速率[34-35]。我国海南岛沿岸现存海草床面积约48.646 7 km2[36], 表层5 cm沉积物有机碳总储量为40858.5 MgC, CO2吸附量为(1.44± 0.03) MgC/ha, 其中东水、抱才、黄龙、莺歌等8个海草床沉积物平均碳储量为7.02 MgC/ha, 总储量约为1306.45 MgC[37-38]。本文根据海草床沉积物有机碳的相关研究, 分别从海草床沉积物有机碳来源、组分以及储量进行综述, 讨论影响海草床沉积物有机碳的主要环境因素, 结果将为海草床沉积物有机碳相关研究提供科学依据。

1 海草床沉积物有机碳研究进展 1.1 沉积物有机碳来源 1.1.1 海洋沉积物有机碳来源

沉积物有机碳不仅是水体污染物迁移的重要媒介, 还参与地球化学循环, 对生物地球化学循环、沉积物演变等有重要的指示作用[39]。沉积物有机碳参数主要包括碳氮比、碳同位素等, 储存着气候、环境变化的信息等[40-41]。对于海洋中沉积物来源, 科学家一般采用碳氮比(C/N)、碳稳定同位素法(δ13C)以及生物标志法(如脂类和木质素)等进行研究。研究发现陆源和海源有机碳具有一定差别, 陆源C/N比大于12, δ13C为–28‰ ~ –25‰, 海源C/N比值为6~9, δ13C为–19‰ ~ –12‰[42, 43]。Liu等(2020) 采用碳氮稳定同位素法和碳氮比法对黄海南部表层沉积物进行研究, 发现该地区沉积物有机碳来源组成为海洋、陆地及人为输入, 且黄河三角洲北部沉积物有机质陆源贡献较高(>50%), 而在近海泥区有机质贡献主要来源于海洋(>70%)[44]。红树林生态系统的碳储存通常采用稳定同位素法和表层沉积物碳氮比方法进行研究[45], 红树林对来源于陆地的土壤矿物质有较好的沉降作用, 在河流侵蚀率高的地区, 红树林沉积物有机碳有三分之二来源于陆地[46]; 而在侵蚀率低、河流输入少的环境下, 红树林有机碳有三分之二来源于其本身[45]。Tanaka等(2011)对珊瑚礁溶解有机碳研究, 发现有机质是从底栖生物群落中释放的[47]。而珊瑚礁中几种有机质的来源主要包括珊瑚-虫黄藻共生群落[48-49]、海草[50]、底栖藻类[51]的释放以及细菌溶解沉积物有机质释放[52]。科学家还发现海源和陆源有机质中的溴元素(Br)存在显著差异[53-54], 相关研究采用溴与有机碳(Br/TOC)的关联, 分析海源及陆源对沉积物有机碳的贡献[55-56]。通常湖泊地质、土壤、河床的Br/TOC比值为0.02~2.8 mg Br/g TOC, 而海岸带沉积物的Br/TOC要显著高于陆源沉积物, 高达7.6 mg Br/g TOC[57]

1.1.2 海草床沉积物有机碳来源

海草床沉积物中的有机碳不仅来自于海草, 还来源于陆生植物碎屑和海洋生物, 如浮游植物、大型藻类、附生植物和底栖藻类[58-59]。天然碳同位素的差异是由于植物在进行光合作用的过程中对碳的吸收机制不同所引起的, 由这种机制差异将植物分为C3、C4和CAM植物[60], 因此, 可以通过其本身的同位素特征值(δ13C和δ15N)来测定沉积物有机碳的来源及不同植物的贡献[61-62]。有关研究发现, 海草的δ13C为–8.99‰, 大型海藻为–13.61‰[63]。Liu等利用碳稳定同位素方法对新村湾海草床有机碳来源进行分析, 发现沉积物有机碳稳定同位素值介于–20.39‰ ~ –7.39‰之间, 并且从营养盐浓度相对较低的海草床到高营养盐海草床的沉积物中, 大型海藻及附生藻类对沉积物有机碳的贡献增加了16%, 表明大型海藻及附生藻类对沉积物有机碳的贡献与营养盐浓度呈正相关[63]。但是, 同位素法本身存在一定缺陷, 海草与其他藻类可能存在δ13C值重叠的情况[63-64], 导致分析结果偏差。Rahayu等(2019)采用稳定同位素标记法及碳氮比分析, 对印度尼西亚群岛的海草床研究发现: Barranglompo、Sarappokeke和Kapoposang岛的海草床沉积物有机碳具有相似特征, 并且来源于海草的有机碳占到了75%[65]。但在同一研究中, Bauluang岛与其他3个岛屿海草床沉积物有机碳主要来源不同, 浮游植物对沉积物有机碳贡献最大, 约为44%。初级生产者合成的脂肪酸有一些是特定的, 可以用于区分微藻[66]、大型海藻[67]、被子植物[68]以及原核生物[69], 通过脂肪酸标记法来确定初级生产者到初级消费者的食物链结构日益受到关注[70], 采用脂肪酸标记法与稳定同位素法联用以克服δ13C重叠的问题[71-72], 不同植物的碳、氮稳定同位素特征值及特征脂肪酸详见表 1。海草叶片主要由多糖组成, 其余物质主要为木质素、单宁和游离的脂所结合成的酚酸[73-74]。现有研究采用PY-GC-MS和THM-GC-MS两种热解技术对大洋波喜荡草进行有机质解析, 发现海草不仅由碳水化合物及木质素组成, 还主要由在维管植物中不常见的对羟基苯甲酸(p-HBA)类物质组成。同样, 该区域海草床沉积物碎屑中主要由酚类物质p-HBA及碳水化合物组成, 证实海草床沉积物碎屑主要来源于海草的根、茎、叶[75]

表 1 海草、海藻及陆地植物碳、氮稳定同位素特征值及特征脂肪酸 Tab. 1 Characteristic stable isotope values of carbon and nitrogen and characteristic fatty acids in seagrasses, seaweeds, and land plants
来源 碳稳定同位素δ13C 氮稳定同位素δ15N 特征脂肪酸 文献来源
海草 –23‰ ~ –3‰ 0 ~ 8‰ 18: 2n-6;
18: 3n-3;
18: 3n-4;
18: 4n-3;
[71, 76-78]
大型海藻 –16.8‰ 7‰ 16: 1n-7;
18: 1n-9;
20: 5n-3;
20: 4n-6;
16: 0;
14: 0
[71, 78-81]
浮游植物 –19.1‰ ~ –22‰ 3.0‰ ~ 12.0‰
附生藻类 –17.5‰ 5.9‰
陆地植物(C3植物) –22‰ ~ –33‰ 7.8‰ LCFA
长链脂肪酸
[82-83]
陆地植物(C4植物) –9‰ ~ –16‰ 6.5‰
1.2 海草床沉积物有机碳分类

沉积物有机碳可以根据物理、化学、生物(微生物降解性)方法分组。沉积物有机碳分类方法详见表 2。粒度分组法自20世纪60年代开始出现, 按照与有机碳结合的颗粒大小, 可分为砂砾(53~2 000 μm)、粗粉粒(5~53 μm)、细粉粒(2~5 μm)、粗黏粒(0.2~2 μm)和黏粒(<0.2 μm)[84]。将有机碳按照密度分, 可分为轻组碳和重组碳[85]。通过化学方法将沉积物有机碳分为活性有机碳(Labile organic carbon, LOC)和惰性有机碳(Recalcitrant organic carbon, ROC), 活性有机碳的生物活性高, 矿化速率高而惰性有机碳则较低[86]。活性有机碳按照提取方式可以分为盐提取碳、水提取碳、氯仿提取碳、酸提取碳[87]。根据其溶解性和水解性又分为溶解有机碳(Dissolved organic carbon, DOC)、酸水解有机碳[86]。生物分组法通常将有机碳分为微生物量碳(Microbial biomass carbon, MBC)和可矿化碳。沉积物中的细菌、真菌、藻类等含有的碳称为微生物量碳[88], 那些可以被微生物分解且向大气中释放CO2的有机碳称为可矿化碳[89]。多数研究中根据其矿化速率将其分为活性有机碳和惰性有机碳[90], 有机碳是否容易降解是区分活性有机碳和惰性有机碳的依据, 有机碳矿化速率对沉积物有机碳来源变化响应迅速[91]。表示海草床有机碳活性的指标通常用微生物量碳和溶解有机碳[63, 92]。海草地下生物量含有相对较高的碳氮比值、生物可利用性较差, 因此, 海草床固定的碳一般为惰性有机碳[93]

表 2 沉积物有机碳分类 Tab. 2 Sediment organic carbon classification
分类方法 名称 备注 文献来源
粒度 砂砾 53~2 000 μm [84]
粗粉粒 5~53 μm
细粉粒 2~5 μm
粗黏粒 0.2~2 μm
黏粒 <0.2 μm
密度 轻组碳 [85]
重组碳
化学方法 活性有机碳 提取方式 酸提取碳 [87]
氯仿提取碳
水提取碳
盐提取碳
水解方式 溶解有机碳 [86]
酸水解有机碳
生物分组 微生物量碳 [88]
可矿化有机碳 [89]
惰性有机碳 [86, 90]
1.3 海草床沉积物有机碳储量

学术界将海草和海草床沉积物中的有机碳储量进行了量化研究(表 3)。估算海草床沉积物有机碳埋藏速率主要利用的是14C和210Pb测年技术或通过海草床年际生产力调查等方法[94]。国内外通用的海草床沉积物有机碳储量计算方法为: 采集一定深度的沉积物样品, 将其分为相同厚度的子样、测量容重、沉积物有机碳含量测定、沉积物有机碳密度计算、相同厚度子样有机碳储量计算、总样品有机碳储量计算。容重的测量是将一定深度的风干沉积物样本放入到固定体积的容器中, 测定其质量, 计算方法为:

$ \text { 干容质量 }=\frac{\text { 干质量 }}{\text { 体积 }} $
表 3 全球海草床沉积物有机碳储量 Tab. 3 Organic carbon storage in seagrass sediments across the world
地点 海草种类 区域特征 采样深度/cm 海草床有机碳储量/ (MgC·ha–1) 文献来源
混合海草床
全球 100 139.7 [29]
中国广西 卵叶喜盐草; 贝克喜盐草; 日本鳗草 潮间带 100 48.32 [103]
中国海南新村 海菖蒲; 泰来草 潮间带 30 4.53~11.25(6.80±1.03) [104]
中国西沙群岛 卵叶喜盐草; 泰来草; 羽叶二药草; 圆叶丝粉草 宣德群岛 5 2.41±0.78 [37]
印度尼西亚
Spermonde Islands
海菖蒲; 泰来草; 毛叶喜盐草; 卵叶喜盐草; 圆叶丝粉草; 单脉二药草; 羽叶二药草; 针叶草 Barranglompo 20~55 18.8±4.1 [65]
Bauluang 20~55 20.3±3.3
Sarappokeke 20~55 11.9±5.3
Kapoposang 20~55 32.1±13.4
肯尼亚
Gazi Bay
全楔草; 海菖蒲; 圆叶丝粉草 海湾东部河流(红树林区) 100 117.85~544.65 (258.21±90.12) [105]
圆叶丝粉草; 齿叶丝粉草; 泰来草 海湾西部河流(人类活动区) 100 67.25~160.48 (106.66±21.36)
苏格兰 鳗草; 诺氏鳗草 潮间带 50 50.69±26.69 [101]
美国
Florida Bay
龟裂泰来草; 莱氏二药草; 丝状针叶草 碳酸盐海草床 100 175.0±20.4 [97]
巴西东南部海岸 未公开 硅酸盐海草床 100 67.6±14.7
单一海草床
太平洋东部 鳗草 潮间带、潮下带 25 173.6±21 [100]
潮间带、潮下带 100 69.4
加拿大
British Columbia
鳗草 海草床内部 20 139.2±92.8 [106]
海草床边缘 20 113.0±69.8
无海草覆盖 20 97.71±51.6
Choked Pass 20 18.5
McMullins North 20 514.7
哥伦比亚
Caribbean
龟裂泰来草 海草、海藻、红树共生 100 241±118 [107]
太平洋西部 鳗草 潮间带、潮下带 25 234.3±12.2 [100]
100 93.8
中国广西北海
Shatian peninsula
贝克喜盐草 海草覆盖区域 60 19.00±0.90 [108]
无海草区域 60 16.66±0.49
澳大利亚 澳洲波喜荡草 河口 25 26.2~483.3 [98]
太平洋北部
San Quintín Bay
鳗草 潟湖口 10 8.2±0.1 [109]
100 80.1±2.5
潟湖内 10 11.4±0.4
100 101.7±3.5
太平洋西北部 鳗草 潮间带、潮下带 25 60~512.5 (181.1±15.4) [110]
100 75.2~2050.1 (651.2)
大西洋东部 鳗草 潮间带、潮下带 25 138.4±24.1 [100]
100 55.4
瑞典
Skagerrak coast
鳗草 水深1.3~1.5 m、2.5~4 m
(水动力暴露)
25 221.9±33.5 [111]
瑞典
Getevik
鳗草 深水区 50 396.5±21.4 [112]
浅水区 50 346.5±15.4
瑞典
Kristineberg
深水区 50 271.2±14.6
浅水区 50 105.3±10.8
苏格兰 鳗草 潮间带 50 23.11 ± 8.17 [93]
诺氏鳗草 50 68.90 ± 42.10
大西洋西部 鳗草 潮间带、潮下带 25 134.9±19.4 [100]
100 54.0
大西洋西北部
New England
鳗草 海草覆盖 30 150~450 (283.2±41.6) [113]
无海草覆盖 30 10~550
肯尼亚
Gazi Bay
圆叶丝粉草 海湾西部河流
(人类活动区)
100 97.57±7.74 [105]
美国弗吉尼亚州
South Bay
鳗草 海洋热浪发生前 5 39.9±2.9; 38.6±37 [114]
海洋热浪发生后 5 57.1±2.7
海草床恢复初期 5 25.0±2.1
海草床恢复后 5 31.7±1.6
地中海 鳗草 潮间带、潮下带 25 879.3±224.8 [100]
100 357.1
大洋波喜荡草 25 483.7 [98]
大洋波喜荡草 100 372.4±74.5 [29]
波罗的海 鳗草 潮间带、潮下带 25 57.8±4.3 [100]
100 23.1
波罗的海南部波兰Gdańsk海湾 鳗草 Inner Puck Bay
(水动力条件差、海草密度低)
10 22.8±1.16 [115]
Outer Puck Bay
(水动力条件强、海草密度低)
10 5.0±0.22
Gdańsk-Sopot
(水动力条件强、海草密度高)
10 11.6±0.41
黑海 鳗草 潮间带、潮下带 25 72.5±15.9 [100]
100 29.0

使用元素分析仪测定沉积物中有机碳含量, 计算一定深度下沉积物有机碳的密度, 计算方法为:

$ {\rm{沉积物有机碳密度}}={\rm{有机碳含量}} \times {\rm{干容质量}}. $

一定深度沉积物有机碳储量的计算方法为:

$ \begin{array}{r} {\rm{沉积物有机碳储量}}={\rm{沉积物有机碳密度}}\times \\ {\rm{沉积物子样厚度}}\;\;\;\; \end{array} $

通过对某一柱状样所有沉积物子样有机碳储量的总和, 得到采样地区该深度下沉积物有机碳的总储量[95-96]

1.3.1 不同地区海草床沉积物有机碳储量

地中海海草床沉积物有机碳储量较高, 为372.4 MgC/ha[29]; 佛罗里达湾的海草床沉积物有机碳略高于全球平均值(139.7MgC/ha), 约为175.0 MgC/ha[97]; 而巴西南海岸、海南新村湾与宣德礁有机碳储量约为67.6 MgC/ha, 显著低于全球平均值; 东亚、东南亚和澳大利亚海草床的沉积物有机碳储量约为全球平均水平的25%[98-99]。不同地区同种海草之间的有机碳储量也存在显著差异, Röhr等对温带鳗草海草床沉积物有机碳储量研究发现, 地中海鳗草海草床沉积物有机碳储量高达357.1 MgC/ha; 太平洋东部和西部鳗草海草床沉积物有机碳储量分别为69.4 MgC/ha和93.8 MgC/ha; 大西洋东部和西部鳗草海草床沉积物有机碳与太平洋东部相近, 分别为55.4 MgC/ha和54.0 MgC/ha; 而波罗的海鳗草海草床沉积物有机碳储量最低, 仅为23.1 MgC/ha[100]

1.3.2 相近区域不同种类海草床沉积物有机碳储量

研究发现, 相近区域不同海草种类的沉积物碳储量不同。例如, Lavery等(2013)对澳大利亚不同种类海草床进行调查研究发现, 澳洲波喜荡草的沉积物有机碳含量相对较高, 卵叶喜盐草、牟氏鳗草、齿叶丝粉草和单脉二药草的沉积物有机碳含量相对较低, 而泰来草和圆叶丝粉草等显著低于以上海草[98]。Potouroglou等(2021)对英格兰海草床沉积物有机碳进行调查, 牟氏鳗草海草床沉积物有机碳含量为68.90±42.10 MgC/ha, 要高于鳗草海草床(23.11±8.17) MgC/ha[101]。而对地中海区域的研究发现, 大洋波喜荡草海草床沉积物有机碳含量相比于鳗草海草床相对较高[29, 100]。位于印度尼西亚群岛的Kapoposang岛和Sarappokeke岛海草床沉积物有机碳储量存在明显的差异, Sarappokeke岛的海草优势种为圆叶丝粉草和单脉二药草, 沉积物有机碳储量显著低于以海菖蒲和泰来草为优势种的Kapoposang岛[65, 102]

2 海草床沉积物有机碳影响因素 2.1 物理因素 2.1.1 沉积物类型

沉积物类型可能会影响沉积物有机碳储量[116]。美国佛罗里达海草床沉积物有机碳储量显著高于巴西东南部海岸, 这主要是因为佛罗里达与巴西东南部海岸沉积物类型分别为碳酸盐与硅酸盐[97]。钙化与沉积作用会加速碳酸盐沉积物的缺氧, 增强有机碳的保存, 并且当海草凋落物上覆盖矿物基质时, 有机碳更难被分解[117, 118]。巴西东南部海岸缺乏钙化和碳酸钙的储备, 使得有机碳的代谢与大气二氧化碳交换、碳酸盐流动之间存在直接联系[97]

2.1.2 空间分布

海草床的水平属性(相对边缘的距离)是海草生态系统碳储量空间异质性的重要决定因素, 研究发现, 海草床边缘区域沉积物有机碳储量高于裸露沉积物约3倍, 而海草床内部沉积物有机碳储量更要显著高于边缘[119]。大型海草沉积物有机碳储量要大于小型海草或无海草区域[120], 这主要是因为结构较大、埋藏较深的根茎组织可以对沉积物起到保护作用以保存有机碳和截获更多悬浮颗粒[121-123], 有效光照辐射是影响海草碳储存能力的关键因子, Collier等研究发现生长在2 m水深的波状波喜荡草地上部分生物量(899 gDW/m2)、地下部分生物量(1 028 gDW/m2)以及海草密度(1 435 shoots/m2)均显著高于8 m水深处海草(47 gDW/m2; 43 gDW/m2; 80 shoots/m2)[123]。海草床沉积物有机碳储量与所在区域的深度呈现显著相关性, 生长在2~4 m水深的波状波喜荡草海草床沉积物有机碳储量为生长于6~8 m水深区域的4倍, 而位于水深2 m和32 m处的大洋波喜荡草海草床沉积物有机碳储量相差10倍以上[116]

2.1.3 温度升高

全球气温升高会对海草床有机碳储量产生一定影响。全球温度升高将显著提高沉积物有机碳的矿化速率[124-125]。研究发现温度每上升10 ℃, 碳的矿化速率可提升4.5倍[124]。自养生物的呼吸速率要小于其吸收二氧化碳的速率, 异养生物则相反[126], 温度升高的情况下, 呼吸速率的增加量要显著高于二氧化碳的吸收速率[127-128], 气候变暖可能使得自养生态系统向异养生态系统转变, 从而发生碳汇到碳源的转变[127]。海草生态系统的甲烷年排放量达0.09~2.7 Tg, 海草床沉积物甲烷的释放速率随着海水温度的升高而增加[129]。红海的海草生态系统已经在温度较高的夏季从自养状态向异养状态改变[130]。Burkholz等研究发现, 在温度从25℃上升到37 ℃的过程中, 有海草覆盖区域的沉积物甲烷和二氧化碳释放速率为无海草覆盖区域的10~100倍, 并且温度升高导致甲烷和二氧化碳通量显著增加[131]。另外, 海洋沉积物微生物活性随着温度升高而增强, 导致在较高的温度下沉积物有机碳水解和发酵速率都超过了正常条件[132]

2.1.4 自然与人为扰动

台风伴随的强降雨会对沉积物表面造成明显的扰动[133-134], 降雨对沉积物造成的扰动为正常情况下的100倍[135], 并且暴雨会导致沉积物中有机碳的氧化方式发生改变, 从而造成沉积物有机碳加速分解。Sampere等对大陆边缘表层沉积物中有机质的木质素研究, 发现飓风过后来自海湾和沿海湿地的有机碳输入可能会迅速分解[136]。海平面上升会导致沿海地区沉积物有机碳大量释放到临近河口及开阔水域[137-138], 这可能会改变河口及开阔水域微生物群落及活性, 进一步造成沉积物有机碳降解。Aoki等对美国弗吉尼亚州的鳗草海草床沉积物调查发现, 海洋热浪发生3年后沉积物有机碳含量下降近20%, 海草密度下降90%, 并且海草床衰退后沉积物有机碳的恢复呈现滞后性[114]

人为的干扰也会造成海草床沉积物有机碳损失。例如, 疏浚工程、挖沙以及船只活动会引起海水沉积物扰动, 导致海水浑浊度升高, 从而危害海草生长[139-141]。海草床衰退导致海草床碳储存功能减弱, 使得原本存储于海草床中碳再次释放, 释放量高达(1.5~9.0) ×107 MgC[142]。船只搁浅所造成的有机碳损失量最高, 约为57.1 MgC/ha[143]。海草床内频繁的滩涂渔业活动会扰动沉积物, 造成海草床沉积物有机碳储量降低[144]。海草床沉积物有机碳含量与沉积物深度呈显著负相关, Macreadie等发现活性有机碳含量与沉积物深度呈显著负相关, 活性有机碳含量从表层的43%下降至深层(80 cm)的3%, 深层的有机碳暴露于空气中会显著增加微生物丰度, 加速有机碳矿化和周转, 表明沉积物的扰动会引起海草床有机碳减少[145]。Thorhaug等对墨西哥近岸海草床进行调查, 发现人为干扰后海草床沉积物有机碳损失量平均值为(20.98±7.14) MgC/ha, 并且在海草床修复工程中所恢复的有机碳平均值高达(20.96±8.59) MgC/ha[143]。得克萨斯州Predator地区的海草床修复过程海草存活率高达90.7%, 显著增加了当地海草覆盖度[146], 但该地区海草修复工程对有机碳的恢复效果并不显著, 其每年对沉积物有机碳的固定量仅为0.5 MgC/ha[143]。学术界需要对海草床修复工程运行过程及后期可能对海草床碳通量产生的影响进行评估, 为政府平衡投入与收益间的关系提供依据。

2.2 化学因素 2.2.1 海洋酸化

海洋酸化可以引起海草生物量和密度增加, 从而加强其对有机碳的埋藏能力[147]。在温带以及热带的高二氧化碳区域, 都出现了海草密度以及生物量上升的情况[148]。但是, Apostolaki等研究发现, 与较低的二氧化碳区域相比, 地中海中高二氧化碳区域海神草生物量反而减少[149]。Vizzini等通过结合海草床植物以及沉积物性质对希腊Milos岛和意大利Vulcano岛的2个高二氧化碳区域进行调查, 发现Vulcano岛的海草生物量以及叶片面积减小, 可能会对沉积物表层有机碳的积累造成负面影响; 而在Milos岛, 虽然海草的生物量、叶面积均上升, 但是表层沉积物有机碳含量下降[150]。在较低pH值情况下, 细菌胞外酶活性增加, 加速高分子有机物向低分子有机物分解的过程, 可能降低海草床的碳储存能力[151, 152]

2.2.2 富营养化

沿海水域的养分富集会降低海草床的碳汇能力[153]。营养盐浓度过高会导致海草氨中毒, 或者引起大型海藻爆发限制海草的光合作用[154-155], 降低海草生物量[156], 使得海草对沉积物有机碳的贡献减少[157]。营养盐浓度增高会影响浮游细菌的活动, 改变细菌群落, 加速溶解性有机碳的分解[158-159]。Liu等发现, 当海草床处于高营养盐浓度环境下, 具有降解难降解化合物能力的微生物如酸微菌(Acidimicrobiia)、疣微菌(Verrucomicrobiales)以及微球菌(Micrococcales)的丰度增加, 从而减弱海草床长期固存有机碳的能力[44]

2.3 生物因素 2.3.1 微生物因素

沉积物中有机碳长期储存的因素主要是因为厌氧环境不利于微生物生长以及海草碎屑不易分解[17, 26-28]。然而, 全球海草床每年的有机碳损失高达2.99×108 MgC[29]。大量研究表明, 富营养化、全球变暖、植物入侵、人为干扰都会影响海草床中微生物群落特征[160-161], 微生物控制着关键的生物地球化学途径, 因此, 微生物活性和群落结构的变化会影响蓝碳的稳定性, 微生物的呼吸以及活性的增强会导致有机碳矿化速率提高, 从而加速碳的流失[162-164]

2.3.2 底栖生物

小型底栖动物对沉积物的扰动会增加沉积物的孔隙度与含氧率, 并且小型底栖动物如线虫会释放粘液, 为细菌的生长发育创造条件[165], 显著提高微生物的丰度与活性[166-167]。大型底栖动物会通过抑制或激活微生物基团来影响沉积物中微生物群落[168]。Lacoste等发现, 大型底栖动物对沉积物的扰动会造成细菌活性的增强, 这可能会加速有机碳的降解[169]

2.3.3 藻类爆发

由富营养化和全球气候变化协同影响下引起的附生藻类的大量繁殖会在一定程度上保护海草, 并且增加海草床沉降悬浮颗粒物的能力[170-171], 但是附生藻类和大型海藻暴发, 会通过与海草竞争营养盐、形成缺氧环境、影响光照等途径造成海草衰退[157]。由于海草床的加速减少, 近岸海域更容易受到气流和波浪的影响, 这会导致海草床中储存的有机碳大量减少[172]。当营养盐浓度升高时, 大型海藻和附生藻类对沉积物有机碳的贡献短时间内会相对增加[27], 向水体中大量释放碳水化合物与氨基酸[173-174], 导致微生物所能利用有机碳的源发生改变[153], 引起海草床长期存储有机碳的能力降低。与海草相比, 来源于附生藻类和大型海藻的有机碳更容易分解[175], 会在几天内被细菌迅速利用[176], 大量多糖及纤维素的加入, 会引起沉积物中蔗糖酶与纤维素酶活性的显著上升[177], 增加原有有机碳的分解, 导致海草床碳储量减少[178-179]

3 展望

综上所述, 国内外学术界对海草床沉积物有机碳来源、储量以及影响因素等方面已经展开了很多研究, 但是相关研究仍有待加强。未来海草床沉积物有机碳研究应该在以下几个方面展开:

(1) 加强海草床碳通量普查和海草床调查。调查全国各海草床海草地上地下部分生物量和沉积物中有机碳的来源、组份及储量, 明确全国海草床沉积物碳储存的基本情况。

(2) 分析全球气候变化背景下沉积物有机碳的变化机制。在全球气候变化背景下, 研究海草床有机碳来源、组分, 沉积物中微生物、酶活性变化等, 明确海草床中有机碳的变化机制, 为海草床沉积物有机碳的科学管理提供科学对策。

(3) 研究影响海草床碳储量的主要环境因素。对处于富营养化以及其它人类活动影响下的海草床沉积物进行碳储量的长期观测, 利用野外操控实验和室内模拟实验, 明确环境因素对沉积物有机碳储量的影响机制。

(4) 明确海草床修复工程对沉积物有机碳储存的长期响应, 尤其是对海草床修复工程运行过程及后期对海草床碳通量的可能影响进行评估, 分析海草床修复工程在碳汇方面的实际收益, 为平衡海草床修复工程的投入与收益提供科学依据。

参考文献
[1]
SHORT F T, CARRUTHERS T J B, DENNISON W C, et al. Global seagrass distribution and diversity: a bioregional model[J]. Journal of Experimental Marine Biology and Ecology, 2007, 350(1/2): 3-20.
[2]
International Union for the Conservation of Nature (IUCN). IUCN red list of threatened species[M]. Gland: IUCN Conservation Centre, 2010.
[3]
SHORT F T, POLIDORO B, LIVINGSTONE S R, et al. Extinction risk assessment of the world's seagrass species[J]. Biological Conservation, 2011, 144: 1961-1971. DOI:10.1016/j.biocon.2011.04.010
[4]
郑凤英, 邱广龙, 范航清, 等. 中国海草的多样性、分布及保护[J]. 生物多样性, 2013, 21(5): 517-526.
ZHENG Fengyin, QIU Guanglong, FAN Hangqing, et al. Diversity, distribution and conservation of Chinese seagrass species[J]. Biodiversity Science, 2013, 21(5): 517-526.
[5]
黄小平, 江志坚, 范航青, 等. 中国海草的"藻"名更改[J]. 海洋与湖沼, 2016, 47(1): 290-294.
HUANG Xiaoping, JIANG Zhijian, FAN Hangqing, et al. The nomenclature of the "Algae" name of seagrasses in China[J]. Oceanologia et Limnologia Sinica, 2016, 47(1): 290-294.
[6]
CHARPY-ROUBAUD C, SOURNIA A. The comparative estimation of phytoplanktonic and microphytobenthic production in the oceans[J]. Marine Microbial Food Webs, 1990, 4: 31-57.
[7]
DUARTE C M, MIDDELBURG J J, CARACO N. Major role of marine vegetation on the oceanic carbon cycle[J]. Biogeoscience, 2005, 2(6): 1-8.
[8]
COSTANZA R, D'ARGE R, DE GROOT R, et al. The value of the world's ecosystem services and natural capital[J]. Nature, 1997, 38(7): 253-260.
[9]
CULLEN-UNSWORTH L C, NORDLUND L M, PADDOCK J, et al. Seagrass meadows globally as a coupled social-ecological system: Implications for human wellbeing[J]. Marine Pollution Bulletin, 2014, 83(2): 387-397. DOI:10.1016/j.marpolbul.2013.06.001
[10]
JACKSON E L, ROWDEN A A, ATTRILL M J, et al. The importance of seagrass beds as a habitat for fishery species[J]. Oceanology and Marine Biology-An Annual Review, 2001, 39: 269-303.
[11]
WAYCOTT M, LONGSTAFF B J, MELLORS J. Seagrass population dynamics and water quality in the Great Barrier Reef region: a review and future research directions[J]. Marine Pollution Bulletin, 2005, 51(1): 343-350.
[12]
BURN D M. The digestive strategy and efficiency of the West Indian manatee, trichechus manatus[J]. Comparative Biochemistry and Physiology, 1986, 85(1): 139-142. DOI:10.1016/0300-9629(86)90475-5
[13]
HOPKINSON C S, CAI W J, HU X. Carbon sequestration in wetland dominated coastal systems - A global sink of rapidly diminishing magnitude[J]. Current Opinion in Environmental Sustainability, 2012, 4(2): 186-194. DOI:10.1016/j.cosust.2012.03.005
[14]
DUARTE C M, CEBRIAN J. The fate of marine autotrophic production[J]. Limnology and Oceanography, 1996, 44: 103-110.
[15]
ANGRELINA I, SARTIMBUL A, WAHYUDI A J. The potential of seagrass beds on the coast of Putri Menjangan as a carbon sequestration ecosystem on Bali Island[J]. IOP Conference Series: Earth and Environmental Science, 2019, 241(1): 012010.
[16]
QUEVEDO J M D, UCHIYAMA Y, KOHSAKA R. Perceptions of the seagrass ecosystems for the local communities of Eastern Samar, Philippines: Preliminary results and prospects of blue carbon services[J]. Ocean and Coastal Management, 2020, 191: 105181. DOI:10.1016/j.ocecoaman.2020.105181
[17]
MCLEOD E, CHMURA G L, BOUILLON S, et al. A blueprint for blue carbon: Toward an improved understanding of the role of vegetated coastal habitats in sequestering CO2[J]. Frontiers in Ecology and the Environment, 2011, 9(10): 552-560. DOI:10.1890/110004
[18]
PHANG V X, CHOU L, FRIESS D A. Ecosystem carbon stocks across a tropical intertidal habitat mosaic of mangrove forest, seagrass meadow, mudflat and sandbar[J]. Earth Surface Processes and Landforms, 2015, 40(10): 1387-1400. DOI:10.1002/esp.3745
[19]
DUARTE C M, MARBÀ N, GACIA E, et al. Seagrass community metabolism: assessing the carbon sink capacity of seagrass meadows[J]. Global Biogeochemical Cycles, 2010, 24(4): GB4032.
[20]
KENNEDY H, BEGGINS J, DUARTE C M, et al. Seagrass sediments as a global carbon sink: isotopic constraints[J]. Global Biogeocemical Cycles, 2010, 24(4): 6696-6705.
[21]
BARRÓN C, APOSTOLAKI E, DUARTE C. Dissolved organic carbon release by marine macrophytes[J]. Biogeosciences Discussions, 2012, 9(2): 1529-1555.
[22]
LIU S L, JIANG Z J, ZHOU C Y, et al. Leaching of dissolved organic matter from seagrass leaf litter and its biogeochemical implications[J]. Acta Oceanologica Sinica, 2018, 37(8): 84-90. DOI:10.1007/s13131-018-1233-1
[23]
BOUILLON S, MOENS T, DEHAIRS F. Carbon sources supporting benthic mineralization in mangrove and adjacent seagrass sediments (Gazi Bay, Kenya)[J]. Biogeosciences Discussions, 2004, 1(5): 311-333.
[24]
BARRÓN C, APOSTOLAKI E T, DUARTE C M. Dissolved organic carbon fluxes by seagrass meadows and macroalgal beds[J]. Frontiers in Marine Science, 2014, 1: 42.
[25]
SU Z N, QIU G L, FAN H Q, et al. Seagrass beds store less carbon but support more macrobenthos than mangrove forests[J]. Marine Enviromental Research, 2020, 162: 105162. DOI:10.1016/j.marenvres.2020.105162
[26]
DUARTE C M, KENNEDY H, MARBÀ N, et al. Assessing the capacity of seagrass meadows for carbon burial: Current limitations and future strategies[J]. Ocean & Coastal Management, 2013, 83: 32-38.
[27]
LIU S L, JIANG Z J, ZHANG J P, et al. Sediment microbes mediate the impact of nutrient loading on blue carbon sequestration by mixed seagrass meadows[J]. Science of the total environment, 2017, 599/600: 1478-1484.
[28]
ALONGI D M. Blue carbon coastal sequestration for climate change mitigation[M]. Australia: Springer Briefs in Climate Studies, 2018: 88.
[29]
FOURQUREAN J W, DUARTE C M, KENNEDY H, et al. Seagrass ecosystems as a globally signifificant carbon stock[J]. Nature Geoscience, 2012, 5(7): 505-509. DOI:10.1038/ngeo1477
[30]
PIDGEON E. Carbon sequestration by coastal marine habitats: Missing sinks[C]// LAFFOLEY D. The Management of Natural Coastal Carbon Sinks. Gland: IUCN, 2009: 47-51.
[31]
SAINTILAN N, ROGERS K, MAZUMDER D, et al. Allochthonous and autochthonous contributions to carbon accumulation and carbon store in southeastern Australian coastal wetlands[J]. Estuarine Coastal and Shelf Science, 2013, 128(10): 84-92.
[32]
李捷, 刘译蔓, 孙辉, 等. 中国海岸带蓝碳现状分析[J]. 环境科学与技术, 2019, 42(10): 207-216.
LI Jie, LIU Yiman, SUN Hui, et al. Analysis of blue carbon in China's coastal zone[J]. Environmental Science and Technology, 2019, 42(10): 207-216. DOI:10.19672/j.cnki.1003-6504.2019.10.031
[33]
高亚平, 方建光, 唐望, 等. 桑沟湾大叶藻海草床生态系统碳汇扩增力的估算[J]. 渔业科学进展, 2013, 34(1): 17-21.
GAO Yaping, FANG Jianguang, TANG Wang, et al. Seagrass meadow carbon sink and amplification of the carbon sink for eelgrass bed in Sanggou Bay[J]. Progress in Fishery Sciences, 2013, 34(1): 17-21. DOI:10.3969/j.issn.1000-7075.2013.01.003
[34]
HUANG Y H, LEE C L, CHUNG C Y, et al. Carbon budgets of multispecies seagrass beds at Dongsha Island in the South China Sea[J]. Marine Environmental Research, 2015, 106: 92-102. DOI:10.1016/j.marenvres.2015.03.004
[35]
HECK K L, VALENTINE J F. Plant-herbivore interactions in seagrass meadows[J]. Journal of Experimental Marine Biology and Ecology, 2006, 330: 420-436. DOI:10.1016/j.jembe.2005.12.044
[36]
吴钟解, 陈石泉, 蔡泽富, 等. 海南岛海草床分布变化及恢复建议[J]. 海洋环境科学, 2021, 40(4): 542-549.
WU Zhongjie, CHEN Shiquan, CAI Zefu, et al. Analysis of distribution change and restoration suggestion of theseagrass beds in Hainan Island[J]. Marine Environmental Science, 2021, 40(4): 542-549. DOI:10.13634/j.cnki.mes.2021.04.009
[37]
JIANG Z J, ZHAO C Y, YU S, et al. Contrasting root length, nutrient content and carbon sequestration of seagrass growing in offshore carbonate and onshore terrigenous sediments in the South China Sea[J]. Science of the Total Environment, 2019, 662: 151-159. DOI:10.1016/j.scitotenv.2019.01.175
[38]
JIANG Z J, LIU S L, ZHANG J P, et al. Newly discovered seagrass beds and their potential for blue carbon in the coastal seas of Hainan Island, South China Sea[J]. Marine Pollution Bulletin, 2017, 125(1/2): 513-521.
[39]
HENDRY M J, WASSENAAR L I. Transport and geochemical controls on the distribution of solutes and stable isotopes in a thick clay-rich till aquitard, Canada[J]. Isotopes in Environmental and Health Studies, 2004, 40(1): 3-19. DOI:10.1080/10256010310001644942
[40]
LUCKE A, BRAUER A. Blogeochemical and micro-facial fingerprints of ecosystem response to rapid Late Glacial climatlic changes in varved sediments of Meerfelder Maar (Germany)[J]. Palaeogeography Palaeoclimatology Palaeoecology, 2004, 211: 139-155. DOI:10.1016/j.palaeo.2004.05.006
[41]
WU Y, LUECKE A, JIN Z, et al. Holocene climate development on the central Tibetan Plateau: a sedimentary record from Cuoe Lake[J]. Palaeogeography Palaeoclimatology Palaeoecology, 2006, 234(2/4): 328-340.
[42]
CIFUENTES L, COFFIN R, SOLORZANO L. Isotopic and elemental variations of carbon and nitrogen in a mangrove estuary[J]. Estuarine Coastal and Shelf Science, 1996, 43(6): 781-800. DOI:10.1006/ecss.1996.0103
[43]
FRY B, SHERR E B. 13C measurements as indicators of carbon flow in marine and freshwater ecosystems[C]// RUNDEL P W. Stable Isotopes in Ecological Research. New York: Springer, 1989: 196-229.
[44]
LIU X J, TANG D H, GE C D. Distribution and sources of organic carbon, nitrogen and their isotopic composition in surface sediments from the southern Yellow Sea, China[J]. Marine Pollution Bulletin, 2020, 150: 110716. DOI:10.1016/j.marpolbul.2019.110716
[45]
JENNERJAHN T C. Relevance and magnitude of 'Blue Carbon' storage in mangrove sediments: Carbon accumulation rates vs. stocks, sources vs. Sinks[J]. Estuarine, Coastal and Shelf Science, 2020, 248: 107156.
[46]
KUSUMANINGTYAS M A, HUTAHAEAN A A, FISCHER H W, et al. Variability in the organic carbon stocks, sources, and accumulation rates of Indonesian mangrove ecosystems[J]. Estuarine, Coastal and Shelf Science, 2019, 218: 310-323. DOI:10.1016/j.ecss.2018.12.007
[47]
TANAKA Y, MIYAJIMA T, WATANABE A, et al. Distribution of dissolved organic carbon and nitrogen in a coral reef[J]. Coral Reefs, 2011, 30(2): 533-541. DOI:10.1007/s00338-011-0735-5
[48]
WILD C, MAYR C, WEHRMANN L, et al. Organic matter release by cold water corals and its implication for fauna-microbe interaction[J]. Marine Ecology Progress Series, 2008, 372: 67-75. DOI:10.3354/meps07724
[49]
TANAKA Y, MIYAJIMA T, OGAWA H. Effects of nutrient enrichment on the release of dissolved organic carbon and nitrogen by the scleractinian coral Montipora digitata[J]. Coral Reefs, 2010, 29: 675-682. DOI:10.1007/s00338-010-0639-9
[50]
ZIEGLER S, BENNER R. Dissolved organic carbon cycling in a subtropical seagrass-dominated lagoon[J]. Marine Ecology Progress Series, 1999, 180: 149-160. DOI:10.3354/meps180149
[51]
HAAS A F, WILD C. Composition analysis of organic matter released by cosmopolitan coral reef-associated green algae[J]. Aquatic Biology, 2010, 10(2): 131-138. DOI:10.3354/ab00271
[52]
URBAN-RICH J. Release of dissolved organic carbon from copepod fecal pellets in the Greenland Sea[J]. Journal of Experimental Marine Biology and Ecology, 1999, 232(1): 107-124. DOI:10.1016/S0022-0981(98)00104-X
[53]
MAYER L M, MACKO S A, MOOK W H, et al. The distribution of bromine in coastal sediments and its use as a source indicator for organic matter[J]. Organic Geochemistry, 1981, 3(1/2): 37-42.
[54]
MALCOLM S J, PRICE N B. The behavior of iodine and bromine in estuarine surface sediments[J]. Marine Chemistry, 1984, 15: 263-271. DOI:10.1016/0304-4203(84)90022-7
[55]
LERI A C, HAKALA J A, MARCUS M A, et al. Natural organobromine in marine sediments: New evidence of biogeochemical Br cycling[J]. Global Biogeochemical Cycles, 2010, 24(4): GB4017.
[56]
LERI A C, MYNENI S C B. Natural organobromine in terrestrial ecosystems[J]. Geochimica et Cosmochimica Acta, 2012, 77: 1-10. DOI:10.1016/j.gca.2011.11.012
[57]
KANDASAMY S, LIN B, LOU J Y, et al. Estimation of Marine Versus Terrigenous Organic Carbon in Sediments Off Southwestern Taiwan Using the Bromine to Total Organic Carbon Ratio as a Proxy[J]. Journal of Geophysical Research: Biogeosciences, 2018, 123(10): 3387-3402. DOI:10.1029/2018JG004674
[58]
RöHR M E, BOSTRöM C, CANAL-VERGÉS P, et al. Blue carbon stocks in Baltic Sea eelgrass (Zostera marina) meadows[J]. Biogeosciences, 2016, 13(22): 6139-6153. DOI:10.5194/bg-13-6139-2016
[59]
RICART A M, PÉREZ M, ROMERO J. Landscape configuration modulates carbon storage in seagrass sediments[J]. Estuarine, Coastal and Shelf Science, 2017, 185: 69-76. DOI:10.1016/j.ecss.2016.12.011
[60]
SMITH B N, EPSTEIN S. Two categories of 13C/12C ratios for higher plants[J]. Plant Physiology, 1971, 47(3): 380-384. DOI:10.1104/pp.47.3.380
[61]
GACIA E, DUARTE C M, MIDDELBURG J J. Carbon and nutrient deposition in a Mediterranean seagrass (Posidonia oceanica) meadow[J]. Limnology and Oceanography, 2002, 47(1): 23-32. DOI:10.4319/lo.2002.47.1.0023
[62]
KENNEDY H, GACIA E, KENNEDY D P, et al. Organic carbon sources to SE Asian coastal sediments[J]. Estuarine Coastal and Shelf Science, 2004, 60(1): 59-68. DOI:10.1016/j.ecss.2003.11.019
[63]
LIU S L, JIANG Z J, ZHANG J P. Effect of nutrient enrichment on the source and composition of sediment organic carbon in tropical seagrass beds in the South China Sea[J]. Marine Pollution Bulletin, 2016, 110(1): 274-280. DOI:10.1016/j.marpolbul.2016.06.054
[64]
LEBRETON B, RICHARD P, GALOIS R, et al. Trophic importance of diatoms in an intertidal Zostera noltii seagrass bed: evidence from stable isotope and fatty acid analyses[J]. Estuarine, Coastal and Shelf Science, 2011, 92(1): 140-153. DOI:10.1016/j.ecss.2010.12.027
[65]
RAHAYU Y P, SOLIHUDDIN T, KUSUMANINGTYAS M A, et al. The sources of organic matter in seagrass sediments and their contribution to carbon stocks in the Spermonde Islands, Indonesia[J]. Aquatic Geochemistry, 2019, 25(3/4): 161-178.
[66]
VOLKMAN J K, BARRETT S M, BLACKBURN S I, et al. Microalgal biomarkers: a review of recent research developments[J]. Organic Geochemistry, 1998, 29(5/7): 1163-1179.
[67]
MEZIANE T, TSUCHUYA M. Fatty acids as tracers of organic matter in the sediment and food web of a mangrove/intertidal flat ecosystem, Okinawa, Japan[J]. Marine Ecology Progress Series, 2000, 200: 49-57. DOI:10.3354/meps200049
[68]
KHOTIMCHENKO S V. Fatty acids and polar lipids of seagrasses from the sea of Japan[J]. Phytochemistry, 1993, 33(2): 369-372. DOI:10.1016/0031-9422(93)85520-2
[69]
RAJENDRAN N, SUWA Y, URUSHIGAWA Y. Distribution of phospholipid ester-linked fattyacid biomarkers for bacteria in the sediment of Ise Bay, Japan[J]. Marine Chemistry, 1993, 42(1): 39-56. DOI:10.1016/0304-4203(93)90248-M
[70]
KELLY J R, SCHEIBLING R E. Fatty acids as dietary tracers in benthic food webs[J]. Marine Ecology Progress Series, 2012, 446: 1-22. DOI:10.3354/meps09559
[71]
PARK H, CHOY E, LEE K. Trophic transfer between coastal habitats in a seagrass-dominated marcrotidal embayment system as determined by stable isotope and fatty acid signatures[J]. Marine and Freshwater Research, 2013, 64(12): 1169-1183. DOI:10.1071/MF12327
[72]
DUBOIS S, BLANCHET H, GARCIA A. Trophic resource use by macrozoobenthic primary consumers within a semi-enclosed coastal ecosystem: Stable isotope and fatty acid assessment[J]. Journal of Sea Research, 2014, 88: 87-99. DOI:10.1016/j.seares.2014.01.004
[73]
ARNOLD T M, TARGETT N M. Marine tannins: the importance of a mechanistic framework for predicting ecological roles[J]. Journal of Chemical Ecology, 2002, 28(10): 1919-1934. DOI:10.1023/A:1020737609151
[74]
TORBATINEJAD N M, ANNISON G, RUTHERFURD-MARKWICK K, et al. Structural constituents of the seagrass Posidonia australis[J]. Journal of Agricultural and Food Chemistry, 2007, 55(10): 4021-4026. DOI:10.1021/jf063061a
[75]
KAAL J, SERRANO O, NIEROP K G J, et al. Molecular composition of plant parts and sediment organic matter in a Mediterranean seagrass (Posidonia oceanica) mat[J]. Aquatic Botany, 2016, 133: 50-61. DOI:10.1016/j.aquabot.2016.05.009
[76]
HEMMINGA M A, MATEO M A. Stable carbon isotopes in seagrasses: Variability in ratio and use in ecology studies[J]. Marine Ecology Progress Series, 1996, 140(1/3): 285-298.
[77]
ANDERSON W T, FOURQUREAN J W. Intra-and interannual variability in seagrass carbon and nitrogen stable isotopes from south Florida, a preliminary study[J]. Organic Geochemistry, 2003, 34(2): 185-194. DOI:10.1016/S0146-6380(02)00161-4
[78]
JASCHINSKI S, HANSEN T, SOMMER U. Effects of acidification in multiple stable isotope analyses[J]. Limnology and Oceanography, 2008, 6(1): 12-15.
[79]
GEARING J N, GEARING P J, RUDNICK D T, et al. Isotopic variability of organic carbon in a phytoplankton-based, temperate estuary[J]. Geochimica et Cosmochimica Acta, 1984, 48(5): 1089-1098. DOI:10.1016/0016-7037(84)90199-6
[80]
KHOTIMCHENKO S V, VASKOVSKY V E. Distribution of C20 polyenoic fatty acids in red macrophytic algae[J]. Botanica Marine, 1990, 33(6): 525-528.
[81]
MONCREIFF C A, SULLIVAN M J. Trophic importance of epiphytic algae in subtropical seagrass beds: evidence from multiple stable isotope analyses[J]. Marine Ecology Progress Series, 2001, 215: 93-106. DOI:10.3354/meps215093
[82]
PANCOST R D, BOOT C S. The palaeoclimatic utility of terrestrial biomarkers in marine sediments[J]. Marine Chemistry, 2004, 92(1/4): 239-261.
[83]
梁越, 肖化云, 刘小真, 等. 碳氮稳定同位素示踪鄱阳湖流域蚌湖丰水期的氮污染[J]. 湖泊科学, 2018, 30(4): 957-966.
LIANG Yu, XIAO Huayun, LIU Xiaozhen, et al. Carbon and nitrogen stable isotopes tracing nitrogen pollution in major flooding season in Lake Bang, Lake Poyang Basin[J]. Journal of Lake Sciences, 2018, 30(4): 957-966.
[84]
佟小刚, 徐明岗, 张文菊, 等. 长期施肥对红壤和潮土颗粒有机碳含量与分布的影响[J]. 中国农业科学, 2008, 41(11): 3664-3671.
TONG Xiaogang, XU Minggang, ZHANG Wenju, et al. Influence of long-term fertilization on content and distribution of organic carbon in particle-size fractions of red soil and fluvo-aquic soil in China[J]. Scientia Agricultura Sinica, 2008, 41(11): 3664-3671. DOI:10.3864/j.issn.0578-1752.2008.11.029
[85]
林晓东, 漆智平, 唐树梅, 等. 海南人工林地, 人工草地土壤易氧化有机碳和轻组碳含量初探[J]. 热带作物学报, 2012, 33(1): 171-177.
LIN Xiaodong, QI Zhiping, TANG Shumei, et al. Oxidizable organic Carbon and light fraction organic carbon of artificial plantation land and artificial grassland in Hainan Province[J]. Chinese Journal of Tropical Crops, 2012, 33(1): 171-177. DOI:10.3969/j.issn.1000-2561.2012.01.035
[86]
ROVIRA P, VALLEJO V R. Labile and recalcitrant pools of carbon and nitrogen in organic matter decomposing at different depths in soil: an acid hydrolysis approach[J]. Geoderma, 2002, 107(1/2): 109-141.
[87]
连忠廉, 江志坚, 黄小平, 等. 珠江口表层沉积物有机碳不同浸提组分的空间分布特征[J]. 海洋环境科学, 2019, 38(3): 391-398.
LIAN Zhonglian, JIANG Zhijian, HUANG Xiaoping, et al. Distribution of labile organic carbon using different extract method in the surface sediments of Pearl River Estuary[J]. Marine Environmental Science, 2019, 38(3): 391-398.
[88]
周脚根, 黄道友. 土壤微生物量碳周转分析方法及其影响因素[J]. 中国生态农业学报, 2006, 14(2): 131-134.
ZHOU Jiaogen, HUANG Daoyou. Research methods of soil microbial biomass carbon turnover and its influencing factors[J]. Chinese Journal of Eco-Agriculture, 2006, 14(2): 131-134.
[89]
张国, 曹志平, 胡婵娟. 土壤有机碳分组方法及其在农田生态系统研究中的应用[J]. 应用生态学报, 2011, 22(7): 1921-1930.
ZHANG Guo, CAO Zhiping, HU Chanjuan. Soil organic carbon fractionation methods and their applications in farmland ecosystem research: A review[J]. Chinese Journal of Applied Ecology, 2011, 22(7): 1921-1930.
[90]
HICKS C E. Sediment organic carbon pools and sources in a recently constructed mangrove and seagrass ecosystem[D]. Gainesville: University of Florida, 2007.
[91]
DODLA S K, WANG J J, DELAUNE R D. Characterization of labile organic carbon in coastal wetland soils of the Mississippi River deltaic plain: Relationships to carbon functionalities[J]. Science Total Environment, 2012, 435: 151-158.
[92]
FANG C M, SMITH P, MONCRIEFF J B. Similar response of labile and resistant soil organic matter pools to changes in temperature. Nature, 2005, 436: 881.
[93]
MATEO M A, CEBRIN J, DUNTON K. Carbon flux in seagrass ecosystems[C]//LARKUM A W D, ed. Seagrasses: Biology, Ecology and Conservation. Dordrecht: Springer, 2006: 159-192.
[94]
刘松林, 江志坚, 吴云超, 等. 海草床沉积物储碳机制及其对富营养化的响应[J]. 科学通报, 2012, 62(Z2): 3309-3318.
LIU Songlin, JIANG Zhijian, WU Yunchao, et al. Mechanisms of sediment carbon sequestration in seagrass meadows and its responses to eutrophication[J]. Chinese Science Bulletin, 2012, 62(Z2): 3309-3318.
[95]
HOWARD J, HOYT S, ISENSEE K, et al. Coastal Blue Carbon: Methods for Assessing Carbon Stocks and Emissions Factors in Mangroves, Tidal Salt Marshes, and Seagrasses[J]. Journal of American History, 2014, 14(4): 4-7.
[96]
FOURQUREAN J W, RUTTEN L M. The impact of hurricane Georges on soft-bottom, back reef communities: Site- and species-specific effects in South Florida seagrass beds[J]. Bulletin of Marine Science, 2004, 75: 239-257.
[97]
HOWARD J L, CREED J C, AGUIAR M V, et al. CO2 released by carbonate sediment production in some coastal areas may offset the benefits of seagrass "blue carbon" storage[J]. Limnology and Oceanography, 2017, 63(1): 160-172.
[98]
LAVERY P S, MATEO M A, SERRANO O. Variability in the carbon storage of seagrass habitats and its implications for global estimates of blue carbon ecosystem service[J]. PLoS One, 2013, 8: e73748. DOI:10.1371/journal.pone.0073748
[99]
MIYAJIMA T, HORI M, HAMAGUCHI M. Geographic variability in organic carbon stock and accumulation rate in sediments of East and Southeast Asian seagrass meadows[J]. Global Biogeochemistry Cycles, 2015, 29(4): 397-415. DOI:10.1002/2014GB004979
[100]
RöHR M E, HOLMER M, BAUM J K, et al. Blue carbon storage capacity of temperate eelgrass (Zostera marina) meadows[J]. Global Biogeochemical Cycles, 2018, 32: 1-18. DOI:10.1002/gbc.20575
[101]
POTOUROGLOU M, WHITLOCK D, MILATOVIC L, et al. The sediment carbon stocks of intertidal seagrass meadows in Scotland[J]. Estuarine, Coastal and Shelf Science, 2021, 258: 107442. DOI:10.1016/j.ecss.2021.107442
[102]
RUSTAM A, SUDIRMAN N, ATI R N, et al. Seagrass ecosystem carbon stock in the small islands: case study in Spermonde island, South Sulawesi, Indonesia[J]. Jurnal Segara, 2017, 13(2): 97-106.
[103]
李梦. 广西海草床沉积物碳储量研究[D]. 桂林: 广西师范大学, 2018.
LI Meng. Carbon Storage in the seagrass sediments of Guangxi, China[D]. Guilin: Guangxi Teachers Education University, 2018.
[104]
JIANG Z J, LIU S L, ZHANG J P, et al. Eutrophication indirectly reduced carbon sequestration in a tropical seagrass bed[J]. Plant and Soil, 2018, 426: 135-152. DOI:10.1007/s11104-018-3604-y
[105]
JUMA G A, MAGANA A M, MICHAEL G N, et al. Variation in Seagrass Carbon Stocks Between Tropical Estuarine and Marine Mangrove-Fringed Creeks[J]. Frontiers in Marine Science, 2020, 7: 696. DOI:10.3389/fmars.2020.00696
[106]
PRENTICE C I. Reduced water motion enhances organic carbon stocks in temperate eelgrass meadows[D]. British Columbia: Simon Fraser University, 2019.
[107]
SERRANO O, GÓMEZ-LÓPEZ D I, SÁNCHEZ-VALENCIA L, et al. Seagrass blue carbon stocks and sequestration rates in the Colombian Caribbean[J]. Scientific Reports, 2021, 11(1): 11067. DOI:10.1038/s41598-021-90544-5
[108]
SU Z N, QIU G L, FAN H Q, et al. Changes in carbon storage and macrobenthic communities in a mangrove-seagrass ecosystem after the invasion of smooth cordgrass in southern China[J]. Marine Pollution Bulletin, 2020, 152: 110887. DOI:10.1016/j.marpolbul.2020.110887
[109]
CUELLAR-MARTINEZ T, RUIZ-FERN ÁNDEZ A C, SANCHEZ-CABEZA J A, et al. Relevance of carbon burial and storage in two contrasting blue carbon ecosystems of a north-east Pacific coastal lagoon[J]. Science of the Total Environment, 2019, 675: 581-593. DOI:10.1016/j.scitotenv.2019.03.388
[110]
PRENTICE C, POPPE K L, LUTZ M, et al. A Synthesis of Blue Carbon Stocks, Sources, and Accumulation Rates in Eelgrass (Zostera marina) Meadows in the Northeast Pacific[J]. Global Biogeochemical Cycles, 2020, 34(2): e2019GB006345.
[111]
DAHL M, ASPLUND M E, BJöRK M, et al. The influence of hydrodynamic exposure on carbon storage and nutrient retention in eelgrass (Zostera marina L.) meadowson the Swedish Skagerrak coast[J]. Scientific Reports, 2020, 10: 13666. DOI:10.1038/s41598-020-70403-5
[112]
DAHL M, ASPLUND M E, DAYANOVA D, et al. High seasonal variability in sediment carbon stocks of cold-temperate seagrass meadows[J]. Journal of Geophysical Research: Biogeosciences, 2020, 125(1): e2019JG005430.
[113]
NOVAK A B, PELLETIER M C, COLARUSSO P, et al. Factors Influencing Carbon Stocks and Accumulation Rates in Eelgrass Meadows Across New England, USA[J]. Estuaries and Coasts, 2020, 43(8): 2076-2091. DOI:10.1007/s12237-020-00754-9
[114]
AOKI L R, MCGLATHERY K J, WIBERG P L, et al. Seagrass recovery following marine heat wave influences sediment carbon stocks[J]. Frontiers in Marine Science, 2021, 7: 576784. DOI:10.3389/fmars.2020.576784
[115]
JANKOWSKA E, MICHEL L N, ZABORSKA A, et al. Sediment carbon sink in low-density temperate eelgrass meadows (Baltic Sea)[J]. Journal of Geophysical Research: Biogeosciences, 2016, 121(12): 2918-2934. DOI:10.1002/2016JG003424
[116]
SERRANO O, LAVERY P S, ROZAIMI M. Influence of water depth on the carbon sequestration capacity of seagrasses[J]. Global Biogeochemistry Cycles, 2014, 28(9): 950-961. DOI:10.1002/2014GB004872
[117]
KEIL R G, HEDGES J I. Sorption of organic matter to mineral surfaces and the preservation of organic matter in coastal marine sediments[J]. Chemical Geology, 1993, 107(3/4): 385-388.
[118]
ARNDT S, JøRGENSEN B B, LAROWE D E, et al. Quantifying the degradation of organic matter in marine sediments: A review and synthesis[J]. Earth-Science Reviews, 2013, 123(4): 53-86.
[119]
RICART A M, YORK P H, RASHEED M A. Variability of sedimentary organic carbon in patchy seagrass landscapes[J]. Marine Pollution Bulletin, 2015, 100(1): 476-482. DOI:10.1016/j.marpolbul.2015.09.032
[120]
GRUBER R K, KEMP W M. Feedback effects in a coastal canopy-forming submersed plant bed[J]. Limnology and Oceanography, 2010, 55(6): 2285-2298. DOI:10.4319/lo.2010.55.6.2285
[121]
AGAWIN N, DUARTE C. Evidence of direct particle trapping by a tropical seagrass meadow[J]. Estuaries, 2002, 25(6): 1205-1209. DOI:10.1007/BF02692217
[122]
BURDIGE D J. Preservation of organic matter in marine sediments: controls, mechanisms, and an imbalance in sediment organic carbon budgets?[J]. Chemical reviews, 2007, 107(2): 467-485. DOI:10.1021/cr050347q
[123]
COLLIER C, LAVERY P, MASINI R, et al. Morphological, growth and meadow characteristics of the seagrass Posidonia sinuosa along a depth-related gradient of light availability[J]. Marine Ecology Progress Series, 2007, 337: 103-115. DOI:10.3354/meps337103
[124]
PEDERSEN M ø, SERRANO O, MATEO M A, et al. Temperature effects on decomposition of a Posidoniaoceanica mat[J]. Aquatic Microbial Ecology, 2011, 65: 169-182. DOI:10.3354/ame01543
[125]
LEFEVRE R, BARRE P, MOYANO F E. Higher temperature sensitivity for stable than for labile soil organic carbon-evidence from incubations of long-term bare fallow soil[J]. Global Change Biology, 2013, 20: 1087-1095.
[126]
DUARTE C M, AGUSTI S, REGAUDIE-DE-GIOUX A. The role of marine biota in the biogeochemical and geological cycles of carbon[C]// DUARTE CM, ed. The role of marine biota in the functioning of the biosphere. Marid: Fundación BBVA, 2011: 21-37.
[127]
HARRIS L A, DUARTE C M, NIXON S W. Allometric laws and prediction in estuarine and coastal ecology[J]. Estuaries and Coasts, 2006, 29(2): 340-344. DOI:10.1007/BF02782002
[128]
REGAUDIE-DE-GIOUX A, DUARTE C M. Temperature dependence of planktonic metabolism in the ocean[J]. Global Biogeochemical Cycles, 2012, 26(1): 1-10.
[129]
GARCIAS-BONET N, DUARTE C M. Methane production by seagrass ecosystems in the Red Sea[J]. Frontiers in Marine Science, 2017, 4: 1-10.
[130]
BURKHOLZ C, DUARTE C M, GARCIAS-BONET N. Thermal dependence of seagrass ecosystem metabolism in the Red Sea[J]. Marine Ecology Progress Series, 2019, 614: 79-90. DOI:10.3354/meps12912
[131]
BURKHOLZ C, GARCIAS-BONET N, DUARTE C M. Warming enhances carbon dioxide and methane fluxes from Red Sea seagrass (Halophila stipulacea) sediments[J]. Biogeosciences Discuss, 2019, 17: 1-20.
[132]
WESTON N B, JOYE S B. Temperature-driven decoupling of key phases of organic matter degradation in marine sediments[J]. Proceedings of the National Academy of Sciences, 2005, 102(47): 17036-17040. DOI:10.1073/pnas.0508798102
[133]
GAO B, WALTER M T, STEENHUIS T S, et al. Investigating raindrop effects on transport of sediment and non-sorbed chemicals from soil to surface runoff[J]. Journal of Hydrology, 2005, 308(1/4): 313-320.
[134]
TOLHURST T J, WATTS C W, VARDY S, et al. The effects of simulated rain on the erosion threshold and biogeochemical properties of intertidal sediments[J]. Continental Shelf Research, 2008, 28(10): 1271-1230.
[135]
HARTLEY D M, ALONSO C V. Numerical study of the maximum boundary shear stress induced by raindrop impact[J]. Water Resources Research, 1991, 27(8): 1819-1826. DOI:10.1029/91WR01219
[136]
SAMPERE T A, BIANCHI T S, WAKEHAM S G, et al. Source of organic matter in surface sediment of the Louisiana continental margin: Effect of major depositional/transport pathways and Hurricane Ivan[J]. Continental Shelf Research, 2008, 28: 247-248.
[137]
LI C, SWENSON E, WEEKS E, et al. Asymmetric tidal straining across an inlet: Lateral inversion and variability over a tidal cycle[J]. Estuarine, Coastal and Shelf Science, 2009, 85(4): 651-660. DOI:10.1016/j.ecss.2009.09.015
[138]
LI C, WHITE J R, CHEN C, et al. Summertime tidal flushing of Barataria bay: transports of water and suspended sediments[J]. Journal of Geophysical Research, 2011, 116: C04009.
[139]
ERFTEMEIJER P L A, LEWIS Ⅲ R R R. Environment impacts of dredging on seagrasses: A review[J]. Marine Pollution Bulletin, 2006, 52: 1553-1572. DOI:10.1016/j.marpolbul.2006.09.006
[140]
KIRKMAN H. Baseline and monitoring methods for seagrass meadows[J]. Journal of Environmental Management, 1996, 47: 191-201.
[141]
PASQUALINI V, PERGENT-MARTINI C, PERGENT G. Environmental impact identification along the Corsican coast (Mediterranean sea) using image processing[J]. Aquatic Botany, 1999, 65: 311-320. DOI:10.1016/S0304-3770(99)00048-0
[142]
PENDLETON L, DONATO D C, MURRAY B C, et al. Estimating global "Blue Carbon" emissions from conversion and degradation of vegetated coastal ecosystems[J]. PLoS One, 2012, 9(7): e43542.
[143]
THORHAUG A, POULOS H M, LÓPEZ-PORTILLO J, et al. Seagrass blue carbon dynamics in the Gulf of Mexico: Stocks, losses fromanthropogenic disturbance, and gains through seagrass restoration[J]. Science of the Total Environment, 2017, 606: 1-12.
[144]
郭雨昕. 广西北部湾海草床生态经济价值评估与保护对策[J]. 现代农业科技, 2019, 2: 170-173.
GUO Yuxin. Eco-economic value evaluation of seagrass beds in Guangxi Beibu Gulf and protection countermeasures[J]. Modern Agricultural Science and Technology, 2019, 2: 170-173.
[145]
MACREADIE P I, ATWOOD T B, SEYMOUR J R, et al. Vulnerability of seagrass blue carbon to microbial attack following exposure to warming and oxygen[J]. Science of the Total Environment, 2019, 686: 264-275. DOI:10.1016/j.scitotenv.2019.05.462
[146]
THORHAUG A. Petroleum industry's use of seagrass restoration as mitigation for construction and as a potential cleanup tool[J]. International Oil Spill Conference Proceedings, 2001, 1: 385-389.
[147]
GARRARD S L, BEAUMONT N J. The effect of ocean acidification on carbon storageand sequestration in seagrass beds; a global and UK context[J]. Marine Pollution Bulletin, 2014, 86(1/2): 138-146.
[148]
HALL-SPENCER J M, RODOLFO-METALPA R, MARTIN S, et al. Volcanic carbon dioxide vents show ecosystem effects of ocean acidification[J]. Nature, 2008, 454: 96-99. DOI:10.1038/nature07051
[149]
APOSTOLAKI E T, VIZZINI S, HENDRIKS L E, et al. Seagrass ecosystem response to long-term high CO2 in a Mediterranean volcanic vent[J]. Marine Environmental Research, 2014, 99: 9-15. DOI:10.1016/j.marenvres.2014.05.008
[150]
VIZZINI S, APOSTOLAKI E T, RICEVUTO E, et al. Plant and sediment properties in seagrass meadows from two Mediterranean O2 vents: Implications for carbon storage capacity of acidified oceans[J]. Marine Environmental Research, 2019, 146: 101-108. DOI:10.1016/j.marenvres.2019.03.001
[151]
RAVAGLIOLI C, BULLERI F, RÜHL S, et al. Ocean acidification and hypoxia alter organic carbon fluxes in marine soft sediments[J]. Global Change Biology, 2019, 1: 1-14.
[152]
MOLARI M, GUILINI K, LOTT C, et al. CO2 leakage alters biogeochemical and ecological functions of submarine sands[J]. Science Advances, 2018, 4(2): eaao2040. DOI:10.1126/sciadv.aao2040
[153]
MACREADIE P I, ALLEN K, KELAHER B P, et al. Paleoreconstruction of estuarine sediments reveal human-induced weakening of coastal carbon sinks[J]. Global Change Biology, 2012, 18(3): 891-901. DOI:10.1111/j.1365-2486.2011.02582.x
[154]
RALPH P, DURAKO M, ENRIQUEZ S. Impact of light limitation on seagrasses[J]. Journal of Experimental marine biology and ecology, 2007, 350(1/2): 176-193.
[155]
TANAKA Y, GO G A, WATANABA A, et al. 17-year change in species composition of mixed seagrass beds around Santiago Island, Bolinao, the northwestern Philippines[J]. Marine Pollution Bulletin, 2014, 88(1/2): 81-85.
[156]
JIANG Z J, HUANG X P, ZHANG J P. Effect of nitrate enrichment and salinity reduction on the seagrass Thalassia hemprichii previously grown in low light[J]. Journal of Experimental Marine Biology and Ecology, 2013, 443: 114-122. DOI:10.1016/j.jembe.2013.02.034
[157]
HAN Q Y, LIU D Y. Macroalgae blooms and their effects on seagrass ecosystems[J]. Journal of Ocean University of China, 2014, 13(5): 791-798. DOI:10.1007/s11802-014-2471-2
[158]
ROMERA-CASTILLO C, SARMENTO H, ALVAREZ-SALGADO X A, et al. Net production and consumption of fluorescent colored dissolved organic matter by natural bacterial assemblages growing on marine phytoplankton exudates[J]. Applied and Environmental Microbiology, 2011, 77(21): 7490-7498. DOI:10.1128/AEM.00200-11
[159]
OLSEN L M, HERNÁNDEZ K I, VAN ARDELAN M, et al. Responses in bacterial community structure to waste nutrients from aquaculture: an in situ microcosm experiment in a Chilean fjord[J]. Aquaculture Environment Interactions, 2017, 9: 21-32. DOI:10.3354/aei00212
[160]
RACCHETTI E, BARTOLI M, SOANA E, et al. Influence of hydrological connectivity of riverine wetlands on nitrogen removal via denitrification[J]. Biogeochemistry, 2011, 103(1/3): 335-354.
[161]
ARDÓN M, MORSE J L, COLMAN B P, et al. Drought-induced saltwater incursion leads to increased wetland nitrogen export[J]. Global Change Biology, 2013, 19(10): 2976-2985. DOI:10.1111/gcb.12287
[162]
CLEVELAND C C, TOWNSEND A R. Nutrient additions to a tropical rain forest drive substantial soil carbon dioxide losses to the atmosphere[J]. Proceedings of the National Academy of Sciences of the United Stated of America, 2006, 103(27): 10316-10321. DOI:10.1073/pnas.0600989103
[163]
KIRWAN M L, BLUM L K. Enhanced decomposition offsets enhanced productivity and soil carbon accumulation in coastal wetlands responding to climate change[J]. Biogeosciences, 2011, 8(4): 987-993. DOI:10.5194/bg-8-987-2011
[164]
KEARNS P J, ANGELL J H, HOWARD E M, et al. Nutrient enrichment induces dormancy and decreases diversity of active bacteria in salt marsh sediments[J]. Nature Communications, 2016, 7: 12881. DOI:10.1038/ncomms12881
[165]
HUBAS C, SACHIDHANANDAM C, RYBARCZYK H, et al. Bacterivorous nematodes stimulate microbial growth and exopolymer production in marine sediment microcosms[J]. Marine Ecology Progress Series, 2010, 419(6): 85-94.
[166]
ALLER R C, ALLER J Y. Meiofauna and solute transport in marine muds[J]. Limnology and Oceanography, 1992, 37(5): 1018-1033. DOI:10.4319/lo.1992.37.5.1018
[167]
BRADSHAW C, KUMBLAD L, FAGRELL A. The use of tracers to evaluate the importance of bioturbation in remobilising contaminants in Baltic sediments[J]. Estuarine, Coastal and Shelf Science, 2006, 66(1/2): 123-134.
[168]
MERMILLOD-BLONDIN F, ROSENBERG R, FRANçOIS-CARCAILLET F, et al. Influence of bioturbation by three benthic infaunal species on microbial communities and biogeochemical processes in marine sediment[J]. Aquatic Microbial Ecology, 2004, 36(3): 271-284.
[169]
LACOSTE E, PIOT A, ARCHAMBAULT P, et al. Bioturbation activity of three macrofaunal species and the presence of meiofauna affect the abundance and composition of benthic bacterial communities[J]. Marine Environmental Research, 2018, 136: 62-70. DOI:10.1016/j.marenvres.2018.02.024
[170]
张景平, 黄小平. 海草附生藻类生物量的主要影响因子[J]. 生态学报, 2009, 29(10): 5611-5617.
ZHANG Jingping, HUANG Xiaoping. Effect factors on the abundance of epiphytic algae on seagrasses[J]. Acta Ecologica Sinica, 2009, 29(10): 5611-5617. DOI:10.3321/j.issn:1000-0933.2009.10.052
[171]
邱广龙, 林幸助, 李宗善, 等. 海草生态系统的固碳机理及贡献[J]. 应用生态学报, 2014, 25(6): 1825-1832.
QIU Guanglong, LIN Xingzhu, LI Zongshan, et al. Seagrass ecosystems: Contributions to and mechanisms of carbon sequestration[J]. Chinese Journal of Applied Ecology, 2014, 25(6): 1825-1832. DOI:10.13287/j.1001-9332.20140409.011
[172]
MARBÀ N, ARIAS-ORTIZ A, MASQUÉ P, et al. Impact of seagrass loss and subsequent revegetation on carbon sequestration and stocks[J]. Journal of Ecology, 2015, 103: 296-302. DOI:10.1111/1365-2745.12370
[173]
VICHKOVITTEN T, HOLMER M. Microbial community response to nitrogen deposition in northern forest ecosystems[J]. Soil Biology and Biochemistry, 2004, 36(9): 1443-1451. DOI:10.1016/j.soilbio.2004.04.023
[174]
LAVERY P S, MCMAHON K, WEYERS J, et al. Release of dissolved organic carbon from seagrass wrack and its implications for trophic connectivity[J]. Marine Ecology Progress Series, 2013, 494(3): 121-133.
[175]
HOLMER M, DUARTE C, BOSCHKER H. Carbon cycling and bacterial carbon sources in pristine and impacted Mediterranean seagrass sediments[J]. Aquatic Microbial Ecology, 2004, 36(3): 227-237.
[176]
ZHANG T, WANG X C. Release and microbial degradation of dissolved organic matter (DOM) from the macroalgae Ulva prolifera[J]. Marine Pollution Bulletin, 2017, 125: 192-198. DOI:10.1016/j.marpolbul.2017.08.029
[177]
LIU S L, JIANG Z J, WU Y, et al. Effects of nutrient load on microbial activities within a seagrass-dominated ecosystem: implications of changes in seagrass blue carbon[J]. Marine Pollution Bulletin, 2017, 117(1/2): 214-221.
[178]
BANTA G T, PEDERSEN M F, NIELSEN S L. Decomposition of marine primary producers: consequences for nutrient recycling and retention in coastal ecosystems[C]// NIELSEN S L, ed. Estuarine Nutrient Cycling: The Influence of Primary Producers. Dordrecht: Kluwer Academic Publishers, 2004: 187-216.
[179]
BLAGODATSKAYA E V, BLAGODATSKY S A, ANDERSON T H, et al. Priming effects in Chernozem induced by glucose and N in relation to microbial growth strategies[J]. Applied Soil Ecology, 2007, 37(1/2): 95-105.