海洋科学  2023, Vol. 47 Issue (4): 176-183   PDF    
http://dx.doi.org/10.11759/hykx20220827002

文章信息

杨灿, 徐文喆, 孙军. 2023.
YANG Can, XU Wen-zhe, SUN Jun. 2023.
海洋纳米塑料污染现状及其对双壳类的生态毒理效应
Current status of marine nanoplastic pollution and its ecotoxicological effects on bivalves
海洋科学, 47(4): 176-183
Marine Sciences, 47(4): 176-183.
http://dx.doi.org/10.11759/hykx20220827002

文章历史

收稿日期:2022-08-27
修回日期:2022-09-29
海洋纳米塑料污染现状及其对双壳类的生态毒理效应
杨灿1,2, 徐文喆1, 孙军1,2,3,4     
1. 天津科技大学海洋与环境学院, 天津 300457;
2. 天津科技大学印度洋生态系统研究中心, 天津 300457;
3. 中国地质大学广州南沙地大滨海研究院, 广州 511462;
4. 中国地质大学(武汉)海洋学院, 武汉 430074
摘要:随着纳米塑料在海洋中的分布越来越广泛, 纳米塑料逐渐演变成目前海洋生态系统中面临的严重环境问题之一, 引起人们的广泛关注。纳米塑料比微塑料粒径更小, 具有更大的比表面积与吸附力, 成为海洋中污染物的重要载体之一, 影响深远。双壳类具有滤食特殊摄食方式, 可通过食物链影响其他营养级生物, 是食物链中重要一环。本文主要就纳米塑料的定义与来源、在海洋中的污染现状、对海洋双壳类的生态毒理效应进行阐述。纳米塑料可以通过海洋生物呼吸和进食过程中摄入体内, 在吞噬细胞中诱导氧化应激、线粒体损伤和细胞毒性并产生严重的炎症反应。研究表明, 在有其他污染物的存在下, 纳米塑料的存在, 会增加污染物在海洋生物体内的留滞时间, 从而加大其毒性。纳米塑料可以通过食物网对海洋生态系统构成威胁。
关键词纳米塑料    污染现状    双壳类    生态毒理效应    
Current status of marine nanoplastic pollution and its ecotoxicological effects on bivalves
YANG Can1,2, XU Wen-zhe1, SUN Jun1,2,3,4     
1. College of Marine and Environmental Sciences, Tianjin University of Science & Technology, Tianjin 300457, China;
2. Research Centre for Indian Ocean Ecosystem, Tianjin University of Science and Technology, Tianjin 300457, China;
3. Institute for Advanced Marine Research, China University of Geosciences, Guangzhou 511462, China;
4. College of Marine Science and Technology, China University of Geosciences (Wuhan), Wuhan 430074, China
Abstract: The increased ocean-water contamination due to the increasing amount of nanoplastics has become one of the serious environmental problems in marine aquatic ecosystems, which has attracted widespread attention. Nanoplastics have a smaller particle size and larger specific surface area and adsorption power than microplastics, becoming one of the important carriers of pollutants in the ocean, with far-reaching effects. Further, they can enter the body during the respiration and feeding of marine organisms. Studies have shown that the presence of nanoplastics in the presence of pollutants increases the retention time of pollutants in marine organisms, thus increasing their toxicity. This can pose a threat to ecology and human health through the food web. Bivalves play an important link in the food chain because of their special feeding mode known as filter feeding, which responds significantly to changes in water bodies and is often used for water-body assessment. This review focuses on the definition and sources of nanoplastics, the current status of pollution in the ocean, and the ecotoxicological effects on marine organisms, mainly bivalves.
Key words: nanoplastic    pollution status    bivalves    ecotoxicological effects    

现在, 生态环境中存在的塑料成为最令人担忧的污染问题之一[1]。丢弃在环境中的塑料经过物理、化学和生物作用, 一步步形成小尺寸塑料颗粒, 并最终汇入海洋环境。当塑料颗粒粒径为1~5 mm时称为微塑料(microplastics, MPs)。海洋中MPs总量大约1.5×1013到5.1×1013个粒子不等[2]。从北极[3]到南极[4]的海水中, 以及河流[5]或湖泊[6]等淡水中都存在MPs, 纳米塑料(nano-plastics, NPs)作为尺寸比MPs更小的塑料同时也广泛存在。纳米材料定义为具有1~100 nm纳米级的外部尺寸或具有纳米级的内部结构或表面结构的材料[7]。纳米颗粒被定义为具有所有3个纳米级外部尺寸的纳米物体, 其中纳米物体的最长轴和最短轴的长度没有明显差异。如果尺寸差异显著(通常超过3倍), 则纳米纤维等术语可能优于纳米颗粒, 但同属于纳米颗粒的范畴。对海洋生物的影响可能来自MPs和NPs的物理化学性质以及它们可能造成的潜在组织损伤, 也可能来自于其所吸附的有毒化学品的毒性[8-13]

在现代生活中的各个方面塑料都必不可少, 例如包装、建筑、汽车、电子和电器、服装、农业等[14]。海洋环境中最常见的聚合物是聚乙烯(PE)、聚丙烯(PP)、聚苯乙烯(PS)、尼龙(PA)、聚对苯二甲酸乙二酯(PETP)、聚氯乙烯(PVC)和醋酸纤维素(CA)[15]。有研究发现, 在水生系统中聚苯乙烯纳米塑料(polystyrene-nanoparticles, PS-NPs)比聚苯乙烯微塑料(polystyrene-microparticles, PS-MPs)显示出更大的急性毒性[16]。NPs作为比MPs更小的颗粒, 其更容易被海洋生物所误食, 甚至有可能在呼吸过程中就会进入到生物体内。此外, NPs具有更高的比表面积, 更加容易成为各种污染物的载体, 包括重金属[7, 15]、多环芳烃(PAHs)[2, 17]、多氯联苯(PCBs)[6, 9, 18], 二氯二苯基三氯乙烷(DDT)[6], 多溴二苯醚(PBDE)[19-20], 以及其他污染物, 如多氟烷基物质(PFA), 药品和个人护理产品[21-23]。双壳类生物具有特殊的生存环境, 并且属于滤食性生物, 更加容易误食这些污染物, 在体内积累, 并通过食物链进入高营养级动物, 并在体内积累, 并产生不可逆的损伤, 导致不可忽视的毒性效应[24]

1 纳米塑料定义与来源

根据形成过程, NPs可分为初级纳米塑料和次级纳米塑料[5]: 在最初生产时, 制造的塑料尺寸就属于纳米塑料范围的, 称之为初级纳米塑料。初级纳米塑料使用较为广泛, 如作为化妆品或医学药物的载体[21], 这些产品在使用之后, 会残留大量的NPs, 而这些NPs可以进入水环境, 随水流进行迁移。Hemandez等[25]研究发现, 个人护理产品, 如洗面奶、牙膏和去角质等, 为了达到更好的清洁效果, 其中都添加了NPs颗粒[26-27], 使用之后会产生大量的NPs颗粒, 最终进入到水环境。在物理、化学和生物作用下, 较大的塑料结构发生损坏, 会形成尺寸更小的塑料颗粒, 当塑料颗粒粒径在纳米范围内称之为次级纳米塑料[28]。例如, 暴露在阳光下的塑料碎片会因为受到紫外线辐射, 导致聚合物基体氧化, 化学键断裂, 所以长时间暴露在环境中的塑料会逐步老化, 碎裂成更小的塑料颗粒形成MPs/NPs[1, 29-30]。在陆地生态系统中, 如农田土壤[10]和滩涂地带[11]均检测出NPs; 水生生态系统中, 如海洋[4]、河流[21]和湖泊[4]也检测出NPs的存在。

水生环境中NPs的来源很复杂, 一些学者认为, 80%的NPs来自于陆地[31]。被丢弃在环境中的塑料直接暴露于环境、个人护理用品随下水道或由污水处理厂进入河流和湖泊, 最终通过降雨或风力作用进入海洋[32-33]。在这些途径中, 污水处理厂所占比例最大。在芝加哥某高度城市化的河流中检测到MPs/NPs的数值, 远高于当前海洋水体中的MPs/NPs[5]。常规的污水处理(过筛、沉淀、生物处理和深层处理)可以去除90%以上的塑料颗粒, 但污水厂数量众多, 排水量巨大, 进入到水环境中的塑料仍然在持续增加[9]。事实上, 污水除去的那90%的塑料进入到淤泥中, 通过降雨仍然会进入水体环境。码头上的塑料用品, 如常见的绳索和捕网, 在水环境下老化速度会加快。Welden等[34]研究表明, 等足类浮游动物会加快海洋塑料垃圾破碎变成MPs/NPs颗粒, 一个等足类浮游动物大约会创造出上千个MPs/NPs颗粒[35-36]。在水体中塑料颗粒会受到风力运输作用、洋流作用, 然后被输送到水环境的各个角落, 目前的研究已经发现, 在淡水水体、太平洋、大西洋、极地等水体中都检测出了MPs/NPs的存在[37-39]

2 纳米塑料在海洋生物中污染现状

塑料污染已广受关注, Ter Halle等[40]在北大西洋亚热带环流中对NPs的分布进行测定表明, 其浓度在13~501个/m3, 主要由NP-PE(73%)、NP-PP(13%)、NP-PVC(8%)、NP-PS(2%)和NP-PET(1%)等组成。因NPs的采集与鉴定方法的缺乏, 所以在海洋中分布情况与污染现状研究较少[41]。MPs/NPs的存在可对生态系统产生影响[22]。MPs/NPs在水环境中会出现凝聚行为, 凝聚的过程会使塑料大小发生改变, 影响其在环境中的行为[42-43]。MPs/NPs如果稳定地在水体中悬浮或凝聚速率比较慢, 那么迁移的距离可能会更远, 对生态影响更深远。但是, 如果凝聚行为发生迅速, 那么就会沉降到沉积物中, 从而被底栖生物摄食[29]

藻类吸附NPs主要依赖于NPs表面粒子电荷和表面功能团, NPs在藻类代谢过程中会引起生理损伤。当塑料颗粒粒径为53 nm的聚苯乙烯纳米塑料(polystyrene nanoplastics, PS-NPs)时, 海洋微藻表面吸附大量的NPs颗粒可经过水蚤摄食进入体内, 再通过食物链进入下一营养级[23]。Ory等[44]在Rapa Nui海岸采集的岛鲹(Caramgue Demtue)样本中80%的个体体内含有MPs, 且其体内的塑料颜色、大小与其猎物高度相似。Baalkhuyur等[30]采集了26种不同种类的鱼样本, 体内也检测到MPs, 其中以底栖无脊椎动物为食的红拟眶棘鲈(Parascolopsis eriomma)体内MPs浓度最高。MPs/NPs可以由食物链传递, 并最终进入营养级更高的海洋生物体内产生积累, 甚至对生物造成不可逆的伤害。Chae等[45]发现NPs可以由生产者传递给初级消费者再到次级消费者, 最终进入第三级消费者。此外, MPs/NPs比表面积非常大, 可能会释放出塑料添加剂或吸收污染物[10, 46]。研究发现MPs/NPs可以与重金属等其他有毒元素相互作用, 可作为污染物的载体向生物体内转移[10, 47-48]

MPs/NPs不能从皮肤直接进入生物体[49], 但是可以在体内蓄积[28]。NPs对大型溞(Daphnia magna Straus)毒性显著比MPs的强, MPs/NPs均能对其造成运动器官的损伤和堵塞其滤食系统; 浓度很大时富集在体表, 对其表皮造成损伤, 严重时导致其死亡[33]。可以推断MPs/NPs粒径越小, 可能更容易进入生物体内, 产生的毒害作用更加显著[50]。当MPs/NPs被生物体摄入后, 可以转移到生物体的各个部位。如河豚暴露在不同浓度直径80 nm的绿色荧光PS-NPs下, 其肠、肝脏、胃、外套膜和鳃中均发现了PS-NPs的存在[51]

3 纳米塑料对双壳类的影响

目前, 各国海洋领域、环境领域学者开始关注各自国家内陆水体及沿海水环境中MPs/NPs污染及其对生物的毒性效应。双壳类在具有高密度NP-PE的环境中, 会产生强烈的炎症反应, 对其组织和亚细胞结构产生显著影响[23, 52]。MPs/NPs具有潜在的生物学毒性及危害, 主要包括两方面: 一是MPs/NPs对生物体的直接伤害。环境中大量的塑料, 经过物理、化学和生物的作用后, 形成性质不同碎片及颗粒。具有锋利边缘的MPs甚至可以对组织和器官(如肠道)造成物理损害。二是MPs/NPs会吸附环境中的污染物[16, 47]。NPs粒径更小, 更容易通过血脑屏障, 产生更严重的影响, 且比表面积更大, 携带更多污染物进行远距离运输, 对生物产生更严重的危害。Hirai等[53]研究发现, 在海洋中收集的MPs样品表面吸附的持久性有机污染物比海水中的高6个数量级。MPs/NPs性质稳定, 很难在短时间内降解, 海洋中初级消费者(浮游动物、双壳类和一些鱼类), 在进食过程中都有可能将其当做食物进行摄食, 并通过食物网传递对各个营养级生物造成潜在威胁[21]

3.1 纳米塑料对双壳类生态毒理学效应

Goldberg等[54]最早提出使用双壳类作为评价河口和近岸海域环境质量状况的生物指示物。与其他海洋生物相比, 双壳类不仅具有分布广、固着性强、生命周期长、采样检测容易等优点[55-56], 更重要的是, 其体内的有机污染物含量可以更准确地反映环境的污染程度和变化。因此, 双壳类被广泛用于监测海洋环境中的污染物, 例如全球“Mussel Watch”计划。

双壳类直接从水体进行一系列的生命活动, 对水体变化非常敏感。通过监测双壳类在受到外在胁迫时的生态生理变化, 可用来反映水体环境污染状况。滤食是双壳类吸收外源物质的主要方式[57]。双壳类为减少压力影响, 当过滤受到抑制, 会根据应力强度调节过滤速度, 减少NPs进入体内[58]。此外, NPs更容易穿透生物屏障进入体内逐渐积累。聚集性也是纳米材料的典型性特征之一, 并且在生物体内比在自然环境中更容易聚集[59], 这种聚集会阻碍生物的呼吸和消化等, 还可能会导致保护膜损坏并在吞噬细胞中诱导氧化应激、线粒体损伤、细胞毒性[60-62]和代谢变化, 从而加大了NPs的毒性作用。纳米级的聚合物颗粒可以穿透并积聚在组织器官中, 甚至改变基因表达[63]

在双壳类血细胞中, 50 nm PS-NH2可诱导剂量依赖性吞噬细胞活性下降, 溶菌酶增加, 并导致溶酶体的损伤和凋零[64]。NPs一般通过内吞作用释放到细胞质中, 可干扰线粒体和细胞核等重要器官的正常代谢; 可在质膜水平引起快速的细胞损伤, 如对质膜泡的运输影响, 丝状伪足消失并形成短的、水泡状伪足, 常伴随可见的腔内空泡; 酵素颗粒吞噬活性的大幅下降, 吞噬/内吞途径被全面破坏[65]; 干扰细胞内运输载体的运输; 如果最终进入溶酶体, 也很难被消化, 干扰溶酶体的正常的降解功能; 由p38 MAPK信号失调介导的损伤, 最终会导致细胞损伤或死亡[66]

NPs粒径更小, 在生物体内相较于MPs更加难以排出生物体。NPs具有更长的肠道滞留时间(GRT), 并可以携带更多的污染物进入生物体, 加剧对生物体的毒性作用[42]。双壳类能够在肠道中选择不同粒径的纳米塑料颗粒[52, 67-68], 食物的GRT越长, 通常表明该物质经历了更广泛的细胞外消化, 并且可能被运输到消化腺进行更完整的细胞内消化。较长的GRT表明大多数NPs直接进入消化腺的小管, 并可能通过内吞作用被消化细胞吸收。研究表明, 紫贻贝(Mytilus edulis)的分离消化腺细胞和整个动物都可以吸收NPs[69]

3.2 纳米塑料与污染物对双壳类的联合毒性

因NPs自身固有特性, 在水环境中很难单独存在, 所以通常以聚合物的形式存在。NPs本身也会对生物体组织造成损伤, 使生物体机体代谢紊乱。NPs与有机污染物相互作用会增加其在生物体内富集, 减慢代谢速率, 降低了生物体对污染物代谢, 增加了生物毒性, 对器官造成损伤。在NPs与有机污染物共同存在时, 可以通过破坏与免疫相关的分子途径激活, 以此来触发双壳类生物的免疫反应[70]。细胞内Ca2+在吞噬体的成熟过程中非常的重要[71], 其中分泌因子TLR4、IKKa、TRAF6和NF-кB的表达被明显抑制[70]。NPs与有机污染物菲的联合暴露下显示出显著的联合效应和更大的潜在生物毒性风险。其中NP-PS对菲的吸附能力高于NP-PE和NP-PP, 而NP-PE对菲的吸附能力又分别高于NP-PP和NP-PVC[55]。NP-PS具有大量的苯环, π-π结构可以吸附更多的污染物, 加大了对四角蛤蜊(Mactra veneriformis)的毒性[72-73], NPs相较于MPs具有更大的比表面积[18, 74], 更容易吸附在四角蛤蜊外套膜组织上[75], 同时也能够携带更多的污染物和微生物[76]。具有疏水性的NP-PS, 在水动力作用下更容易聚集成尺寸较大的颗粒, 减少对污染物的吸附量[74]。虽然一些颗粒可能会被鳃、外套膜和唇瓣的上皮细胞吸收, 但内部暴露和潜在影响的主要途径是通过对颗粒的捕获和摄入[77-78]

在紫贻贝(Mytilus edulis)中, PS纳米颗粒(30 nm; 100~300 μg/mL)诱导产生假粪便, 并随着NPs浓度的增加而增加, 表明PS颗粒可被视为非营养或低营养食物[59]。地中海贻贝血细胞暴露于PS-NH2(50 nm; 1~50 μg/L)中30 min后, PS-NH2会导致溶酶体膜稳定性降低和氧自由基生成增加, 导致细胞迅速受损, 如质膜泡和丝状伪足的损伤[64-65]。研究表明[79], 在粒径为30 nm、50 nm的塑料颗粒与苯并芘和17β-雌二醇作用下, 泥蚶(Tegillarca granosa)免疫活性的细胞类别减少, 从而减弱血细胞对异物的识别与降解。凋亡途径中的Bcl-2和Caspase-3在污染物暴露后分别显著上调和下调, 破坏细胞凋亡和Ca2+信号相关的分子路径等一系列的免疫反应, 导致免疫能力下降。苯并芘和17β-雌二醇的毒性在双壳类中受到塑料颗粒大小的影响, 塑料尺寸越大免疫反应就越弱, 尺寸越小免疫反应越剧烈[80-81]。NPs与有机污染物相互作用会增加其在生物体内富集, 减慢代谢速率, 而NPs本身也会对生物体组织造成损伤, 使生物体机体代谢紊乱, 降低了生物体对污染物代谢, 增加了生物毒性, 对器官造成损伤。

4 结论

本文对海洋中纳米塑料的来源、污染现状以及对海洋双壳类的影响进行了阐述。与微塑料相比, 较小尺寸的纳米塑料有更高的比表面积, 吸附污染物的能力增强, 增加塑料在生物体内的滞留时间, 显著阻碍生物的解毒能力, 增强了其毒性, 对生物体造成严重损伤。

近年来, 更多的研究是微塑料对水生生物和生态系统的生态毒性和影响。有关纳米塑料对海洋生物的影响机制, 还知之甚少, 大多数停留在毒性影响层面。关于纳米塑料的来源与分布、与其他污染物的相互作用和影响机制, 缺乏相关的研究, 仍然需要进一步的探索。

就现在的研究而言, 大多数实验在室内完成, 进行短期急性生态毒理实验, 与实际海洋环境中的纳米塑料浓度有较大的差别, 且纳米塑料形态也较为单一。在以后的研究中应该考虑实际海洋环境中的塑料类型、形态等与实验条件的差别, 并进行长期的慢性毒理实验, 以期许得到更具有现实意义的数据。

纳米级的塑料颗粒更容易穿透生物屏障进入生物体内, 会使生物的氧化应激、酶发生改变并导致细胞损伤等, 在以后的研究中应该考虑与组学相结合, 以期许深入细致地探究其毒理机制。

对于海洋生物的生态毒性研究仍然处于探索阶段, 纳米塑料对双壳类的生物机制有待进一步探究。在以后的研究中应该考虑增加海洋中不同营养级的特征生物对纳米塑料在食物链传递、富集和生态毒性等对海洋生物的影响。并对纳米塑料的隐性影响进行探索。

参考文献
[1]
ERIKSEN M, LEBRETON L, CARSON H S, et al. Plastic pollution in the world's oceans: More than 5 trillion plastic pieces weighing over 250 000 tons afloat at sea[J]. PLoS One, 2014, 9(12): e111913. DOI:10.1371/journal.pone.0111913
[2]
VAN SEBILLE E, WILCOX C, LEBRETON L, et al. A global inventory of small floating plastic debris[J]. Environmental Research Letters, 2015, 10(12): 124006. DOI:10.1088/1748-9326/10/12/124006
[3]
MORGANA S, GHIGLIOTTI L, ESTEVEZ-CALVAR N, et al. Microplastics in the Arctic: A case study with sub-surface water and fish samples off Northeast Greenland[J]. Environmental Pollution, 2018, 242(Part B): 1078-1086.
[4]
WALLER C L, GRIFFITHS H J, WALUDA C M, et al. Microplastics in the Antarctic marine system: An emerging area of research[J]. Science of the Total Environment, 2017, 598: 220-227. DOI:10.1016/j.scitotenv.2017.03.283
[5]
MAO Y F, AI H N, YI C, et al. Phytoplankton response to polystyrene microplastics: Perspective from an entire growth period[J]. Chemosphere, 2018, 208: 59-68. DOI:10.1016/j.chemosphere.2018.05.170
[6]
ERIKSEN M, MASON S, WILSON S, et al. Microplastic pollution in the surface waters of the Laurentian Great Lakes[J]. Marine Pollution Bulletin, 2013, 77(1/2): 177-182.
[7]
RIBEIRO F, OKOFFO E D, O'BRIEN J W, et al. Out of sight but not out of mind: Size fractionation of plastics bioaccumulated by field deployed oysters[J]. Journal of Hazardous Materials Letters, 2021, 2: 100021. DOI:10.1016/j.hazl.2021.100021
[8]
MATO Y, ISOBE T, TAKADA H, et al. Plastic resin pellets as a transport medium for toxic chemicals in the marine environment.[J]. Environmental Science & Technology, 2001, 35(2): 318-324.
[9]
RIOS L M, MOORE C, JONES P R. Persistent organic pollutants carried by synthetic polymers in the ocean environment[J]. Marine Pollution Bulletin, 2007, 54(8): 1230-1237. DOI:10.1016/j.marpolbul.2007.03.022
[10]
TEUTEN E L, SAQUING J M, KNAPPE D R U, et al. Transport and release of chemicals from plastics to the environment and to wildlife[J]. Philosophical Transactions of the Royal Society B: Biological Sciences, 2009, 364(1526): 2027-2045. DOI:10.1098/rstb.2008.0284
[11]
HIRAI H, TAKADA H, OGATA Y, et al. Organic micropollutants in marine plastics debris from the open ocean and remote and urban beaches[J]. Marine Pollution Bulletin, 2011, 62(8): 1683-1692. DOI:10.1016/j.marpolbul.2011.06.004
[12]
WEGNER A, BESSELING E, FOKEKEMA E M, et al. Effects of nanopolystyrene on the feeding behavior of the blue mussel (Mytilus edulis L.)[J]. Environmental Toxicology and Chemistry, 2012, 31(11): 2490-2497. DOI:10.1002/etc.1984
[13]
ROCHMAN C M. The role of plastic debris as another source of hazardous chemicals in lower-trophic level organisms[M]//Takada H, Karapanagioti H. Hazardous chemicals associated with plastics in the marine environment. The handbook of environmental chemistry, Vol 78. Springer, Cham, 2016: 281-295.
[14]
WILKINSON J, HOODA P S, BARKER J, et al. Occurrence, fate and transformation of emerging contaminants in water: An overarching review of the field[J]. Environmental Pollution, 2017, 231: 954-970. DOI:10.1016/j.envpol.2017.08.032
[15]
ANDRADY A L. Microplastics in the marine environment[J]. Marine Pollution Bulletin, 2011, 62(8): 1596-1605. DOI:10.1016/j.marpolbul.2011.05.030
[16]
WANG J D, PENG J P, TAN Z, et al. Microplastics in the surface sediments from the Beijiang River littoral zone: composition, abundance, surface textures and interaction with heavy metals[J]. Chemosphere, 2017, 171: 248-258. DOI:10.1016/j.chemosphere.2016.12.074
[17]
HAHLADAKIS J N, VELIS C A, WEBER R, et al. An overview of chemical additives present in plastics: Migration, release, fate and environmental impact during their use, disposal and recycling[J]. Journal of Hazardous Materials, 2018, 344: 179-199. DOI:10.1016/j.jhazmat.2017.10.014
[18]
VELZEBOER I, KWADIJK C, KOELMANS A A. Strong sorption of PCBs to nanoplastics, microplastics, carbon nanotubes, and fullerenes[J]. Environmental Science & Technology, 2014, 48(9): 4869-4876.
[19]
CHUA E M, SHIMETA J, NUGEGODA D, et al. Assimilation of polybrominated diphenyl ethers from microplastics by the marine amphipod, allorchestes compressa[J]. Environmental Science & Technology, 2014, 48(14): 8127-8134.
[20]
TANAKA K, TAKADA H, YAMASHITA R, et al. Facilitated leaching of additive-derived PBDEs from plastic by seabirds' stomach oil and accumulation in tissues[J]. Environmental Science & Technology, 2015, 49(19): 11799-11807.
[21]
WU C X, ZHANG K, HUANG X L, et al. Sorption of pharmaceuticals and personal care products to polyethylene debris[J]. Environmental Science and Pollution Research, 2016, 23(9): 8819-8826. DOI:10.1007/s11356-016-6121-7
[22]
LO H S, WONG C Y, Tam N F Y, et al. Spatial distribution and source identification of hydrophobic organic compounds (HOCs) on sedimentary microplastic in Hong Kong[J]. Chemosphere, 2019, 219: 418-426. DOI:10.1016/j.chemosphere.2018.12.032
[23]
TANG S, LIN L J, WANG X S, et al. Pb(II) uptake onto nylon microplastics: interaction mechanism and adsorption performance[J]. Journal of Hazardous Materials, 2020, 386: 121960. DOI:10.1016/j.jhazmat.2019.121960
[24]
DIEPENS N J, KOELMANS A A. Accumulation of plastic debris and associated contaminants in aquatic food webs[J]. Environmental Science & Technology, 2018, 52(15): 8510-8520.
[25]
HERNANDEZ L M, YOUSEFI N, TUFENKJI N. Are there nanoplastics in your personal care products?[J]. Environmental Science & Technology Letters, 2017, 4(7): 280-285.
[26]
GREGORY M R. Plastic 'scrubbers' in hand cleansers: a further(and minor)source for marine pollution identified[J]. Marine Pollution Bulletin, 1996, 32(12): 867-871. DOI:10.1016/S0025-326X(96)00047-1
[27]
NAPPER I E, BAKIR A, ROWLAND S J, et al. Characterisation, quantity and sorptive properties of microplastics extracted from cosmetics[J]. Marine Pollution Bulletin, 2015, 99: 178-185. DOI:10.1016/j.marpolbul.2015.07.029
[28]
MATTSSON K, JOCIC S, DOVERBRATT I, et al. Nanoplastics in the aquatic environment[M]//Zeng E Y. Microplastic contamination in aquatic environments, Elsevier Inc., 2018: 379-399.
[29]
柳彦俊. 纳米塑料在天然水体中凝聚的影响因素及机制[D]. 广州: 华南理工大学, 2020.
LIU Yanjun. Aggregation kinetics of nanoplastics in aquatic environments: Factors and mechanism[D]. Guangzhou: South China University of Technology, 2020.
[30]
BAALKHUYUR F M, DOHAISH E J A B, ELHALWAGY M E A, et al. Microplastic in the gastrointestinal tract of fishes along the Saudi Arabian Red Sea coast[J]. Marine Pollution Bulletin, 2018, 131: 407-415. DOI:10.1016/j.marpolbul.2018.04.040
[31]
MCCORMICK A, HOELLEIN T J, MASON S A, et al. Microplastic is an abundant and distinct microbial habitat in an urban river[J]. Environmental Science & Technology, 2014, 48(20): 11863-11871.
[32]
SCOTT G. Polymers and the environment[M]. Royal Society of Chemistry, Cambridge, 1999.
[33]
BROWNE M A, CRUMP P, NIVEN S J, et al. Accumulation of microplastic on shorelines woldwide: sources and sinks[J]. Environmental Science & Technology, 2011, 45(21): 9175-9179.
[34]
WELDEN N A, COWIE P R. Degradation of common polymer ropes in a sublittoral marine environment[J]. Marine Pollution Bulletin, 2017, 118: 248-253. DOI:10.1016/j.marpolbul.2017.02.072
[35]
WELDEN N A, COWIE P R. Degradation of common polymer ropes in a sublittoral marine environment[J]. Marine Pollution Bulletin, 2017, 118: 248-253. DOI:10.1016/j.marpolbul.2017.02.072
[36]
DAVIDSON T M. Boring crustaceans damage polystyrene floats under docks polluting marine waters with microplastic[J]. Marine Pollution Bulletin, 2012, 64(9): 1821-1828. DOI:10.1016/j.marpolbul.2012.06.005
[37]
BESSELING E, QUIK J T K, SUN M, et al. Fate of nano-and microplastic in freshwater systems: A modeling study[J]. Environmental Pollution, 2017, 220: 540-548. DOI:10.1016/j.envpol.2016.10.001
[38]
ERIKSEN M, MAXIMENKO N, THIEL M, et al. Plastic pollution in the South Pacific subtropical gyre[J]. Marine Pollution Bulletin, 2013, 68: 71-76. DOI:10.1016/j.marpolbul.2012.12.021
[39]
ESIUKOVA E. Plastic pollution on the Baltic beaches of Kaliningrad region, Russia[J]. Marine Pollution Bulletin, 2017, 114(2): 1072-1080. DOI:10.1016/j.marpolbul.2016.10.001
[40]
TER HALLE A, JEANNEAU L, MARTIGNAC M, et al. Nanoplastic in the North Atlantic subtropical gyre[J]. Environmental Science & Technology, 2017, 51(23): 13689-13697.
[41]
MENDOZA L M R, KARAPANAGIOTI H, ÁLVAREZ N R, etal. Micro (nanoplastics) in the marine environment: current knowledge and gaps[J]. Current Opinion in Environmental Science & Health, 2018, 1: 47-51.
[42]
WARD J E, KACH D J. Marine aggregates facilitate ingestion of nanoparticles by suspension-feeding bivalves[J]. Marine Environmental Research, 2009, 68(3): 137-142. DOI:10.1016/j.marenvres.2009.05.002
[43]
GIGAULT J, TER HALLE A, BAUDRIMONT M, et al. Current opinion: what is a nanoplastic?[J]. Environmental Pollution, 2018, 235: 1030-1034. DOI:10.1016/j.envpol.2018.01.024
[44]
ORY N C, SOBRAL P, FERREIRA J L, et al. Amberstripe scad Decapterus muroadsi (Carangidae) fish ingest blue microplastics resembling their copepod prey along the coast of Rapa Nui (Easter Island) in the South Pacific subtropical gyre[J]. Science of the Total Environment, 2017, 586: 430-437. DOI:10.1016/j.scitotenv.2017.01.175
[45]
CHAE Y, AN Y J. Effects of micro-and nanoplastics on aquatic ecosystems: Current research trends and perspectives[J]. Marine Pollution Bulletin, 2017, 124(2): 624-632. DOI:10.1016/j.marpolbul.2017.01.070
[46]
RIBEIRO F, O'BRIEN J W, GALLOWAY T, et al. Accumulation and fate of nano-and micro-plastics and associated contaminants in organisms[J]. TrAC Trends in Analytical Chemistry, 2019, 111: 139-147. DOI:10.1016/j.trac.2018.12.010
[47]
WARD J E, KACH D J. Marine aggregates facilitate ingestion of nanoparticles by suspension-feeding bivalves[J]. Marine Environmental Research, 2009, 68(3): 137-142. DOI:10.1016/j.marenvres.2009.05.002
[48]
AMELIA T S M, KHALIK W M A W M, ONG M C, et al. Marine microplastics as vectors of major ocean pollutants and its hazards to the marine ecosystem and humans[J]. Progress in Earth and Planetary Science, 2021, 8(1): 1-26. DOI:10.1186/s40645-020-00388-2
[49]
ALVAREZ-ROMÁN R, NAIK A, KALIA Y N, et al. Skin penetration and distribution of polymeric nanoparticles[J]. Journal of Controlled Release, 2004, 99(1): 53-62. DOI:10.1016/j.jconrel.2004.06.015
[50]
范兴培. 聚苯乙烯纳米颗粒对小鼠毒理效应的初步探究[D]. 哈尔滨: 哈尔滨工业大学, 2020.
FAN Xingpei. Preliminary study on toxicological effects of polystyrene nanoparticles on mice[D]. Harbin: Harbin Institute of Technology, 2020.
[51]
LI Z L, FENG C H, WU Y H, et al. Impacts of nanoplastics on bivalve: Fluorescence tracing of organ accumulation, oxidative stress and damage[J]. Journal of Hazardous Materials, 2020, 392: 122418. DOI:10.1016/j.jhazmat.2020.122418
[52]
BRILLANT M G S, MACDONALD B A. Postingestive selection in the sea scallop, Placopecten magellanicus(Gmelin): the role of particle size and density[J]. Journal of Experimental Marine Biology and Ecology, 2000, 253(2): 211-227. DOI:10.1016/S0022-0981(00)00258-6
[53]
HIRAI H, TAKADA H, OGATA Y, et al. Organic micropollutants in marine plastics debris from the open ocean and remote and urban beaches[J]. Marine Pollution Bulletin, 2011, 62(8): 1683-1692. DOI:10.1016/j.marpolbul.2011.06.004
[54]
GOLDBERG E D. The mussel watch-a first step in global marine monitoring[J]. Marine Pollution Bulletin, 1975, 6: 111.
[55]
ZHANG X, WANG X X, YAN B. Single and combined effects of phenanthrene and polystyrene microplastics on oxidative stress of the clam (Mactra veneriformis)[J]. Science of the Total Environment, 2021, 771: 144728. DOI:10.1016/j.scitotenv.2020.144728
[56]
PHILLIPS D J H. Quantitative aquatic biological indicators: their use to monitor trace metal and organochlorine pollution[M]. London: Applied Science Publishers Ltd, 1980.
[57]
JØRGENSEN C B. Bivalve filter feeding revisited[J]. Marine Ecology Progress Series, 1996, 142: 287-302. DOI:10.3354/meps142287
[58]
WU Y H, GU E X, LI H X, et al. Oxidative stress and histological changes in Corbicula fluminea exposed to nano-Al13 and monomeric Al coagulants[J]. Environmental Science: Nano, 2019, 6(9): 2736-2748. DOI:10.1039/C9EN00320G
[59]
WEGNER A, BESSELING E, FOEKEMA E M, et al. Effects of nanopolystyrene on the feeding behavior of the blue mussel (Mytilus edulis L.)[J]. Environmental Toxicology and Chemistry, 2012, 31(11): 2490-2497. DOI:10.1002/etc.1984
[60]
XIA T, KOVOCHICH M, BRANT J, et al. Comparison of the abilities of ambient and manufactured nanoparticles to induce cellular toxicity according to an oxidative stress paradigm[J]. Nano Letters, 2006, 6(8): 1794-1807. DOI:10.1021/nl061025k
[61]
AVIO C G, GORBI S, MILAN M, et al. Pollutants bioavailability and toxicological risk from microplastics to marine mussels[J]. Environmental Pollution, 2015, 198: 211-222. DOI:10.1016/j.envpol.2014.12.021
[62]
DELLA TORRE C, BERGAMI E, SALVATI A, et al. Accumulation and embryotoxicity of polystyrene nanoparticles at early stage of development of sea urchin embryos Paracentrotus lividus[J]. Environmental Science & Technology, 2014, 48(20): 12302-12311.
[63]
BOUWMEESTER H, HOLLMAN P C H, PETERS R J B. Potential health impact of environmentally released micro-and nanoplastics in the human food production chain: experiences from nanotoxicology[J]. Environmental Science & Technology, 2015, 49(15): 8932-8947.
[64]
CANESI L, CIACCI C, BERGAMI E, et al. Evidence for immunomodulation and apoptotic processes induced by cationic polystyrene nanoparticles in the hemocytes of the marine bivalve Mytilus[J]. Marine Environmental Research, 2015, 111: 34-40. DOI:10.1016/j.marenvres.2015.06.008
[65]
CANESI L, CIACCI C, FABBRI R, et al. Interactions of cationic polystyrene nanoparticles with marine bivalve hemocytes in a physiological environment: Role of soluble hemolymph proteins[J]. Environmental Research, 2016, 150: 73-81. DOI:10.1016/j.envres.2016.05.045
[66]
YONG C Q Y, VALIYAVEETTIL S, TANG B L. Toxicity of microplastics and nanoplastics in mammalian systems[J]. International Journal of Environmental Research and Public Health, 2020, 17(5): 1509. DOI:10.3390/ijerph17051509
[67]
BRILLANT M, MACDONALD B. Postingestive selection in the sea scallop (Placopecten magellanicus) on the basis of chemical properties of particles[J]. Marine Biology, 2002, 141(3): 457-465. DOI:10.1007/s00227-002-0845-2
[68]
BRILLANT M G S, MACDONALD B A. Postingestive sorting of living and heat-killed Chlorella within the sea scallop, Placopecten magellanicus (Gmelin)[J]. Journal of Experimental Marine Biology and Ecology, 2003, 290(1): 81-91. DOI:10.1016/S0022-0981(03)00073-X
[69]
GANGADOO S, OWEN S, RAJAPAKSHA P, et al. Nano-plastics and their analytical characterisation and fate in the marine environment: From source to sea[J]. Science of the Total Environment, 2020, 732: 138792. DOI:10.1016/j.scitotenv.2020.138792
[70]
SETH R B, SUN L, CHEN Z J. Antiviral innate immunity pathways[J]. Cell Research, 2006, 16(2): 141-147. DOI:10.1038/sj.cr.7310019
[71]
NUNES P, DEMAUREX N. The role of calcium signaling in phagocytosis[J]. Journal of Leukocyte Biology, 2010, 88(1): 57-68. DOI:10.1189/jlb.0110028
[72]
JEONG C B, WON E J, KANG H M, et al. Microplastic size-dependent toxicity, oxidative stress induction, and p-JNK and p-p38 activation in the monogonont rotifer (Brachionus koreanus)[J]. Environmental Science & Technology, 2016, 50(16): 8849-8857.
[73]
LU Y, ZHANG Y, DENG Y, et al. Uptake and accumulation of polystyrene microplastics in zebrafish (Danio rerio) and toxic effects in liver[J]. Environmental Science & Technology, 2016, 50(7): 4054-4060.
[74]
ALIMI O S, FARNER BUDARZ J, HERNANDEZ L M, et al. Microplastics and nanoplastics in aquatic environments: aggregation, deposition, and enhanced contaminant transport[J]. Environmental Science & Technology, 2018, 52(4): 1704-1724.
[75]
KOLANDHASAMY P, SU L, LI J N, et al. Adherence of microplastics to soft tissue of mussels: a novel way to uptake microplastics beyond ingestion[J]. Science of the Total Environment, 2018, 610: 635-640.
[76]
MALAFAIA G, DE SOUZA A M, PEREIRA A C, et al. Developmental toxicity in zebrafish exposed to polyethylene microplastics under static and semi-static aquatic systems[J]. Science of The Total Environment, 2020, 700: 134867. DOI:10.1016/j.scitotenv.2019.134867
[77]
KASHIWADA, SHOSAKU. Distribution of nanoparticles in the see-through medaka (Oryzias latipes)[J]. Environmental Health Perspectives, 2006, 114(11): 1697-1702. DOI:10.1289/ehp.9209
[78]
KACH D J, WARD J E. The role of marine aggregates in the ingestion of picoplankton-size particles by suspension-feeding molluscs[J]. Marine Biology, 2008, 153(5): 797-805. DOI:10.1007/s00227-007-0852-4
[79]
TANG Y, RONG J H, GUAN X F, et al. Immunotoxicity of microplastics and two persistent organic pollutants alone or in combination to a bivalve species[J]. Environmental Pollution, 2020, 258: 113845. DOI:10.1016/j.envpol.2019.113845
[80]
CAPOLUPO M, VALBONESI P, FABBRI E. A comparative assessment of the chronic effects of micro- and nano-plastics on the physiology of the Mediterranean mussel Mytilus galloprovincialis[J]. Nanomaterials, 2021, 11(3): 649. DOI:10.3390/nano11030649
[81]
MATTHEWS S, MAI L, JEONG C B, et al. Key mechanisms of micro-and nanoplastic (MNP) toxicity across taxonomic groups[J]. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 2021, 247: 109056.