文章信息
- 刘卫翔, 秦玉坤, 范兆乾, 张海波, 王中玮, 李鹏程. 2023.
- LIU Wei-xiang, QIN Yu-kun, FAN Zhao-qian, ZHANG Hai-bo, WANG Zhong-wei, LI Peng-cheng. 2023.
- 贝壳土壤改良剂的应用研究进展
- Study and application of a shell soil conditioner
- 海洋科学, 47(8): 141-149
- Marine Sciences, 47(8): 141-149.
- http://dx.doi.org/10.11759/hykx20220716001
-
文章历史
- 收稿日期:2022-07-16
- 修回日期:2022-08-26
2. 青岛海洋科学与技术试点国家实验室 海洋药物与生物制品功能实验室, 山东 青岛 266237;
3. 中国科学院海洋大科学研究中心, 山东 青岛 266071;
4. 黄河三角洲盐碱地农田生态系统观测研究站, 山东 东营 257345;
5. 青岛科技大学 海洋科学与生物工程学院, 山东 青岛 266042
2. National Laboratory of Marine Science and Technology, Qingdao 266237, China;
3. Marine Research Center, Chinese Academy of Sciences, Qingdao 266071, China;
4. Yellow River Delta Saline-alkali Agro-ecosystem Observation and Research Station, Dongying 257345, China;
5. College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
中国是水产养殖大国, 贝类产业发展迅速, 海水养殖贝类年产量居世界首位[1-2]。2019年中国贝类产量达到1.458×104 t, 占世界贝类养殖总量的60%以上[3]。目前, 中国对贝类资源的利用主要着眼于贝肉, 而对于质量百分比超过80%的贝壳, 利用措施并不系统、完善[4]。因此, 随着海洋和渔业经济的快速发展、贝类产量的迅猛增加, 废弃贝壳的利用问题也随之出现[5-6]。大量废弃的贝壳, 往往被倾倒堆积, 不仅占用了土地资源, 还会引起蚊虫的孳生, 产生恶臭, 污染水源, 对环境有着巨大的危害[7]。因此, 贝壳的利用是目前制约贝类产业发展的重要因素之一。
中国养殖的贝类主要有文蛤、牡蛎、贻贝、扇贝、海螺等[8-12], 这些贝类的外壳中含有丰富的碳酸钙, 煅烧后可形成多孔结构, 具有良好的吸附能力, 这对调节土壤pH、培养土壤微生物具有良好的功效[13-15]。同时, 还可使土壤中的重金属离子以碳酸盐的形式沉淀, 从而达到净化土壤的目的[16-17]。此外, Ca2+对抑制盐渍化也有一定的作用, 通过与土壤胶体表面的Na+、Mg2+进行交换, 可使土壤由亲水胶体变为疏水胶体, 改善土壤结构和通透性, 达到脱盐和抑制返盐的作用[18-20]。因此, 贝壳以其特殊的物理结构和化学组成, 使其在土壤改良中具有广阔的应用前景。加大贝壳产品的研究与开发, 对促进海洋生物产业的可持续发展具有重大意义。
1 贝壳土壤改良剂可调节土壤pH, 改善土壤理化性质中国农业生产规模巨大, 但由于反复浇水、大量使用化肥等不合理的耕作方式, 导致土壤容易形成板结、盐渍化、酸化等问题[21-23]。酸性土壤改良最常用的方法是向土壤中添加石灰, 以便中和土壤中的酸性物质[24-26]。贝壳经煅烧后的产物为生石灰, 可用作实惠的替代品, 用来改良酸性土壤。
国外学者研究表明, 将贻贝壳与牛粪结合使用作为土壤改良剂, 可使改良后土壤生物活性增强, 阳离子交换络合物中铝含量降低, 显著提高土壤pH, 缓解土壤酸化问题[27]。Yamada等[28]将粉碎的牡蛎壳加入到土壤中, 发现土壤的pH值逐渐升高, 含水量迅速下降。Lee等[29]为了研究破碎的牡蛎壳粉对土壤化学、生物特性和作物产量的改善作用, 在白菜移栽前分别以0、4、8、12和16 t/ha施用牡蛎壳粉, 采收期时, 施用16 t/ha牡蛎壳粉的土壤pH由5.8升高至7.4, 并且明显提高了白菜产量。Alvarez等[30]采用随机区组设计, 在低阳离子交换量和高铝饱和度土壤上, 分别添加石灰、细磨贻贝壳、粗磨贻贝壳等处理, 比较石灰和贻贝壳添加对土壤阳离子交换量和高铝饱和度的影响。结果表明贻贝壳和石灰的施用导致pH和交换性钙含量升高, 交换性铝含量降低, 这些影响在根际最为明显, 此外还发现, 改良对植株干重和钙含量也有正向影响。
目前, 国内贝壳土壤改良剂的研究多以牡蛎壳为原料, 在多种土壤、作物种植中均能有效抑制土壤酸化, 提高作物产量。Yang等通过室内土柱模拟实验, 分析了不同配比的牡蛎壳粉对砖红壤养分淋溶特性的影响。实验结果表明, 添加牡蛎壳粉后, 铵态氮、磷、钾的浸出损失分别降低了23.90%~57.25%、6.31%~10.07%、17.08%~26.58%。此外, 牡蛎壳粉施用于砖红壤具有调酸、保水的作用, 土壤pH从4.15提高到7.92, 水分流失减少了2.52%[31]。王日新等通过在酸性土壤中增施贝壳粉土壤调理剂, 使土壤pH由3.8升高至4.1, 与有机肥联用时, 小麦增产7.0%[32]。还有研究表明, 贝壳粉的粒径是决定其土壤改良效果的因素之一, 通常来说, 粒径越小, 效果越明显。赵晓红等以平邑甜茶幼苗为研究对象, 研究不同粒径贝壳粉配制的土壤调理剂对酸化土壤(棕壤土)的改良效果, 实验结果表明, 采用小粒贝壳粉(100目)配制的土壤调理剂处理的土壤pH升高最多, 5.45升高至7.13[33]。
2 贝壳土壤改良剂可增加作物产量近30 a来, 中国的水田和旱地土壤的pH整体呈下降趋势[34], 有研究表明, 氮肥的过量使用是造成土壤酸化的主要因素[35]。在全球许多地区, 土壤酸化极大地限制了农业产量, 许多粮食和饲料作物对酸性土壤的耐受力较低[36]。酸性土壤中钙离子含量低, 将会影响根系生长和植物对水分、养分的吸收, 最终导致作物的产量下降[37-38]。因此, 贝壳土壤改良剂在农业和园艺方面具有很大的应用潜力, 国内外已有很多学者对此进行了深入研究。
韩国学者Lee等[39]分别采用堆肥牡蛎壳和新鲜牡蛎壳改良土壤, 结果表明相比于施用新鲜牡蛎壳, 施用堆肥牡蛎壳可将大豆产量提高21%。Fernandez-Sanjurjo等将牛粪、木屑和贻贝壳粉混合施用, 发现其能够使土壤pH和交换性阳离子含量升高, 交换性铝含量降低, 贻贝壳的加入提高了作物的产量和质量, 相较于牛粪处理组, 添加贻贝壳粉处理的草地总产量提高了3倍, 玉米总产量提高了2 559 kg/ha[40]。Moon等[41]使用牡蛎壳改良pH约为5的酸性土壤, 处理1个月后, 土壤中阳离子(Ca2+、Mg2+、K+、Na+)的总和显著增加, 处理后的玉米长势更好。挪威学者Sognnes等[42]将贝壳砂添加到泥炭土中, 测定其对草料质量和产量的影响, 结果表明, 当贝壳砂的添加量为400 m3/ha时, 草料的质量和产量最优。
中国学者罗华汉等研究发现在稻田中施加牡蛎壳粉可以明显提高水稻的产量和质量, 相较于空白组增产14.8%~22.9%[43]。代小青等采用贝壳粉修复砷污染的稻田, 发现施加贝壳粉可是土壤有效As含量降低2.72%, 水稻籽粒中As含量降低6.3%, 水稻产量提高17%[44]。除了粮食作物外, 国内学者也将贝壳粉应用在蔬菜、水果等经济作物的种植当中, 并取得了较好的成效。周红梅等研究了麦饭石、牡蛎壳、蒙脱石、硅钙矿和有机肥对大蒜产量的影响, 结果指出5种改良剂均能提高大蒜产量[45]。为了探明牡蛎壳土壤调节剂施用量与黄泥田花生产量的关系, 严建辉设计了施用量2 250 kg/hm2和1 500 kg/hm2两个实验组以及空白对照组, 结果表明在实验范围内, 花生的产量与牡蛎壳土壤调节剂的施用量呈正相关关系, 土壤的氮、磷、钾、钙、pH等指标也均有提高[46]。周恩生研究指出在土壤中施用贝壳粉可有效降低花生空秕率, 每亩收益增加180.1元[47]。许玲玲等[48]测定了煅烧牡蛎壳对玉菇甜瓜品质的影响, 结果表明当施用量为2 250 kg/hm2时, 玉菇甜瓜单果质量增长12.66%, 果实脆度提高39.93%, 果实硬度提高46.10%, 维生素C含量增加47.97%, 口感及品质提升明显。春桃番茄的种植中也有类似发现, 当牡蛎壳土壤调理剂的施用量达到3 000 kg/hm2时, 单果重、出汁率和维生素C含量相较于空白对照组分别提高了8.39%、11.61%和18.44%[49]。罗军元等[50]比较了空白、石灰粉和贝壳粉对蜜橘生长的影响, 发现施贝壳粉或石灰粉均能有效提高蜜橘的产量和品质, 且贝壳粉的效果要略好于石灰粉。
3 贝壳土壤改良剂可钝化土壤重金属, 减少作物胁迫重金属污染在世界范围内的耕地土壤中普遍存在, 耕地土壤的重金属污染是经过长时间积累所导致的, 随着矿产冶炼、机械加工等产业的快速发展, 不可避免地将重金属带入到农田生态系统中[51-52]。重金属污染不仅会导致农作物减产, 还会威胁食品安全, 影响中国居民的生活水平和身体健康[53-54]。
当前, 镉(Cd)、铬(Cr)、铅(Pb)是土壤重金属污染的主要元素类型, 其中Cd污染的影响是最严重的[55-57]。Cd能够破坏植物组织细胞, 影响光合作用, 降低作物产量[58]。贝壳粉由于其多孔、碱性等特征, 能够通过吸附、络合等多种方法钝化土壤中的重金属, 降低其毒性和迁移性, 达到净化土壤的目的[59-61]。张曦比较了麦饭石、蒙脱石、牡蛎壳和硅钙类矿物4种土壤改良剂对土壤中镉形态及毒性的影响, 结果表明牡蛎壳的吸附效果最好[62]。大量研究表明, 在土壤中添加贝壳粉, 可以有效降低土壤中可交换性Cd[63], 使其钝化形成CdCO3[64-66]; 降低Cd的迁移性, 将白菜叶中的Cd含量减少98%[67]; 降低水稻根际Cd含量, 促进水稻生长[16, 68]; 减少水稻及油菜籽的Cd吸收量[69], 大幅降低莴苣可食部分的Cd含量[70], 对食用苋菜的生长有积极影响, 显著抑制其对Cd的吸收[71]。
同Cd类似, Pb也会显著影响植物生长, 其作用机理是能够进入根部, 降低根细胞分裂速度, 导致植物生长缓慢; 而且其在植物体内的积累会破坏代谢酶系统, 浓度过高时还会引起组织坏死及植物死亡。Moon等[72]利用牡蛎壳等废弃物对污染土壤中的Pb进行了固定化研究, 结果表明, 这种改良剂可在28 d的养护期内降低99%以上的Pb浸出性。韩国学者采用牡蛎壳粉对矿山土壤进行改良, 30 d后, Pb的提取率降低了95%[73]。郝春莉等[74]发现采用贝壳粉钝化土壤中的Pb, 可使水溶态Pb和可交换态Pb含量分别降低22.3%和67.0%。张琢等指出, 在铅蓄电池污染土壤中添加2%~10%质量分数的贝壳粉后, 可使土壤中Pb的浸出浓度降低22%~62%[65]。
除镉和铅外, 还有许多研究表明贝壳粉对土壤中的砷(As)、铜(Cu)、锑(Sb)、铬(Cr)和汞(Hg)具有良好的吸附作用。Moon等施用的贝壳改良剂可显著降低As和Cu的浸出性, 效果分别为93%和99%, 采用扫描电镜-能量色散X射线能谱分析表明, As的固定可能与Ca-As和Fe-As相的形成有关, 而Cu的固定可能与水合硅酸钙和水合铝钙相的形成有关[72]。Garrido-Rodriguez[75]研究了在富铜酸性土壤中添加贻贝壳粉对Cu释放速度的影响, 结果表明在pH为3的土壤中, 添加贝壳粉可使铜的解吸率下降86%, 在pH为5时, 铜的释放速度降低了98%, 而在pH为7时, 贝壳粉的添加则对铜的释放速度无显著影响, 这表明贝壳粉是通过调节pH来起到改变铜释放速度的作用。Ahmad等[76]指出废牡蛎壳引起的土壤pH值变化对Sb浸出性有显著影响, Sb被贝壳粉固定最可能的原因是形成锑酸钙沉淀。Rivas-Perez等针对As和Cr同时污染的问题, 采用贻贝壳对森林和葡萄园土壤进行了As和Cr的竞争吸附实验, 实验发现在森林土壤中, 贻贝壳可同时提高对As和Cr的吸附, 而在葡萄园土壤中, 贻贝壳可提高对As的吸附[77]。Pena-Rodriguez等[78]测定了汞在煅烧和研磨贻贝壳上的滞留量, 结果证明煅烧过的贻贝壳对汞的吸附量更高, 符合Freundlich方程, 磷酸盐可以增加贻贝壳对汞的吸附, 使汞的解吸率由13%下降到2%。此外还发现煅烧贻贝壳对汞的吸附量与贝壳中方解石和白云石的浓度有关, 当磷酸盐存在时, 汞-磷酸盐相互作用会导致汞吸附量增加, 且该吸附不可逆。贝壳粉的广谱吸附特点使得其在处理重金属污染土壤时的作用范围大大增加, 为其推广应用奠定了良好的基础。
4 贝壳土壤改良剂可改善土壤微生物群落, 减少土传病害土壤微生物主导着土壤生态, 通过调节养分循环、分解有机质、构建土壤结构、抑制植物病害和促进植物生长来发挥一系列重要的土壤功能[79]。微生物的存在及其活性可以通过多种方式影响土壤, 一方面, 土壤微生物是土壤生态系统变化的促进者, 另一方面, 微生物群落结构和多样性也可以作为土壤健康的指标, 因此, 土壤微生物对土壤有机污染物的代谢、土传病害防治具有重要作用[80]。
Fernandez-Calvino等[17]用贻贝壳粉对铜污染的极酸矿区土壤进行了改良, 结果表明土壤中的细菌和真菌群落经改良后均明显增多, 同时, 贻贝壳粉还可以防止土壤酸化, 避免了过低pH对细菌生长的抑制。Zheng等[55]对金属污染土壤中贝壳改良剂施用后的细菌群落进行了定量和定性分析后指出, 在培养108 d后, 优势菌群逐渐向缓解土壤金属离子再溶解和促进土壤养分循环的方向转变。Wang等[70]的研究表明经贝壳粉改良后土壤细菌丰富度和多样性增加, 细菌群落中的耐金属菌增加, 变形菌、酸菌和芽单胞菌减少。沈桂花等研究发现牡蛎壳粉土壤改良剂可以通过提高土壤pH, 提高微生物的碳源利用率、代谢多样性以及群落物种均匀度, 并且, 较高的pH还可抑制烟草青枯病的传播, 实验组较对照组发病率降低了43.33%[81]。张小远等[82]研究发现, 采用贝壳砂改良过的土壤中具有较高的微生物多样性。赵晓红等[33]分析了经贝壳粉土壤调理剂改良后土壤中的微生物丰富度、多样性及群落结构, 结果表明调理剂可显著提高细菌丰富度和多样性指数, 但却能够降低真菌的多样性。
贝壳粉对土传病害的防治主要是通过提高pH实现的, 目前, 在烟草种植中的应用研究较多。单晓鹏研究发现在烤烟土壤中施用牡蛎壳粉可降低黑胫病、青枯病、花叶病的发生及流行[83]。龚杰等[84]在长期种植烟草的酸化土壤中分别添加了草木灰和牡蛎壳粉, 发现两者皆可对烟草青枯病起到防治效果。除烟草外, 也有研究发现施用牡蛎壳粉可以使榨菜(茎瘤芥)根肿病的发病率降低26%, 并且能够提高根际土壤微生物的碳代谢能力[85]。
5 展望作为常见的酸性土壤改良剂和钙补充剂, 石灰已在农业生产中使用多年, 然而, 石灰的开采和加工会带来环境污染、能源消耗等问题, 其替代产品的研发, 符合当今“绿色农业”理念的要求。贝壳是水产加工产业的副产品, 具有资源丰富, 成本低廉等优点。贝壳是一种天然的纳米复合材料, 由砖状碳酸钙层和薄蛋白质层组成, 其丰富的天然多孔表面使其具有很强的吸附能力[86]。因此, 粉碎的贝壳粉可作为石灰的替代材料, 以恢复土壤的化学性质和微生物特性, 并提高作物产量。但是, 贝壳土壤改良剂在应用中仍存在一些问题需要被进一步改进或阐明。
1) 贝壳中含有大量的氯化钠, 土壤中添加过多的钠会引起黏土颗粒分散, 堵塞土壤孔隙, 降低土壤的渗透性、孔隙度和导流能力, 进一步引起土壤盐渍化[29]。同时, 贝类生物在生长过程中也会富集海水中的重金属元素, 这些重金属元素会随着贝壳粉一同被施用在土壤之中, 造成污染[87]。因此, 贝壳粉在使用时必须注意用量以及土壤本身的性质, 提前做好评估, 避免在碱性土壤中使用。
2) 大量研究表明, 未经煅烧的贝壳粉对于土壤的改良效果有限, 这是因为碳酸钙的化学性质稳定, 无法与土壤中的重金属、NaCl相互作用所导致的[39]。因此, 必须将贝壳在炉中加热至600 ℃以上煅烧, 方可使碳酸钙发生分解[88], 为了进行这种高温处理, 会导致大量燃料消耗以及温室气体的排放, 存在环境污染和能源消耗等问题。
综上所述, 贝壳土壤改良剂的研究与开发仍处于起步阶段, 需要加大投入力度, 使贝壳变废为宝, 这对水产养殖产业的可持续发展、“绿色农业”的推广具有重要意义。
[1] |
蒋增杰, 方建光, 毛玉泽, 等. 滤食性贝类养殖碳汇功能研究进展及未来值得关注的科学问题[J]. 渔业科学进展, 2022, 43(5): 106-114. JIANG Zengjie, FANG Jianguang, MAO Yuze, et al. Research progress on the carbon sink function of filter-feeding shellfish mariculture and future scientific issues[J]. Progress in Fishery Sciences, 2022, 43(5): 106-114. |
[2] |
WANG X, DING S, YIN D, et al. Response to selection for growth in the second generation of two shell color lines of the bay scallop Argopecten irradians[J]. Aquaculture, 2020, 528: 735536. DOI:10.1016/j.aquaculture.2020.735536 |
[3] |
颜墩炜, 武小霞, 郭媛贞, 等. 贝壳类土壤调理剂在农业生产中的应用研究进展[J]. 安徽农学通报, 2022, 28(10): 102-105. YAN Dunwei, WU Xiaoxia, GUO Yuanzhen, et al. Research progress on application of shellfish soil conditioner in agricultural production[J]. Anhui Agricultural Science Bulletin, 2022, 28(10): 102-105. |
[4] |
代银平, 王雪莹, 叶炜宗, 等. 贝壳废弃物的资源化利用研究[J]. 资源开发与市场, 2017, 33(2): 203-208. DAI Yinping, WANG Xueying, YE Weizong, et al. Study on resource utilization of mollusk shell waste[J]. Resource Development & Market, 2017, 33(2): 203-208. DOI:10.3969/j.issn.1005-8141.2017.02.016 |
[5] |
王洪波. 废弃贝壳资源化利用现状及研究进展[J]. 水产养殖, 2021, 42(5): 15-19. WANG Hongbo. The current situation and research progress of resource utilization of waste mollusk shell[J]. Journal of Aquaculture, 2021, 42(5): 15-19. DOI:10.3969/j.issn.1004-2091.2021.05.004 |
[6] |
赵晖, 宣卫红, 封家蕊, 等. 废弃贝壳循环再生利用技术研究进展[J]. 金陵科技学院学报, 2019, 35(1): 34-39. ZHAO Hui, XUAN Weihong, FENG Jiarui, et al. Research of waste shell recycling technology[J]. Journal of Jinling Institute of Technology, 2019, 35(1): 34-39. DOI:10.16515/j.cnki.32-1722/n.2019.01.008 |
[7] |
袁焙嘉, 宋文东. 废弃贝壳在制备功能性饲料添加剂中的应用[J]. 农村经济与科技, 2020, 31(20): 37-38. YUAN Beijia, SONG Wendong. Application of waste shells in the preparation of functional feed additives[J]. Rural Economy and Science-Technology, 2020, 31(20): 37-38. DOI:10.3969/j.issn.1007-7103.2020.20.019 |
[8] |
LI L, WANG S J, SHEN X Q, et al. Ecological risk assessment of heavy metal pollution in the water of China's coastal shellfish culture areas[J]. Environmental Science and Pollution Research, 2020, 27(15): 18392-18402. DOI:10.1007/s11356-020-08173-w |
[9] |
LIAO Y B, SHOU L, JIANG Z B, et al. Effects of fish cage culture and suspended oyster culture on macrobenthic communities in Xiangshan Bay, a semi-enclosed subtropical bay in eastern China[J]. Marine Pollution Bulletin, 2019, 142: 475-483. DOI:10.1016/j.marpolbul.2019.03.065 |
[10] |
HAN D Y, CHEN Y, ZHANG C L, et al. Evaluation of effects of shellfish aquaculture and capture fishery on a semi-closed bay ecosystem[J]. Estuarine Coastal and Shelf Science, 2018, 207: 175-182. DOI:10.1016/j.ecss.2018.04.005 |
[11] |
LIU Y, WANG X M, WU W G, et al. Experimental study of the environmental effects of summertime cocultures of seaweed Gracilaria lemaneiformis (Rhodophyta) and Japanese scallop Patinopecten yessoensis in Sanggou Bay, China[J]. Fishes, 2021, 6(4): 53. DOI:10.3390/fishes6040053 |
[12] |
KUANG Z X, FAN Z Q, WANG H J, et al. Heavy metal(loid)s in multiple media within a mussel mariculture area of Shangchuan Island, China: Partition, transfer and health risks[J]. Environmental Research, 2022, 211: 113100. DOI:10.1016/j.envres.2022.113100 |
[13] |
ALONSO A A, ALVAREZ-SALGADO X A, ANTELO L T. Assessing the impact of bivalve aquaculture on the carbon circular economy[J]. Journal of Cleaner Production, 2021, 279: 123873. DOI:10.1016/j.jclepro.2020.123873 |
[14] |
CHANG L, FENG Y, WANG B, et al. Dual functional oyster shell-derived Ag/ZnO/CaCO3 nanocomposites with enhanced catalytic and antibacterial activities for water purification[J]. Rsc Advances, 2019, 9(70): 41336-41344. DOI:10.1039/C9RA08960H |
[15] |
LAONAPAKUL T, SUTTHI R, CHAIKOOL P, et al. Optimum conditions for preparation of bio-calcium from blood cockle and golden apple snail shells and characterization[J]. Scienceasia, 2019, 45(1): 10-20. DOI:10.2306/scienceasia1513-1874.2019.45.010 |
[16] |
ZENG T, GUO J X, LI Y Y, et al. Oyster shell amendment reduces cadmium and lead availability and uptake by rice in contaminated paddy soil[J]. Environmental Science and Pollution Research, 2022, 29(29): 44582-44596. DOI:10.1007/s11356-022-18727-9 |
[17] |
FERNANDEZ-CALVINO D, CUTILLAS-BARREIRO L, NOVOA-MUNOZ J C, et al. Using pine bark and mussel shell amendments to reclaim microbial functions in a Cu polluted acid mine soil[J]. Applied Soil Ecology, 2018, 127: 102-111. DOI:10.1016/j.apsoil.2018.03.010 |
[18] |
CURTIN D, STEPPUHN H, SELLES F. Effects of magnesium on cation selectivity and structural stability of sodic soils[J]. Soil Science Society of America Journal, 1994, 58(3): 730-737. DOI:10.2136/sssaj1994.03615995005800030013x |
[19] |
PORCELLI C A, BOEM F H G, LAVADO R S. The K/Na and Ca/Na ratios and rapeseed yield, under soil-salinity or sodicity[J]. Plant and Soil, 1995, 175(2): 251-255. DOI:10.1007/BF00011361 |
[20] |
JALALI M, ARIAN T M, RANJBAR F. Selectivity coefficients of K, Na, Ca, and Mg in binary exchange systems in some calcareous soils[J]. Environmental Monitoring and Assessment, 2020, 192(2): 80. DOI:10.1007/s10661-019-8022-y |
[21] |
CHEN M, DUAN Z, LIN X. Status quo and prospects of the study on soil quality standards in China[J]. Acta Pedologica Sinica, 2011, 48(5): 1059-1071. |
[22] |
LI J, PU L, HAN M, et al. Soil salinization research in China: Advances and prospects[J]. Journal of Geographical Sciences, 2014, 24(5): 943-960. DOI:10.1007/s11442-014-1130-2 |
[23] |
CHEN N, WIDJAJANTO D W, ZHENG Y. Soil problems in China and its lessons for other developing countries[C]// 2nd International Symposium on Food and Agro-biodiversity (ISFA), IOP Conference Series-Earth and Enviromental Science, September 26-27, 2018, Semarang: Iop Publishing Ltd, 102: 012001.
|
[24] |
KRYZEVICIUS Z, JANUSIENE L, KARCAUSKIENE D, et al. Aluminium leaching response to acid precipitation in a lime-affected soil[J]. Zemdirbyste-Agriculture, 2019, 106(4): 315-320. DOI:10.13080/z-a.2019.106.040 |
[25] |
WANG Y, YAO Z, ZHAN Y, et al. Potential benefits of liming to acid soils on climate change mitigation and food security[J]. Global Change Biology, 2021, 27(12): 2807-2821. DOI:10.1111/gcb.15607 |
[26] |
YIN F, LI Y-J, ZHAO Q, et al. Experimental and model predictive investigation into the relationship of pH alternation with addition of lime in acid tin tailing treatments[J]. Bulletin of Environmental Contamination and Toxicology, 2021, 107(6): 1202-1207. DOI:10.1007/s00128-021-03299-0 |
[27] |
PAZ-FERREIRO J, BAEZ-BERNAL D, INSUA J C, et al. Effects of mussel shell addition on the chemical and biological properties of a Cambisol[J]. Chemosphere, 2012, 86(11): 1117-1121. DOI:10.1016/j.chemosphere.2011.12.009 |
[28] |
YAMADA M, TATSUNO T, SANO H, et al. A study on stabilization effect of the acid sulfate soil by using crushed oyster shell(ground improvement)[J]. Journal of the Society of Materials Science Japan, 2005, 54(11): 1117-1122. DOI:10.2472/jsms.54.1117 |
[29] |
CHANG H L, LEE D K, ALI M A, et al. Effects of oyster shell on soil chemical and biological properties and cabbage productivity as a liming material[J]. Waste Management, 2008, 28(12): 2702-2708. DOI:10.1016/j.wasman.2007.12.005 |
[30] |
ALVAREZ E, FERNANDEZ-SANJURJO M J, SECO N, et al. Use of mussel shells as a soil amendment: Effects on bulk and rhizosphere soil and pasture production[J]. Pedosphere, 2012, 22(2): 152-164. DOI:10.1016/S1002-0160(12)60002-2 |
[31] |
YANG X F, HUANG Y X, LIU K X, et al. Effects of oyster shell powder on leaching characteristics of nutrients in low-fertility latosol in South China[J]. Environmental Science and Pollution Research, 2022, 29(37): 56200-56214. DOI:10.1007/s11356-022-19911-7 |
[32] |
王日新, 李汉燕, 李海涛, 等. 山东乳山市酸化土壤改良在小麦种植上的试验研究[J]. 农业工程技术, 2016, 36(5): 26-27. WANG Rixin, LI Hanyan, LI Haitao, et al. Experimental study on acidified soil improvement in wheat planting in Rushan, Shandong[J]. Applied Engineering Technology, 2016, 36(5): 26-27. |
[33] |
赵晓红, 柴姗姗, 张曼曼, 等. 施用贝壳粉对酸化土壤微生物多样性及平邑甜茶幼苗生长的影响[J]. 林业科学, 2020, 56(9): 153-163. ZHAO Xiaohong, CHAI Shanshan, ZHANG Manman, et al. Effects of shell powder on microbial diversity in acidified soil and growth of Malus hupehensis var. mengshanensis seedlings[J]. Scientia Silvae Sinicae, 2020, 56(9): 153-163. |
[34] |
韩天富, 柳开楼, 黄晶, 等. 近30年中国主要农田土壤pH时空演变及其驱动因素[J]. 植物营养与肥料学报, 2020, 26(12): 2137-2149. HAN Tianfu, LIU Kailou, HUANG Jing, et al. Spatio-temporal evolution of soil pH and its driving factors in the main Chinese farmland during past 30 years[J]. Plant Nutrition and Fertilizer Science, 2020, 26(12): 2137-2149. |
[35] |
GUO J H, LIU X J, ZHANG Y, et al. Significant acidification in major Chinese croplands[J]. Science, 2010, 327(5968): 1008-1010. |
[36] |
SUMMER M E, SHAHANDEH H, BOUTON J, et al. Amelioration of an acid soil-profile through deep liming and surface application of gypsum[J]. Soil Science Society of America Journal, 1986, 50(5): 1254-1258. |
[37] |
MARSH B H, GROVE J H. Surface and subsurface soil acidity - soybean root response to sulfate-bearing spent lime[J]. Soil Science Society of America Journal, 1992, 56(6): 1837-1842. |
[38] |
TANG C, RENGEL Z, DIATLOFF E, et al. Responses of wheat and barley to liming on a sandy soil with subsoil acidity[J]. Field Crops Research, 2003, 80(3): 235-244. |
[39] |
LEE Y H, ISLAM S M A, HONG S J, et al. Composted oyster shell as lime fertilizer is more effective than fresh oyster shell[J]. Bioscience Biotechnology and Biochemistry, 2010, 74(8): 1517-1521. |
[40] |
FERNANDEZ-SANJURJO M J, RODRIGUEZ E A, CORTI G. Effect of the addition of cattle slurry plus different types of livestock litter to an acid soil and on the production of grass and corn crops[J]. Waste Management & Research, 2011, 29(3): 268-276. |
[41] |
MOON D H, CHANG Y Y, OK Y S, et al. Amelioration of acidic soil using various renewable waste resources[J]. Environmental Science and Pollution Research, 2014, 21(1): 774-780. |
[42] |
SOGNNES L S, FYSTRO G, OPSTAD S L, et al. Effects of adding moraine soil or shell sand into peat soil on physical properties and grass yield in western Norway[J]. Acta Agriculturae Scandinavica Section B-Soil and Plant Science, 2006, 56(3): 161-170. |
[43] |
罗华汉, 柳开楼, 余跑兰, 等. 牡蛎壳粉对水稻产量和土壤重金属钝化的影响[J]. 中国稻米, 2016(3): 30-33. LUO Huahan, LIU Kailou, YU Paolan, et al. Effects of oyster shell powder on rice yield and heavy metal stabilization in paddy soil[J]. China Rice, 2016(3): 30-33. |
[44] |
代小青, 郝秀明. 不同钝化剂对砷污染农田水稻的钝化修复作用比较试验[J]. 农村科学实验, 2022(9): 222-224. DAI Xiaoqing, HAO Xiuming. Comparative experiment on the passivation and remediation effect of different passivators on arsenic polluted farmland rice[J]. Scientific Experiment in Countryside, 2022(9): 222-224. |
[45] |
周红梅, 孙蓟锋, 段成鼎, 等. 5种土壤调理剂对大蒜田土壤理化性质和大蒜产量的影响[J]. 中国土壤与肥料, 2013(3): 26-30. ZHOU Hongmei, SUN Jifeng, DUAN Chengding, et al. Effects of five soil conditioners on soil physical and chemical properties and yied of garlic[J]. Soil and Fertilizer Sciences in China, 2013(3): 26-30. |
[46] |
严建辉. 牡蛎壳土壤调理剂对黄泥田花生产量及土壤酸化改良的影响[J]. 农学学报, 2019, 9(11): 17-20. YAN Jianhui. Oyster shell soil conditioner: Effects on peanut yield and acidified soil amendment in yellow clayey field[J]. Journal of Agriculture, 2019, 9(11): 17-20. |
[47] |
周恩生. 施用不同钙肥防治红黄壤区花生空秕的效果研究[J]. 江西农业学报, 2007, 19(8): 91-93. ZHOU Ensheng. Effect of different kinds of calcium fertilizer on preventing empty shell of peanut planted in red-yellow soil[J]. Acta Agriculturae Jiangxi, 2007, 19(8): 91-93. |
[48] |
许玲玲, 章骞, 王永明, 等. 煅烧牡蛎壳粉对土壤酸化及玉菇甜瓜品质的改良效果[J]. 集美大学学报(自然科学版), 2020, 25(5): 336-343. XU Lingling, ZHANG Qian, WANG Yongming, et al. Effect of calcined oyster shell powder on soil acidification and fruit quality of mushroom melon[J]. Journal of Jimei University(Natural Science), 2020, 25(5): 336-343. |
[49] |
许玲玲, 翁凌, 章骞, 等. 牡蛎壳土壤调理剂对春桃番茄产量与品质的改善效果[J]. 集美大学学报(自然科学版), 2022, 27(1): 37-44. XU Lingling, WENG Ling, ZHANG Qian, et al. Effect of oyster shell soil conditioner on the production and quality of 'Chuntao' tomato[J]. Journal of Jimei University(Natural Science), 2022, 27(1): 37-44. |
[50] |
罗军元, 胡秋萍, 熊文, 等. 贝壳源钙肥对蜜橘品质和产量的影响[J]. 湖南农业科学, 2020(6): 42-44. LUO Junyuan, HU Qiuping, XIONG Wen, et al. Effect of shell-source calcium fertilizer on quality and yield of tangerine (Citrus reticulata)[J]. Hunan Agricultural Sciences, 2020(6): 42-44. |
[51] |
YANG Q, LI Z, LU X, et al. A review of soil heavy metal pollution from industrial and agricultural regions in China: Pollution and risk assessment[J]. Science of the Total Environment, 2018, 642: 690-700. |
[52] |
HU B, SHAO S, NI H, et al. Current status, spatial features, health risks, and potential driving factors of soil heavy metal pollution in China at province level[J]. Environmental Pollution, 2020, 266(3): 114961. |
[53] |
孟敏, 杨林生, 韦炳干, 等. 我国设施农田土壤重金属污染评价与空间分布特征[J]. 生态与农村环境学报, 2018, 34(11): 1019-1026. MENG Min, YANG Linsheng, WEI Binggan, et al. Contamination assessment and spatial distribution of heavy metals in greenhouse soils in China[J]. Journal of Ecology and Rural Environment, 2018, 34(11): 1019-1026. |
[54] |
杨树深, 孙衍芹, 郑鑫, 等. 重金属污染农田安全利用: 进展与展望[J]. 中国生态农业学报, 2018, 26(10): 1555-1572. YANG Shushen, SUN Yanqin, ZHENG Xin, et al. Safe utilization of farmland contaminated with heavy metals in China: Progress and outlook[J]. Chinese Journal of Eco-Agriculture, 2018, 26(10): 1555-1572. |
[55] |
ZHENG X K, ZOU M Y, ZHANG B W, et al. Remediation of Cd-, Pb-, Cu-, and Zn-contaminated soil using cow bone meal and oyster shell meal[J]. Ecotoxicology and Environmental Safety, 2022, 229: 113073. |
[56] |
ZHANG S, SONG J, CHENG Y, et al. Derivation of reliable empirical models describing lead transfer from metal-polluted soils to radish (Raphanus sativa L.): Determining factors and soil criteria[J]. Science of the Total Environment, 2018, 613/614: 72-80. |
[57] |
PARK J H. Contrasting effects of Cr(Ⅲ) and Cr(Ⅵ) on lettuce grown in hydroponics and soil: Chromium and manganese speciation[J]. Environmental Pollution, 2020, 266(2): 115073. |
[58] |
BI D X, YUAN G D, WEI J, et al. Conversion of oyster shell waste to amendment for immobilising cadmium and arsenic in agricultural soil[J]. Bulletin of Environmental Contamination and Toxicology, 2020, 105(2): 277-282. |
[59] |
KOMAREK M, VANEK A, ETTLER V. Chemical stabilization of metals and arsenic in contaminated soils using oxides–A review[J]. Environmental Pollution, 2013, 172: 9-22. |
[60] |
曹英兰, 陈丽娜, 张金丽, 等. 牡蛎壳粉对酸性土壤的修复及其对镉的钝化作用研究[J]. 环境科学与技术, 2016, 39(1): 178-182. CAO Yinglan, CHEN Lina, ZHANG Jinli, et al. Effects of oyster shell powder on the remediation and stabilization of acid Cd pollution soil[J]. Environmental Science & Technology, 2016, 39(1): 178-182. |
[61] |
王沛文, 杜立宇, 吴岩, 等. 不同类型贝壳粉对土壤镉赋存形态的影响差异[J]. 水土保持学报, 2019, 33(2): 331-335. WANG Peiwen, DU Liyu, WU Yan, et al. Effects of different shell powder types on soil cadmium speciation[J]. Journal of Soil and Water Conservation, 2019, 33(2): 331-335. |
[62] |
张曦. 四种土壤调理剂对镉铅形态及生物效应的影响[D]. 北京: 中国农业科学院, 2012. ZHANG Xi. Effects of four soil conditioners on cadmium and lead forms and biological effects[D]. Beijing: Chinese Academy of Agricultural Sciences, 2012. |
[63] |
柴冠群. 不同改良剂对重庆植烟土壤镉生物有效性的影响[D]. 重庆: 西南大学, 2017. CHAI Guanqun. Effect of different soil amendments on cadmium bioavailability in tobacco-growing soils in Chongqing[D]. Chongqing: Southwest University, 2017. |
[64] |
ZHAO H D, DU L Y, AN T T, et al. Evaluation of shell powder remediation effect in cadmium-contaminated soil: A score approach based on entropy indexes[J]. Clean-Soil Air Water, 2022, 50(5): 2000261. |
[65] |
张琢, 王梅, 任杰, 等. 贝壳粉对污染土壤中Pb、Zn、Cd的稳定化作用[J]. 环境污染与防治, 2016, 38(1): 14-18. ZHANG Zhuo, WANG Mei, REN Jie, et al. Effects of sea shell powder on the stabilization of Pb, Zn and Cd in contaminated soil[J]. Environmental Pollution and Control, 2016, 38(1): 14-18. |
[66] |
LEE H H, KIM S Y, OWENS V N, et al. How does oyster shell immobilize cadmium?[J]. Archives of Environmental Contamination and Toxicology, 2017, 74(1): 114-120. |
[67] |
YUAN G D, BI D X, WEI J, et al. Calcined oyster shell-humic complex as soil amendment to remediate Cd- and As-contaminated soil[J]. Agronomy-Basel, 2022, 12(6): 1413. |
[68] |
HE L Z, MENG J, WANG Y, et al. Attapulgite and processed oyster shell powder effectively reduce cadmium accumulation in grains of rice growing in a contaminated acidic paddy field[J]. Ecotoxicology and Environmental Safety, 2021, 209: 111840. |
[69] |
WU B, LI J, SHENG M P, et al. The application of biochar and oyster shell reduced cadmium uptake by crops and modified soil fertility and enzyme activities in contaminated soil[J]. Soil, 2022, 8(1): 409-419. |
[70] |
WANG F, ZHANG W W, MIAO L J, et al. The effects of vermicompost and shell powder addition on Cd bioavailability, enzyme activity and bacterial community in Cd-contaminated soil: A field study[J]. Ecotoxicology and Environmental Safety, 2021, 215: 112163. |
[71] |
WU Q C, WANG D F, WEN J M, et al. Remediation of Cd-contaminated acid soil with shell powder-based nanocomposite[J]. Surfaces and Interfaces, 2022, 32: 102117. |
[72] |
MOON D H, CHEONG K H, KOUTSOSPYROS A, et al. Assessment of waste oyster shells and coal mine drainage sludge for the stabilization of As-, Pb-, and Cu-contaminated soil[J]. Environmental Science and Pollution Research, 2016, 23(3): 2362-2370. |
[73] |
OK Y S, OH S E, AHMAD M, et al. Effects of natural and calcined oyster shells on Cd and Pb immobilization in contaminated soils[J]. Environmental Earth Sciences, 2010, 61(6): 1301-1308. |
[74] |
郝春莉, 李剑, 黄志勇. 基于同位素标记和连续提取法研究磷基材料对土壤铅的钝化行为[J]. 中国土壤与肥料, 2021(4): 283-288. HAO Chunli, LI Jian, HUANG Zhiyong. Study of the passivation of soil Pb by phosphorous materials based on isotope labeling method coupled with Tessier sequential extraction procedure[J]. Soils and Fertilizers Sciences in China, 2021(4): 283-288. |
[75] |
GARRIDO-RODRIGUEZ B. FERNANDEZ-CALVINA D, MUNOZ J C N. pH-dependent copper release in acid soils treated with crushed mussel shell[J]. International Journal of Environmental Science and Technology, 2013, 10(5): 983-994. |
[76] |
AHMAD M, MOON D H, WAZNE M, et al. Effects of natural and calcined oyster shells on antimony solubility in shooting range soil[J]. Journal of the Korean Society for Applied Biological Chemistry, 2013, 56(4): 461-464. |
[77] |
RIVAS-PEREZ I M, CONDE-CID M, NOVOA-MUNOZ J C, et al. As(Ⅴ)/Cr(Ⅵ) retention on un-amended and waste-amended soil samples: competitive experiments[J]. Environmental Science and Pollution Research, 2017, 24(1): 1051-1059. |
[78] |
PENA-RODRIGUEZ S, BERMUDEZ-COUSO A, NOVOA-MUNOZ J C, et al. Mercury removal using ground and calcined mussel shell[J]. Journal of Environmental Sciences, 2013, 25(12): 2476-2486. |
[79] |
COBAN O, DE DEYN G B, van der PLOEG M. Soil microbiota as game-changers in restoration of degraded lands[J]. Science, 2022, 375(6584): eabe0725. |
[80] |
FIERER N, WOOD S A, de MESQUITA C P B. How microbes can, and cannot, be used to assess soil health[J]. Soil Biology & Biochemistry, 2021, 153: 108111. |
[81] |
沈桂花, 刘晓姣, 张淑婷, 等. 牡蛎壳粉对烟草根际土壤微生物代谢多样性及青枯病发生的影响[J]. 烟草科技, 2017, 50(12): 22-28. SHEN Guihua, LIU Xiaojiao, ZHANG Shuting, et al. Effects of oyster shell powder on metabolic diversity of microorganism in tobacco rhizosphere soil and incidence of bacterial wilt[J]. Tobacco Science & Technology, 2017, 50(12): 22-28. |
[82] |
张小远, 肖瑶, 田浩, 等. 贝壳砂改良土壤中反硝化细菌的分析[J]. 微生物学通报, 2014, 41(1): 35-42. ZHANG Xiaoyuan, XIAO Yao, TIAN Hao, et al. Analysis of denitrifying bacteria in a long-term shell sand amended soil[J]. Microbiology China, 2014, 41(1): 35-42. |
[83] |
单晓鹏. 黔江区烤烟主要病害发生动态与土壤改良剂防控技术研究[D]. 重庆: 西南大学, 2020. SHAN Xiaopeng. Study on the occurrence trends and green prevention and control techniques of the main diseases of tobacco in Qianjiang[D]. Chongqing: Southwest university, 2020. |
[84] |
龚杰, 陈瑜欣, 付小秋, 等. 土壤酸化改良剂对烟株农艺性状、土壤pH值及青枯病发生的影响[J]. 植物医生, 2021, 34(1): 35-40. GONG Jie, CHEN Yuxin, FU Xiaoqiu, et al. Effects of 3 soil acidification amendment agents on agronomic characters of tobacco plants, pH of acidic soil and occurrence of bacterial wilt[J]. Plant Doctor, 2021, 34(1): 35-40. |
[85] |
刘烈花, 丁伟. 3种土壤改良剂对榨菜根肿病的防治效果和根际微生物的影响[J]. 植物医生, 2021, 34(3): 19-25. LIU Liehua, DING Wei. Effects of three soil modifiers on the control efficacy of mustard club root and on Rhizosphere microorganisms[J]. Plant Doctor, 2021, 34(3): 19-25. |
[86] |
SILVA T H, MESQUITA-GUIMARÃES J, HENRIQUES B, et al. The potential use of oyster shell waste in new value-added by-product[J]. Resources, 2019, 8(1): 13. |
[87] |
孙蓟锋, 王旭, 刘红芳, 等. 我国土壤调理剂中重金属元素及其相关原料农业资源化利用现状[J]. 中国土壤与肥料, 2017(6): 149-154. SUN Jifeng, WANG Xu, LIU Hongfang, et al. Study on current situation of harmful elements in soil conditioners of China and the agricultural resource utilization of relevant raw materials[J]. Soils and Fertilizers Sciences in China, 2017(6): 149-154. |
[88] |
梁艳, 赵杰, 王来. 贝壳的傅立叶变换红外光谱和热分析[J]. 矿物岩石, 2007, 27(2): 12-16. LIANG Yan, ZHAO Jie, WANG Lai. The Fourier transform infrared spectroscopy(FT-IR) and thermal analysis of the mollusc shell[J]. Journal of Mineralogy and Petrology, 2007, 27(2): 12-16. |