海洋科学  2024, Vol. 48 Issue (2): 102-114   PDF    
http://dx.doi.org/10.11759/hykx20221025001

文章信息

刘利华, 王学敏, 陈慕雁. 2024.
LIU Lihua, WANG Xuemin, CHEN Muyan. 2024.
棘皮动物感觉功能及其相关受体的研究进展
Research advancements in echinoderm sensory functions and related receptors
海洋科学, 48(2): 102-114
Marine Sciences, 48(2): 102-114.
http://dx.doi.org/10.11759/hykx20221025001

文章历史

收稿日期:2022-10-25
修回日期:2023-07-13
棘皮动物感觉功能及其相关受体的研究进展
刘利华1,2, 王学敏1,2, 陈慕雁1,2     
1. 中国海洋大学 海水养殖教育部重点实验室, 山东 青岛 266003;
2. 中国海洋大学 水产学院, 山东 青岛 266003
摘要:感觉系统是外界环境与有机体内在信号系统之间的“转换器”, 也是生物应对外界环境变化的“哨兵”, 能够敏锐捕捉外界环境信号的变化, 在有机体的生长、摄食和繁殖等重要生物学过程中起到了至关重要的作用。棘皮动物具有特殊的五辐对称结构, 缺乏神经中枢, 主要依靠散布全身的感觉系统对外界进行感知并做出响应, 其关键的分类地位和独特的生物学特征为感觉系统的功能研究提供了特殊的背景。本文对棘皮动物感觉系统研究方法、不同感觉系统介导的行为特征以及相关受体发掘进行了全面综述, 以期进一步解析棘皮动物感觉系统在棘皮动物特殊生理行为调控中的作用机制, 为棘皮动物关键经济物种的高效绿色增养殖提供科学的理论支撑。
关键词棘皮动物    感觉系统    行为    响应过程    受体    
Research advancements in echinoderm sensory functions and related receptors
LIU Lihua1,2, WANG Xuemin1,2, CHEN Muyan1,2     
1. The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China;
2. College of Fisheries, Ocean University of China, Qingdao 266003, China
Abstract: The sensory system acts as a bridge between an organism's external environment and its internal signal system, responding according to the environmental stimuli and changes. It plays a crucial role in key biological processes such as growth, feeding, and reproduction. Despite having a radially symmetric body and radial nervous system, echinoderms lack a centralized nerve center. They mainly depend on sensory systems distributed throughout their bodies to perceive and react to their external environment. The unique taxonomic position and biological traits of echinoderms offer valuable insights for sensory system research. This review summarizes and discusses the methodologies of sensory system research, behavioral characteristics induced by the sensory system, and the discovery of related receptors in echinoderms. We aim to encourage future research regarding regulatory mechanisms of sensory systems in echinoderms' unique physiological behaviors and provide theoretical backing for the efficient and sustainable aquaculture of economically significant echinoderm species.
Key words: echinoderm    sensory system    behavior    response process    receptor    
1 感觉系统对生物的重要意义

外界环境对生物的影响涉及到生长、摄食、繁殖等多个方面, 其中关键环境因素如温度、光照等对生物的地理分布起决定性作用。感觉系统由感受器、感受信号传导通路和处理感觉信息的神经中枢组成, 主要包括温度感受、机械感受、化学感受和光感受, 是外界环境与生物内在信号系统之间的“转换器”, 也是生物应对外界环境变化的“哨兵”, 能够敏锐捕捉外界环境信号的变化[1]

温度感受对有机体的生存至关重要, 不仅影响生物生理生化过程和行为, 更是决定栖息地选择和影响物种繁衍的关键因素。从极地到赤道, 所有生命体都需要适应其所处的环境温度才能生存和繁衍, 而环境温度适应的前提是生命体对温度的精确感知。

机械感受主要表现为听觉和触觉, 生物体将机械刺激转换为电信号(机械能转换为电能)后, 引起对刺激模式、刺激空间和时间的分辨[2]。听觉是生物尤其是水生生物获取外界信号的重要渠道, 打破了水域环境中视觉、触觉和味觉等其他感官传播距离的限制, 在水生生物通讯交流、定向、觅食和避敌等方面发挥重要作用[3]。触觉是许多动物与生俱来的能力, 是感知和认识外部环境的重要途径, 动物的攀爬、抓取以及接触后逃离、收缩和水生动物感知水流、洄游等行为均与触觉有关[4]

化学感受按照是否与化学物质直接接触划分为嗅觉和味觉, 在动物求偶、交配、觅食、避害和寻找寄主等社会行为中发挥重要作用[5]。鱼类在几十米到几百米的距离处仍可以依靠嗅觉对食物进行定位[6]。化学物质的释放可用于种内和种间个体的识别[7-8]。味觉是味觉细胞中特定受体所介导的化学感觉, 调节摄食这一生物生存最基本的过程。在无脊椎动物中, 味觉细胞广泛分布于触手等体表组织, 提供了识别食物可食用性或有害物质的手段[9]

光携带周围环境的大量信息, 是生物昼夜节律的重要调节因子[10], 对动物的繁殖乃至生存产生重要影响[11-12]。从寒武纪开始, 动物就在定向、觅食和其他复杂的行为中通过光感受获取信息[13]。几乎所有的动物都具有光感受能力, 眼睛是多数动物最主要的感光器官。

2 棘皮动物感觉系统研究方法进展

棘皮动物隶属于后口无脊椎动物, 行为模式简单, 具有特殊的水管系统和再生夏眠等特殊的生理行为[14]。目前研究表明棘皮动物具有温度感受系统[15-16]、化学感受系统(味觉和嗅觉)[17]、机械感受系统(触觉和重力)[18]和光感受系统[19]。有学者推测了其他感受系统(电感受和磁感受等)存在的可能性[20], 但尚未验证。目前棘皮动物感觉系统的研究主要集中在感知能力对个体行为的影响和感觉器官(管足、触手等)感觉功能分子标记的发掘等方面。

2.1 感觉器官结构研究方法进展

棘皮动物感觉器官在外部形态上缺乏显著特征, 组织切片技术和电子显微镜技术(scanning electron microscope, SEM和transmission electron microscope, TEM)是目前了解其感觉器官结构特征的有效手段, 为解析棘皮动物感觉系统奠定了基础。20世纪后期, 有研究者利用扫描电镜和透射电镜技术对棘皮动物管足、触手、疣足、棘、步带沟和小眼等潜在感觉器官组织结构进行观察, 为棘皮动物感受系统相关研究奠定了重要基础[21-28]。在海星Acanthaster planci的管足和触手内细胞层中发现上皮细胞、神经丛、结缔组织和包围水管的间皮的存在, 进一步证实了管足和触手的感觉功能[29]

2.2 感知能力对棘皮动物行为影响研究方法进展

行为学能够呈现动物全面实时的反应, 在生命科学研究领域具有不可替代的作用和地位。动物行为实验方法起源于公元前384—公元前322年[30], 计算机、成像、电子工程和信息技术的不断发展和广泛应用使得动物行为学研究过程更加自动化、客观化, 分析结果更加准确、可靠。Y型迷宫和流室、双通道或多通道实验以及切除可能具有感受功能部位的功能实验是目前棘皮动物感觉系统相关行为研究的主要方法。Castilla和Crisp[31]采用Y型迷宫证实了嗅觉在海星Asterias rubens觅食过程中的主导作用。多通道设置不同水流速度条件发现海星A. rubens可对0.15 cm/s以上的水流做出响应[32]。摄像记录动物行为学也广泛应用于棘皮动物的光感受研究, 如切除明显视觉器官[33]或设置暗室和明室两种场景[34]观察动物行为轨迹, 探究其趋光性。

2.3 感觉受体及其定位定量分析研究方法进展

随着分子生物学和组学技术的发展, 棘皮动物感觉受体的鉴定(表 1)、分布表达特征及其生理功能的相关研究取得了长足发展。通过基因组、转录组及蛋白组学的测序, 多种感觉受体得以发掘[35-36]。例如, 在海胆Strongylocentrotus purpuratus基因组中鉴定到了具有多模态感受性的瞬时受体电位(transient receptor potential, TRP)家族成员[37]。TRP离子通道是生物响应外界环境刺激的关键分子, 参与温度、机械刺激、嗅觉、味觉和视觉等多种感觉过程, 其中TRPV、TRPA与TRPM亚家族成员如TRPV1-4、TRPA1、TRPM2-5和TRPM8均具有温度感知功能[38]; TRPV1、TRPV4-6、TRPA1、TRPC1和TRPC6与机械感知相关[39-44]; TRPP可形成酸敏感通道受体[45]并在视网膜发育中发挥重要作用[46], 表明其潜在的化学感受和光感受功能; TRPM1同样也参与调节视觉感受系统[47]

表 1 棘皮动物不同物种中已鉴定的感觉受体 Tab. 1 Identified sensory receptors in different species of echinoderms
感受系统 物种 受体 序列号或参考文献 备注
温度感觉 蓝海燕Patiria pectinifera TRPA1 BAX76612.1[48]
机械感觉 刺参Apostichopus japonicus TRPA1 PIK35971.1[49]
化学感觉 棘冠海星Acanthaster planci ORs (63) [29] A. planci基因组中鉴定到63个ORs
ApOR15 XP_022102118.1[29]
ApOR18 XP_022103010.1[29]
ApOR25 [29]
ApOR43 XP_022091890.1[29]
GPCR52 XP_022104381.1[50]
GRL101 XP_022098818.1[50]
ADRA1a XP_022109889.1[50]
CCKRa XP_022095734.1[50]
mGluR3 XP_022098853.1[50]
化学感觉 棘冠海星Acanthaster planci gKAR2 [50]
GluR2 XP_022090341.1[50]
紫海胆Strongylocentrotus purpuratus surreal-GPCRs (538) [51] S. purpuratus基因组中鉴定到538个surreal-GPCR
海参Holothuria arguinensis ORs (57) [52] H. arguinensis转录组中鉴定到57个OR
刺参Apostichopus japonicus ORs (79) [52] A. japonicus基因组中鉴定到79个OR
Griha1 PIK48933.1[53]
Griha2 [53]
Griha5 [53]
光感受 中间球海胆Strongylocentrotus intermedius opsin4 AHH29342.1[54-55]
opsin5 AHH29343.1[54-55]
Pax6 AHH29344.1[54-55]
TRPA1 [56]
紫海胆Strongylocentrotus purpuratus pinopsin (ciliary opsin) XP_783302.2[51]
basal-branched opsin XP_003730660.1、XP_784559.2[51]
rhodopsin Go coupled-like XP_003723700.1、XP_783329.3[51]
peropsin-like XP_784266.2[51]
RGR XP_003727813.1[51]
neuropsin(opsin5) XP_001199309.1[51]
peropsin XP_011674418.2[51]
melanopsin XP_003730546.1[57]
绿海胆Strongylocentrotus droebachiensis opsin5 DQ285097[58]
Pax6 DQ230536[58]
刺参Apostichopus japonicus Pax6 PIK41241.1[59]
peropsin PIK53973.1[60]
peropsin-like PIK62121.1[60]
putative Rh5-like PIK39189.1、PIK33210.1[60]
putative LWS PIK52665.1[60]
棘冠海星Acanthaster planci rhodopsin-like GPCRs (775) [35] A. planci基因组中鉴定到775个rhodopsin-like GPCR
c-opsin, r-opsin, Chaopsin, Go-opsin, neuropsin, RGR opsin [61]
peropsin XP_022104350.1[61]
红海盘车Asterias rubens melanopsin KM249890[62]
蛇尾Amphiura filiformis opsin 1 KM276762[36]
basal-branch opsin KM276763[36]
opsin3 KM276764[36]
opsin4.1 KM276765[36]
opsin4.2 KM276766[36]
opsin4.3 KM276767[36]
光感受 蛇尾Amphiura filiformis opsin4.4 KM276768[36]
r-opsin KM276769[36]
opsin4.6 KM276770[36]
opsin5 KM276771[36]
opsin7.1 KM276772[36]
opsin7.2 KM276773[36]
opsin8.1 KM276774[36]
neuropsin KM276775[36]
注: 表格中“—”代表无

感觉受体的定位包括mRNA和蛋白两个层面。mRNA定位主要采用原位杂交技术(in situ hybridization, ISH)。例如利用原位杂交技术证实了海星A. planci嗅觉受体(A. planci putative olfactory receptors, ApORs)基因(ApOR15, ApOR18, ApOR25ApOR43)在潜在感受器官管足及触手中的表达[29]。蛋白定位主要利用免疫组织化学(immunohistochemistry, IHC)、免疫荧光(immunofluorescence, IF)和荧光电子显微镜等技术直接定位目标蛋白, 为进一步的功能探究奠定了基础[36, 63], 但在棘皮动物中可能受限于高质量抗体的可获得性。

感觉受体的定量检测同样是探究其生理功能的主要手段。通过分析不同组织、不同发育阶段和不同实验条件下候选感觉受体的表达水平变化, 推测其潜在功能。实时定量PCR(quantitative real-time PCR, qRT- PCR)技术和蛋白质免疫印迹(western blot, WB)技术是目前mRNA水平和蛋白质水平定量分析的主要方法。这两种方法广泛应用于海胆S. purpuratus、海参Holothuria arguinensis、海星A. planci等不同发育阶段和不同组织候选感觉受体的定量分析[29, 51-52, 61]

当前, 组织定位定量分析结果难以在活体水平上得到功能验证, 且仅限于单一感觉器官, 优化活体功能检测手段并联合分子生物学技术和电子显微镜技术对棘皮动物感觉系统进行整体研究, 是未来棘皮动物感觉系统研究的重要方向。

3 棘皮动物温度感受研究进展

棘皮动物广泛分布于热带至寒带海域, 温度对棘皮动物幼体存活、变态附着、生长发育[64]及成体生理状态[65]、生殖能力[66]、运动行为[67]具有重要影响。

3.1 温度感受介导的行为

为应对夏季高温, 刺参Apostichopus japonicus在长期的进化过程中形成了夏眠这一特殊的生理行为, 表现为停止摄食、活动降低, 代谢减退等现象[68]。与冬季相比, 海胆Paracentrotus lividus的遮蔽行为在夏季更频繁, 暗示温度可能影响其遮蔽行为, 但也无法排除是否受光照等其他非生物因子的影响[69]。同样地, 海胆Glyptocidaris crenularis在高温下的遮蔽能力显著高于低温下的遮蔽能力, 而海胆Strongylocentrotus intermedius在高温下的遮蔽行为能力较差[70], 这可能与其是冷水性物种有关[71]。Brothers和Mcclintock[67]研究发现, 与长期暴露于32 ℃相比, 急性暴露于28 ℃和32 ℃的海胆Lytechinus variegatus遮蔽行为更加明显, 推测是对高温敏感的急性适应。

3.2 棘皮动物温度感觉受体的发掘

目前关于棘皮动物温度感受机制的研究非常有限, 仅有的研究主要集中于TRP离子通道家族。TRP离子通道是一类具有六次跨膜α螺旋结构域的非选择性阳离子通道, 在生物感觉系统中发挥重要作用[72]。具有温度感知功能的TRP离子通道被称为热敏TRP通道(Thermo- TRPs), 在感知外界温度信号过程中起着关键作用[73]。近年来棘皮动物潜在温度感受器及其在行为水平上的响应逐渐得到关注。室内诱导刺参A. japonicus夏眠转录组分析揭示了刺参体壁对温度变化更为敏感[74]。海星Pisaster ochraceus通过改变中心盘体腔液体积的方法应对外界温度变化[75]。海星Patiria pectinifera羽腕幼虫TRPA1可被热激活, 从而参与介导幼虫的趋热行为[48]。这些温度分子感受器的功能已在多种高等生物中利用电生理等实验方法得以验证, 而棘皮动物潜在的温感分子是否具有温度感知功能尚需验证。

4 棘皮动物机械感受研究进展

海胆、海星和海参等棘皮动物多分布于岩礁底及有砂砾的海底[76-78], 对栖息地水流、底质的选择主要受机械感受的调控。棘皮动物利用可变胶原组织通过机械感受应对捕食者和其他环境压力[79]。有研究发现海星体表分布着大量触觉感受器, 可以感知水流和重力[20]。海胆和海星叉棘之间的感觉丘是目前棘皮动物中研究最为深入的触觉敏感区域[20, 80]。此外, 平衡囊[81-82]和纤毛[83]可能是棘皮动物机械感受的重要敏感结构。

4.1 机械感受介导的行为

棘皮动物机械感知主要来自于触觉和重力感觉。海星A. planci管足受到触碰时会立即收缩; 触碰力度增大时, 管足会出现卷曲[20]。水流是影响棘皮动物摄食的重要因素, 过高或过低的流速均可能导致摄食的停止, 目前已在海星Asterias vulgaris[84]和海胆Strongylocentrotus nudus[85]中发现该现象。水流速度还可以影响棘皮动物的移动和附着行为[49], 这些均体现了棘皮动物的触觉感知功能。Castilla[18]认为海星A. rubens的向上运动可能与重力感知有关。此外, 海胆Hemicentrotus pulcherrimusAnthocidaris crassispina在幼虫阶段均表现出背地性[86]

4.2 棘皮动物机械感觉受体的发掘

机械门控离子通道作为机械感受器, 将机械刺激转化为生物信号, 在触觉、痛觉、听觉、渗透压感觉、体位平衡以及胚胎发育过程中发挥重要作用[87]。目前关于动物机械感受系统的研究多集中在模式生物机械感受分子的鉴定和功能验证上, 鉴定到的机械敏感离子通道包括K2P[88]、TRP[89]、MscL、MscS[90]、Piezo[91]和ENaC[92]等相关家族成员。关于棘皮动物机械感受分子的研究近乎空白, 仅限于个别物种纤毛细胞和感觉丘潜在的机械感受。利用蛋白质组学技术在海胆H. pulcherrimus胚胎中鉴定到一种谷胱甘肽转移酶(glutathione transferase theta, GSTT), 结合电镜和GSTT抑制实验发现GSTT可调节胚胎顶端纤毛的运动, 在机械感受中起重要作用[93]。海胆S. purpuratus基因组分析发现了Sp-myosin 7、Sp-myosin 15、Sp-harmonin和Sp-TRPA1等多种脊椎动物机械感受受体同系物, 它们可能发挥机械感受作用[37], 但具体机制尚不清楚。在有水流的条件下, TRPA1在刺参A. japonicus管足中的表达水平显著增加, 表明TRPA1潜在的机械感受功能[49]。此外, 棘皮动物中鉴定到的TRPM4、TRPC1和TRPC6离子通道在其他物种中作为机械感受分子[94-95]被报道, 暗示其在棘皮动物中潜在的机械感受功能, 但仍有待进一步实验验证。

5 棘皮动物化学感受系统研究进展

化学感受主要通过化学感觉受体及其配体相互作用来完成[96], 是影响棘皮动物行为的重要因素[5, 97]。有研究表明, 棘皮动物可对同种个体、猎物等释放的化学信号产生反应, 从而完成觅食、寻找配偶和生殖等活动[98-100]。海参Holothuria forskali可通过触手上感觉芽的化学敏感性识别食物[24]。扫描电镜和透射电镜分析进一步发现海参H. forskali疣足半球形芽的表皮由与神经丛紧密接触的纤毛细胞构成, 具有棘皮动物感觉细胞的经典结构, 推测疣足是参与机械感受和化学感受的器官[27]。海星皮肤表面和海胆体壁存在大量神经元, 推测主要通过棘刺、管足和叉棘来感知外界信号并做出响应。此外, 海星和海胆不同类型棘对化学刺激的反应不同, 推测其可能存在不同类型的化学感觉受体[51]

5.1 化学感受介导的行为

棘皮动物化学感知能力的研究从行为层面上主要通过观察棘皮动物对食物的反应来开展[20]。Y型迷宫等行为学实验研究表明化学感受在棘皮动物防御[101-104]、觅食[105]、寻找栖息地、交配和生殖行为[106-108]中发挥重要作用。例如, 红海盘车A. rubens[31, 105]和海胆L. variegatus[99]Strongylocentrotus franciscanus[109]能够探测并定位到猎物释放的化学物质。当捕食者的组织碎片或捕食者在附近时, 海胆的棘和管足会产生反应[110-111]。海参H. arguinensis[100]和海星(如Asterias forbesi[112]Leptasterias polaris[107])雄性个体通过释放化学信号来吸引并诱导成熟的雌性个体产卵, 但具体生理机制尚不清楚。

5.2 棘皮动物嗅觉相关受体的发掘

动物的化学感受主要由GPCRs超家族成员介导[113], 其中视紫红质型GPCR(A类)主要与嗅觉相关[114], 谷氨酸受体(C类)主要与信息素和味觉相关[115]。高通量测序技术的发展和棘皮动物多物种基因组的发表, 极大推动了棘皮动物化学感觉系统及其相关受体的研究。在海胆S. purpuratus基因组中鉴定到视紫红质型GPCRs和surreal-GPCRs, 其中视紫红质型GPCRs是海胆基因组中最大的GPCR超家族, 经历多次独立扩张, 具有光接收和化学接收等多种功能, surreal-GPCRs则在成年海胆的叉棘和管足中大量表达[51]。GPCRs家族中ORs、肾上腺素能受体(alpha-1A adrenergic receptor-like, ADRA1A)、GPCR 52、代谢型谷氨酸受体(metabotropic glutamate receptor 3, mGluR3)、CCKRa(Cholecystokinin receptor type A-like)和GRL101(G protein-coupled receptor GRL101-like)在海星A. planci感觉触手和管足中的过表达表明其潜在的化学感知功能[50]。OR样(OR-like)受体基因在海胆S. purpuratus[51]、海星A. planci[29, 35]和刺参A. japonicus[52]的叉棘、管足、口、体壁、疣足和触手等直接与环境接触的组织中大量分布。与脊椎动物[116]和其他无脊椎动物[29, 51, 117]OR结构类似, 海参中OR-like受体基因大多为单外显子结构并且以串联的方式排列, 具有嗅觉受体保守基序[52], 进一步支持OR-like是嗅觉受体这一假设。相较于海星A. planci[35]和海胆S. purpuratus[51]基因组中鉴定到900多个GPCRs, 海参H. arguinensis转录组和刺参A. japonicus基因组中OR样基因(分别为57和79个)和GPCRs(分别为246和310个)数量较少[52], 说明棘皮动物不同纲之间对化学信号感知和传递的分子种类及能力存在差异[53]

GPCRs家族中除了ORs外, 亲离子型受体(ionotropic receptors, IRs)在一些生物体内也具有化学感知功能[96, 118-119]。尽管棘皮动物中没有鉴定到IRs, 但是鉴定到与其进化关系较近的离子型谷氨酸受体(ionotropic glutamate receptors, iGluRs), 二者可能存在相似的保守功能[50, 53, 118]。两种iGluRs亚型gKAR2 (glutamate receptor kainite-like)和GluR2(glutamate receptor 2)在海星A. planci中首次得以鉴定[50], 其翻译蛋白与黑腹果蝇Drosophila melanogaster中的化学感觉受体高度相似。蛋白结构和系统发育分析表明它们有可能是变异的IRs, 其在触手中的高表达进一步表明它们潜在的化学感知功能[50]。Sania等[53]发现一种仅存在于棘皮动物中的iGluR亚家族GluH, GluH亚家族基因Grih是海参H. arguinesis组织中最为丰富的iGluRs类型, 部分Grih (Griha1Griha2Griha5)仅在棘皮动物触手中表达, 推测其可能是海参甚至是棘皮动物化学感觉的新靶点。

化学信号在决定生物多样性、生态系统恢复力以及研究自然生境中入侵物种和暴发物种影响生态系统的机制等方面起着非常重要的作用[5]。因此, 研究棘皮动物化学信息的整合机制以及鉴定和表征参与棘皮动物化学感受的受体是未来的重要研究方向。

6 棘皮动物光感受系统研究进展

棘皮动物通常存在具有光接收能力的光感受器[57-58, 120], 从皮下光感受器到形成具有视觉能力的眼睛是棘皮动物视觉发育的重要趋势[121]。目前只在海星(如Linckia laevigata[33]A. planci[122])和海参Opheodesoma spectabilis[28]中发现了可以视觉成像的单眼或复眼。

6.1 海星的复眼

大部分海星的腕末端不成对管足的基部存在复眼[19, 123-124], 在移动时通过腕尖弯曲扩大视野范围[33]。海星复眼在结构上都是由小眼组成的, 小眼具有色素细胞和光感受细胞两种细胞类型, 二者数量大致相等。海星L. laevigata最大的小眼约25 μm宽, 60 μm深, 内有150个光感受细胞和几乎相同数量的色素细胞[33]。海星小眼的数量随年龄增加而增加[20, 124], 视野范围的大小和空间分辨率的高低取决于小眼的数量, 幼年海星的视觉能力普遍低于成年海星。迄今有研究的海星中, A. planci空间分辨率最高, 但时间分辨率是目前研究的物种中最低的, 闪烁融合频率只有0.6~0.7 Hz, 最快移动速度只有51 cm/min[125]

6.2 光感受介导的行为

视觉在棘皮动物定位、防御等行为方面起关键作用。有研究表明, 海星成体依靠视觉进行短距离内珊瑚栖息地的定位[33, 123]。海星A. planci幼体可以在明亮的背景下检测到黑暗的物质, 表现出负趋光性[124]。使用不同的空间模式(颜色和形状)刺激海星A. planci, 反应模式不同, 说明其在使用视觉定位时, 不只是简单地利用趋光性, 也依靠真正的空间视觉[123]。Sumner- Rooney等[34]在蛇尾体表发现大量感光细胞与神经束接近, 猜测这些感光细胞可能介导蛇尾眼外视觉并通过外周神经发送信号, 使其能够在没有传统眼睛的情况下视觉成像, 在防御行为中起到一定的作用[126]。蛇尾(如Ophiocoma echinata, O. paucigranulata)还可以通过改变体色对光刺激作出响应, 表现出趋光性[127-128]。海胆P. lividus对光的反应表现在寻找遮蔽地、日常迁徙和趋光性运动等方面[69], Echinometra lucunter[129]S. purpuratus[130]可以通过有限的空间视觉定位到视觉目标, 在海洋中找到大且黑暗的物质{Yerramilli, 2010 #88}。此外, 光可以显著增强海胆Strongylocentrotus droebachiensis[131]Tripneustes ventricosus[132]L. variegatus[133]等的遮蔽行为, 这可能是海胆保护自身免受光辐射的一种方式[132]。刺参A. japonicus喜爱夜间活动, 表现出负趋光性[60, 134], 使用小型激光灯对刺参A. japonicus管足、体壁和疣足等体表上皮组织结构进行精准光刺激, 发现触手、管足和疣足发生收缩反应, 其中触手反应最快且恢复时间最短, 推测其可能是对光最为敏感的感觉器官[59]

6.3 棘皮动物视觉相关受体的发掘

视蛋白(opsins)是动物参与视觉和非视觉光接收的跨膜蛋白[36], 属于GPCR家族, 拥有七个α螺旋跨膜结构域, 一个胞外氨基末端(N-terminus)以及一个胞内羧基末端(C-terminus)[135]。目前在棘皮动物中鉴定到感杆束(rhabdomeric, r-)视蛋白、纤毛(ciliary, c-)视蛋白、Go视蛋白、神经视蛋白(neuropsin)、RGR- opsin(RPE-retinal GPCR)、周视蛋白(peropsin)、echinopsin A(bathyopsin)和echinopsin B(chaopsin)等多种视蛋白[36, 51, 61, 136]。其中, 在海参中尚未鉴定到echinopsin A和echinopsin B, 在海星中未鉴定到echinopsin A, 在海百合中仅鉴定到r-opsin。此外, 进化过程中bathyopsin在大多数两侧对称动物中丢失, 目前仅在棘皮动物和腕足动物中发现[137]

在海胆S. droebachiensis管足中发现了进化保守并可诱导视觉形成的Pax6(paired home box 6)蛋白[58]。通过原位杂交等方法证实Pax6Sp-Op4在海胆S. purpuratus管足和色素细胞中的表达, 推测棘皮动物色素细胞的形成受保守的分子机制调控[57]。最近研究发现, 海胆P. lividus八腕幼虫仅存在echinopsin A和r-opsin两种视蛋白, 而稚海胆时期表达成体所有的视蛋白, 相关视蛋白在八腕幼虫及稚海胆管足的定位得到了解析[138]

海星A. planci r-opsin在复眼中表达量最高, 表明其潜在的视觉功能[61]。除r-opsins外, chaopsin是海星A. planci复眼中表达差异最大的视蛋白, 与海胆[58]和蛇尾[36]相同, 海星A. planci chaopsin具有许多光转导所必需的基序, 例如第7跨膜结构域中的NPxxY结合基序, 可参与G蛋白的偶联, 但对于其功能知之甚少。

蛇尾Amphiura filiformis光感受系统主要由成体腕中的r-视蛋白和c-视蛋白介导。其中r-视蛋白主要在管足中表达, 与摄食活动和夜间所需的环境光感知有关; 而c-视蛋白只在棘中表达, 参与控制生物发光过程。在其他几种蛇尾Ophiocoma wendtii、O. echinataO. pumila中, Sp-Op4反应细胞作为光受体候选细胞, 符合受体形态学和其他蛇尾类r-视蛋白表达的基本特点, 推测其是引起栉蛇尾属(Ophiocoma)光灵敏度和相应行为的原因[63]

相比其他棘皮动物, 海参感光系统和光感受视蛋白的研究较少。刺参A. japonicus触手中GPCRs家族成员peropsin和peropsin-like表达水平在光刺激前后具有显著差异, 说明peropsin和peropsin-like对光刺激较为敏感并在刺参A. japonicus光转导中发挥重要作用[60]。刺参A. japonicus中同样发现了与眼睛发育直接相关的Pax6基因, 在触手、管足和疣足中的表达量显著高于肠道等非体表组织, 光刺激后Pax6表达水平显著升高, 并在触手中表达水平最高, 从分子水平上进一步证实了触手是最重要的感光器官[59]

目前棘皮动物中鉴定到视蛋白的功能主要是光接收, 而在一些节肢动物和脊椎动物中研究发现r-视蛋白除了光接收功能, 还具有温度感知和触觉功能[139]。大多数棘皮动物没有明显的眼睛结构, 因此, 对于棘皮动物的感光部位还需要进一步确认, 鉴定和表征参与光接收受体分子的研究亟待开展。

7 展望

棘皮动物没有明确的感觉器官, 近年来关于棘皮动物感觉系统的研究得到了越来越多的关注, 但仍处于起步阶段。棘皮动物感觉器官内在结构的研究仍缺乏系统性和全面性。未来对棘皮动物潜在感觉器官结构的鉴定和全面描述是棘皮动物感觉系统研究的首要任务。目前海胆[51]、海参[140]和海星[35]基因组的释放极大推动了棘皮动物感受系统在分子水平的研究, 棘皮动物中已鉴定到包括TRPA1[48]、OR[29]、iGluRs[50]、rhodopsin[51]在内的多种感觉受体, 推测其在棘皮动物多种感觉功能中的关键作用, 但仍有大量潜在的受体未被发掘, 棘皮动物感受系统响应外界变化的内在调控机制尚不清楚。因此, 未来感觉受体的鉴定、表征及其上下游信号通路的相关研究亟待开展。棘皮动物作为连接原口动物和后口动物的“桥梁”, 其感觉系统响应外界环境变化的机制研究将为两侧对称动物感觉系统的进化提供关键的一环, 为棘皮动物关键经济种高效绿色增养殖提供科学的理论支撑。

参考文献
[1]
牛翠娟, 娄安如, 孙儒泳, 等. 基础生态学(第三版)[M]. 北京: 高等教育出版社, 2015: 8.
NIU Cuijuan, LOU Anru, SUN Ruyong, et al. Basic ecology (The third edition)[M]. Beijing: Higher Education Press, 2015: 8.
[2]
陈军. DEG/ENaC超家族-机械感受器的分子生物学基础[J]. 神经解剖学杂志, 2004, 20(1): 93-95.
CHEN Jun. Molecular basis of the DEG/ENaC superfamily-mechanoreceptors[J]. Chinese Journal of Neuroanatomy, 2004, 20(1): 93-95. DOI:10.3969/j.issn.1000-7547.2004.01.018
[3]
MYRBERG A A. Sound communication and interception in fishes[M]. New York: Springer-Verlag, 1981: 395-426.
[4]
李君轶. 葛洲坝下近坝江段物理环境与鱼类时空分布特征的研究[D]. 重庆: 西南大学, 2017.
LI Junyi. Studies on the characteristics of physical environment and fish spatiotemporal distribution in downstream reaches near to the Gezhouba Dam, Yangtze River[D]. Chongqing: Southwest University, 2017.
[5]
MOTTI C A, BOSE U, ROBERTS R E, et al. Chemical ecology of chemosensation in Asteroidea: insights towards management strategies of pest species[J]. Journal of Chemical Ecology, 2018, 44(2): 147-177. DOI:10.1007/s10886-018-0926-4
[6]
PAVLOV D, KASUMYAN A O. Sensory principles of the feeding behavior of fishes[J]. Journal of Ichthyology, 1990, 30(6): 77-93.
[7]
MCLENNAN D A, RYAN M J. Interspecific recognition and discrimination based upon olfactory cues in northern swordtails[J]. Evolution, 1999, 53(3): 880-888. DOI:10.2307/2640728
[8]
HISCOCK M J, BROWN J A. Kin discrimination in juvenile brook trout (Salvelinus fontinalis) and the effect of odour concentration on kin preferences[J]. Canadian Journal of Zoology, 2000, 78(2): 278-282. DOI:10.1139/z99-209
[9]
HARA T J. Gustation[J]. Fish Physiology, 2006, 25: 45-96.
[10]
胡永源. 环境因素对斑马鱼行为节律影响的研究[D]. 济南: 山东师范大学, 2021.
HU Yongyuan. Effects of environmental factors on zebrafish behavior rhythm[D]. Jinan: Shandong Normal University, 2021.
[11]
SLABBEKOORN H, RIPMEESTER E A. Birdsong and anthropogenic noise: implications and applications for conservation[J]. Molecular Ecology, 2008, 17(1): 72-83. DOI:10.1111/j.1365-294X.2007.03487.x
[12]
SLABBEKOORN H, BOUTON N, VAN OPZEELAND I, et al. A noisy spring: the impact of globally rising underwater sound levels on fish[J]. Trends in Ecology & Evolution, 2010, 25(7): 419-427.
[13]
LAND M F, NILSSON D E. Animal eyes[M]. Oxford: Oxford University Press, 2012: 271.
[14]
BURKE R D, ANGERER L M, ELPHICK M R, et al. A genomic view of the sea urchin nervous system[J]. Developmental Biology, 2006, 300(1): 434-460. DOI:10.1016/j.ydbio.2006.08.007
[15]
CHANG Y, TIAN X, ZHANG W, et al. Family growth and survival response to two simulated water temperature environments in the sea urchin Strongylocentrotus intermedius[J]. International Journal of Molecular Sciences, 2016, 17(9): 1356. DOI:10.3390/ijms17091356
[16]
LI X, WANG C, LI N, et al. Combined effects of elevated temperature and crude oil pollution on oxidative stress and apoptosis in sea cucumber (Apostichopus japonicus, Selenka)[J]. International Journal of Environmental Research and Public Health, 2021, 18(2): 801. DOI:10.3390/ijerph18020801
[17]
ROMANES G J. Observations on the physiology of Echinodermata[J]. Zoological Journal of the Linnean Society, 1883, 17(99): 131-137. DOI:10.1111/j.1096-3642.1883.tb02044.x
[18]
CASTILLA J C. Responses of Asterias rubens to gravity[J]. Behaviour, 1975, 52(1/2): 84-94.
[19]
SIGL R, STREIBL S, LAFORSCH C. The role of vision for navigation in the crown-of-thorns sea star, Acanthaster planci[J]. Scientific Reports, 2016, 6(1): 1-7. DOI:10.1038/s41598-016-0001-8
[20]
GARM A. Sensory biology of starfish—with emphasis on recent discoveries in their visual ecology[J]. Integrative and Comparative Biology, 2017, 57(5): 1082-1092. DOI:10.1093/icb/icx086
[21]
COBB J L S. The fine structure of the pedicellariae of Echinus esculentus (L.)[J]. Journal of the Royal Microscopical Society, 1968, 88(2): 211-221. DOI:10.1111/j.1365-2818.1968.tb00609.x
[22]
FLOREY E, CAHILL M A. Ultrastructure of sea urchin tube feet: Evidence for connective tissue involvement in motor control[J]. Cell and Tissue Research, 1977, 177(2): 195-214.
[23]
SLOAN N A. The arm curling and terminal tube-foot responses of the asteroid Crossaster papposus (L.)[J]. Journal of Natural History, 1980, 14(4): 469-482. DOI:10.1080/00222938000770411
[24]
BOULAND C, MASSIN C, JANGOUX M. The fine structure of the buccal tentacles of Holothuria forskali (Echinodermata, Holothuroidea)[J]. Zoomorphology, 1982, 101(2): 133-149. DOI:10.1007/BF00312019
[25]
LAHAYE M C, JAUGOUX M. Functional morphology of the podia and ambulacral grooves of the comatulid crinoid Antedon bifida (Echinodermata)[J]. Marine Biology, 1985, 86(3): 307-318. DOI:10.1007/BF00397517
[26]
FLAMMANG P, JANGOUX M. Functional morphology of the locomotory podia of Holothuria forskali (Echinodermata, Holothuroida)[J]. Zoomorphology, 1992, 111(3): 167-178. DOI:10.1007/BF01632906
[27]
VANDENSPIEGEL D, FLAMMANG P, FOURMEAU D, et al. Fine structure of the dorsal papillae in the holothurioid Holothuria forskali (Echinodermata)[J]. Tissue and Cell, 1995, 27(4): 457-465. DOI:10.1016/S0040-8166(95)80066-2
[28]
YAMAMOTO M, YOSHIDA M. Fine structure of the ocelli of a synaptid holothurian, Opheodesoma spectabilis, and the effects of light and darkness[J]. Zoomorphologie, 1978, 90(1): 1-17. DOI:10.1007/BF00993740
[29]
ROBERTS R E, MOTTI C A, BAUGHMAN K W, et al. Identification of putative olfactory G-protein coupled receptors in crown-of-thorns starfish, Acanthaster planci[J]. BMC Genomics, 2017, 18(1): 1-15. DOI:10.1186/s12864-016-3406-7
[30]
CARDWELL J C. The development of animal physiology: the physiology of Aristotle[J]. Medical Library and Historical Journal, 1905, 3(1): 50-77.
[31]
CASTILLA J C, CRISP D J. Response of Asterias rubens to olfactory stimuli[J]. Journal of the Marine Biological Association of the United Kingdom, 1970, 50(3): 829-847. DOI:10.1017/S0025315400005075
[32]
CASTILLA J C, CRISP D J. Responses of Asterias rubens to water currents and their modification by certain environmental factors[J]. Netherlands Journal of Sea Research, 1973, 7: 171-190. DOI:10.1016/0077-7579(73)90043-4
[33]
GARM A, NILSSON D E. Visual navigation in starfish: first evidence for the use of vision and eyes in starfish[J]. Proceedings of the Royal Society B: Biological Sciences, 2014, 281(1777): 20133011. DOI:10.1098/rspb.2013.3011
[34]
SUMNER-ROONEY L, KIRWAN J D, LOWE E, et al. Extraocular vision in a brittle star is mediated by chromatophore movement in response to ambient light[J]. Current Biology, 2020, 30(2): 319-327. DOI:10.1016/j.cub.2019.11.042
[35]
HALL M R, KOCOT K M, BAUGHMAN K W, et al. The crown-of-thorns starfish genome as a guide for biocontrol of this coral reef pest[J]. Nature, 2017, 544(7649): 231-234. DOI:10.1038/nature22033
[36]
DELROISSE J, ULLRICH-LÜTER E, ORTEGA- MARTINEZ O, et al. High opsin diversity in a non- visual infaunal brittle star[J]. BMC Genomics, 2014, 15(1): 1-17. DOI:10.1186/1471-2164-15-1
[37]
SODERGREN E, WEINSTOCK G M, DAVIDSON E H, et al. The genome of the sea urchin Strongylocentrotus purpuratus[J]. Science, 2006, 314(5801): 941-952. DOI:10.1126/science.1133609
[38]
SAMANTA A, HUGHES T E T, MOISEENKOVA- BELL V Y. Transient Receptor Potential (TRP) channels[J]. Membrane protein complexes: Structure and function, 2018, 87: 141-165.
[39]
MAROTO R, RASO A, WOOD T G, et al. TRPC1 forms the stretch-activated cation channel in vertebrate cells[J]. Nature Cell Biology, 2005, 7(2): 179-185. DOI:10.1038/ncb1218
[40]
SPASSOVA M A, HEWAVITHARANA T, XU W, et al. A common mechanism underlies stretch activation and receptor activation of TRPC6 channels[J]. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(44): 16586-16591.
[41]
ZHANG X F, CHEN J, FALTYNEK C R, et al. Transient receptor potential A1 mediates an osmotically activated ion channel[J]. The European Journal of Neuroscience, 2008, 27(3): 605-611. DOI:10.1111/j.1460-9568.2008.06030.x
[42]
CHA S K, KIM J H, HUANG C L. Flow-induced activation of TRPV5 and TRPV6 channels stimulates Ca2+-activated K+ channel causing membrane hyperpolarization[J]. Biochimica et Biophysica Acta (BBA)- Molecular Cell Research, 2013, 1833(12): 3046-3053. DOI:10.1016/j.bbamcr.2013.08.017
[43]
ZAELZER C, HUA P, PRAGER-KHOUTORSKY M, et al. ΔN-TRPV1: A molecular co-detector of body temperature and osmotic stress[J]. Cell Reports, 2015, 13(1): 23-30. DOI:10.1016/j.celrep.2015.08.061
[44]
IUSO A, KRIŽAJ D. TRPV4-AQP4 interactions 'turbocharge' astroglial sensitivity to small osmotic gradients[J]. Channels (Austin), 2016, 10(3): 172-174. DOI:10.1080/19336950.2016.1140956
[45]
ISHIMARU Y, INADA H, KUBOTA M, et al. Transient receptor potential family members PKD1L3 and PKD2L1 form a candidate sour taste receptor[J]. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(33): 12569-12574.
[46]
STEIGELMAN K A, LELLI A, WU X, et al. Polycystin-1 is required for stereocilia structure but not for mechanotransduction in inner ear hair cells[J]. The Journal of Neuroscience, 2011, 31(34): 12241-12250. DOI:10.1523/JNEUROSCI.6531-10.2011
[47]
AUDO I, KOHL S, LEROY B P, et al. TRPM1 is mutated in patients with autosomal-recessive complete congenital stationary night blindness[J]. The American Journal of Human Genetics, 2009, 85(5): 720-729. DOI:10.1016/j.ajhg.2009.10.013
[48]
SAITO S, HAMANAKA G, KAWAI N, et al. Characterization of TRPA channels in the starfish Patiria pectinifera: involvement of thermally activated TRPA1 in thermotaxis in marine planktonic larvae[J]. Scientific Reports, 2017, 7(1): 1-14. DOI:10.1038/s41598-016-0028-x
[49]
LIN C, LIU X, SUN L, et al. Effects of different flow velocities on behavior and TRPA1 expression in the sea cucumber Apostichopus japonicus[J]. Journal of Oceanology and Limnology, 2020, 38(4): 1328-1340. DOI:10.1007/s00343-020-0061-2
[50]
ROBERTS R E, POWELL D, WANG T, et al. Putative chemosensory receptors are differentially expressed in the sensory organs of male and female crown-of-thorns starfish, Acanthaster planci[J]. BMC Genomics, 2018, 19(1): 1-13. DOI:10.1186/s12864-017-4368-0
[51]
RAIBLE F, TESSMAR-RAIBLE K, ARBOLEDA E, et al. Opsins and clusters of sensory G-protein-coupled receptors in the sea urchin genome[J]. Developmental Biology, 2006, 300(1): 461-475. DOI:10.1016/j.ydbio.2006.08.070
[52]
MARQUET N, CARDOSO J C R, LOURO B, et al. Holothurians have a reduced GPCR and odorant receptor-like repertoire compared to other echinoderms[J]. Scientific Reports, 2020, 10(1): 1-16. DOI:10.1038/s41598-019-56847-4
[53]
SANIA R E, CARDOSO J C R, LOURO B, et al. A new subfamily of ionotropic glutamate receptors unique to the echinoderms with putative sensory role[J]. Molecular Ecology, 2021, 30(24): 6642-6658. DOI:10.1111/mec.16206
[54]
ZHAO C, JI N, TIAN X, et al. Opsin4, Opsin5, and Pax6 significantly increase their expression in recently settled juveniles of the sea urchin Strongylocentrotus intermedius (Echinodermata: Echinoidea)[J]. Invertebrate Reproduction & Development, 2015, 59(3): 119-123.
[55]
YANG M, YU Y, DING J, et al. Effects of light intensity on Opsin4, Opsin5, and Pax6 expressions of the sea urchin Strongylocentrotus intermedius[J]. Marine Ecology, 2020, 41(4): e12593. DOI:10.1111/maec.12593
[56]
ZHAO C, DING J, YANG M, et al. Transcriptomes reveal genes involved in covering and sheltering behaviors of the sea urchin Strongylocentrotus intermedius exposed to UV-B radiation[J]. Ecotoxicology and Environmental Safety, 2019, 167: 236-241. DOI:10.1016/j.ecoenv.2018.10.031
[57]
ULLRICH-LUTER E M, DUPONT S, ARBOLEDA E, et al. Unique system of photoreceptors in sea urchin tube feet[J]. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(20): 8367-8372.
[58]
LESSER M P, CARLETON K L, BOTTGER S A, et al. Sea urchin tube feet are photosensory organs that express a rhabdomeric-like opsin and PAX6[J]. Proceedings of the Royal Society B: Biological Sciences, 2011, 278(1723): 3371-3379. DOI:10.1098/rspb.2011.0336
[59]
LIU X, LIN C, SUN L, et al. Behavioural response of different epithelial tissues of sea cucumber (Apostichopus japonicus) to light and differential expression of the light-related gene Pax6[J]. Marine and Freshwater Behaviour and Physiology, 2020, 53(2): 73-85. DOI:10.1080/10236244.2020.1767505
[60]
LIU X, LIN C, SUN L, et al. Transcriptome analysis of phototransduction-related genes in tentacles of the sea cucumber Apostichopus japonicus[J]. Comparative Biochemistry and Physiology Part D: Genomics and Proteomics, 2020, 34: 100675. DOI:10.1016/j.cbd.2020.100675
[61]
LOWE E K, GARM A L, ULLRICH-LÜTER E, et al. The crowns have eyes: multiple opsins found in the eyes of the crown-of-thorns starfish Acanthaster planci[J]. BMC Evolutionary Biology, 2018, 18(1): 1-12. DOI:10.1186/s12862-017-1072-2
[62]
DELROISSE J, LANTERBECQ D, EECKHAUT I, et al. Opsin detection in the sea urchin Paracentrotus lividus and the sea star Asterias rubens[J]. Cahiers De Biologie Marine, 2013, 54(1): 721-727.
[63]
SUMNER-ROONEY L, RAHMAN I A, SIGWART J D, et al. Whole-body photoreceptor networks are independent of 'lenses' in brittle stars[J]. Proceedings of the Royal Society B: Biological Sciences, 2018, 285(1871): 20172590. DOI:10.1098/rspb.2017.2590
[64]
赵欢. 刺参Apostichopus japonicus (Selenka)对温度胁迫响应分子机理的基础研究[D]. 青岛: 中国科学院海洋研究所, 2011.
ZHAO Huan. Fundamental research on the molecular mechanism in response to heat stress in Apostichopus japonicus (Selenka)[D]. Qingdao: Institute of Oceanology, Chinese Academy of Sciences, 2011.
[65]
MENG X, JI T, DONG Y, et al. Thermal resistance in sea cucumbers (Apostichopus japonicus) with differing thermal history: the role of Hsp70[J]. Aquaculture, 2009, 294(3/4): 314-318.
[66]
MEJÍA-GUTIÉRREZ L M, BENÍTEZ-VILLALOBOS F, DÍAZ-MARTÍNEZ J P. Effect of temperature increase on fertilization, embryonic development and larval survival of the sea urchin Toxopneustes roseus in the Mexican south Pacific[J]. Journal of Thermal Biology, 2019, 83: 157-164. DOI:10.1016/j.jtherbio.2019.05.011
[67]
BROTHERS C J, MCCLINTOCK J B. The effects of climate-induced elevated seawater temperature on the covering behavior, righting response, and Aristotle's lantern reflex of the sea urchin Lytechinus variegatus[J]. Journal of Experimental Marine Biology and Ecology, 2015, 467(6): 33-38.
[68]
YANG H, YUAN X, ZHOU Y, et al. Effects of body size and water temperature on food consumption and growth in the sea cucumber Apostichopus japonicus (Selenka) with special reference to aestivation[J]. Aquaculture Research, 2005, 36(11): 1085-1092. DOI:10.1111/j.1365-2109.2005.01325.x
[69]
BARNES D, CROOK A. Quantifying behavioural determinants of the coastal European sea urchin Paracentrotus lividus[J]. Marine Biology, 2001, 138(6): 1205-1212. DOI:10.1007/s002270100543
[70]
赵冲, 罗世滨, 周海森, 等. 温度对海刺猬(Glyptocidaris crenularis)和中间球海胆(Strongylocentrotus intermedius)遮蔽行为的影响[J]. 海洋与湖沼, 2014, 45(3): 522-528.
ZHAO Chong, LUO Shibin, ZHOU Haisen, et al. Effect of temperature on covering behavior of the sea urchins Glyptocidaris crenularis and Strongylocentrotus intermedius[J]. Oceanologia et Limnologia Sinica, 2014, 45(3): 522-528.
[71]
FUJI A. Ecological studies on the growth and food consumption of Japanese common littoral sea urchin, Strongylocentrotus intermedius (A. Agassiz)[J]. Memoirs of the Faculty of Fisheries Hokkaido University, 1967, 15(2): 83-160.
[72]
CLAPHAM D E. TRP channels as cellular sensors[J]. Nature, 2003, 426(6966): 517-524. DOI:10.1038/nature02196
[73]
KANG K, PANZANO V C, CHANG E C, et al. Modulation of TRPA1 thermal sensitivity enables sensory discrimination in Drosophila[J]. Nature, 2011, 481(7379): 76-80.
[74]
LI Y, WANG R, XUN X, et al. Sea cucumber genome provides insights into saponin biosynthesis and aestivation regulation[J]. Cell Discovery, 2018, 4(1): 1-17. DOI:10.1038/s41421-017-0001-2
[75]
PINCEBOURDE S, SANFORD E, HELMUTH B. An intertidal sea star adjusts thermal inertia to avoid extreme body temperatures[J]. The American Naturalist, 2009, 174(6): 890-897. DOI:10.1086/648065
[76]
李元山, 王远隆, 李美芝. 马粪海胆的生态研究[J]. 海洋湖沼通报, 1995(2): 37-42.
LI Yuanshan, WANG Yuanlong, LI Meizhi. Studies of the ecology of the sea urchin Hemicentrotus pulcherrimus (A. Aqassiz)[J]. Transactions of Oceanology and Limnology, 1995(2): 37-42.
[77]
周学家, 刘信艺, 王世信, 等. 山东近海海星种类及分布[J]. 齐鲁渔业, 1996, 13(1): 41-43.
ZHOU Xuejia, LIU Xinyi, WANG Shixin, et al. The primary study on the species composition and ecological distribution of Asteroidae in Shandong offshore[J]. Shandong Fisheries, 1996, 13(1): 41-43.
[78]
杨红生, 周毅, 张涛. 刺参生物学——理论与实践[M]. 北京: 科学出版社, 2014: 74.
YANG Hongsheng, Zhou Yi, Zhang Tao. Sea cucumber biology—theory and practice[M]. Beijing: Science Press, 2014: 74.
[79]
SUGNI M, FASSINI D, BARBAGLIO A, et al. Comparing dynamic connective tissue in echinoderms and sponges: morphological and mechanical aspects and environmental sensitivity[J]. Marine Environmental Research, 2014, 93(2): 123-132.
[80]
CAMPBELL A C, LAVERACK M. The responses of pedicellariae from Echinus esculentus (L.)[J]. Journal of Experimental Marine Biology and Ecology, 1968, 2(3): 191-214. DOI:10.1016/0022-0981(68)90016-6
[81]
EHLERS U. Ultrastructure of the statocysts in the apodous sea cucumber Leptosynapta inhaerens (Holothuroidea, Echinodermata)[J]. Acta Zoologica, 1997, 78(1): 61-68. DOI:10.1111/j.1463-6395.1997.tb01127.x
[82]
KAIFU K, AKAMATSU T, SEGAWA S. Underwater sound detection by cephalopod statocyst[J]. Fisheries Science, 2008, 74(4): 781-786. DOI:10.1111/j.1444-2906.2008.01589.x
[83]
GUSTAFSON T, LUNDGREN B, TREUFELDT R. Serotonin and contractile activity in the echinopluteus: a study of the cellular basis of larval behaviour[J]. Experimental Cell Research, 1972, 72(1): 115-139. DOI:10.1016/0014-4827(72)90573-3
[84]
DROLET D, HIMMELMAN J. Role of current and prey odour in the displacement behaviour of the sea star Asterias vulgaris[J]. Canadian Journal of Zoology, 2004, 82(10): 1547-1553. DOI:10.1139/z04-135
[85]
KAWAMATA S. Effect of wave-induced oscillatory flow on grazing by a subtidal sea urchin Strongylocentrotus nudus (A. Agassiz)[J]. Journal of Experimental Marine Biology and Ecology, 1998, 224(1): 31-48. DOI:10.1016/S0022-0981(97)00165-2
[86]
MOGAMI Y, OOBAYASHI C, YAMAGUCHI T, et al. Negative geotaxis in sea urchin larvae: a possible role of mechanoreception in the late stages of development[J]. Journal of Experimental Biology, 1988, 137(1): 141-156. DOI:10.1242/jeb.137.1.141
[87]
CHALFIE M. Neurosensory mechanotransduction[J]. Nature Reviews Molecular Cell Biology, 2009, 10(1): 44-52. DOI:10.1038/nrm2595
[88]
BROHAWN S G, SU Z, MACKINNON R. Mechanosensitivity is mediated directly by the lipid membrane in TRAAK and TREK1 K+ channels[J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(9): 3614-3619.
[89]
CHRISTENSEN A P, COREY D P. TRP channels in mechanosensation: direct or indirect activation?[J] Nature Reviews Neuroscience, 2007, 8(7): 510-521.
[90]
MARTINAC B, BUECHNER M, DELCOUR A H, et al. Pressure-sensitive ion channel in Escherichia coli[J]. Proceedings of the National Academy of Sciences of the United States of America, 1987, 84(8): 2297-2301.
[91]
COSTE B, MATHUR J, SCHMIDT M, et al. Piezo1 and Piezo2 are essential components of distinct mechanically activated cation channels[J]. Science, 2010, 330(6000): 55-60. DOI:10.1126/science.1193270
[92]
ROSSIER B C. The epithelial sodium channel (ENaC): new insights into ENaC gating[J]. Pflügers Archiv- European Journal of Physiology, 2003, 446(3): 314-316. DOI:10.1007/s00424-003-1056-5
[93]
JIN Y, YAGUCHI S, SHIBA K, et al. Glutathione transferase theta in apical ciliary tuft regulates mechanical reception and swimming behavior of sea urchin embryos[J]. Cytoskeleton (Hoboken), 2013, 70(8): 453-470. DOI:10.1002/cm.21127
[94]
VOETS T, NILIUS B. TRPs make sense[J]. The Journal of Membrane Biology, 2003, 192(1): 1-8. DOI:10.1007/s00232-002-1059-8
[95]
FUJIU K, NAKAYAMA Y, IIDA H, et al. Mechanoreception in motile flagella of Chlamydomonas[J]. Nature Cell Biology, 2011, 13(5): 630-632. DOI:10.1038/ncb2214
[96]
BENTON R, VANNICE K S, GOMEZ-DIAZ C, et al. Variant ionotropic glutamate receptors as chemosensory receptors in Drosophila[J]. Cell, 2009, 136(1): 149-162. DOI:10.1016/j.cell.2008.12.001
[97]
BOS A R, GUMANAO G S, MUELLER B, et al. Management of crown-of-thorns sea star (Acanthaster planci L.) outbreaks: removal success depends on reef topography and timing within the reproduction cycle[J]. Ocean & Coastal Management, 2013, 71(1): 116-122.
[98]
MILLOTT N. The photosensitivity of Echinoids[J]. Advances in Marine Biology, 1976, 13: 1-52.
[99]
PISUT D. The distance chemosensory behavior of the sea urchin Lytechinus variegatus[D]. Georgia: Georgia Institute of Technology, 2004.
[100]
MARQUET N, HUBBARD P C, DA SILVA J P, et al. Chemicals released by male sea cucumber mediate aggregation and spawning behaviours[J]. Scientific Reports, 2018, 8(1): 239. DOI:10.1038/s41598-017-18655-6
[101]
LAWRENCE J M. A chemical alarm response in Pycnopodia helianthoides (Echinodermata: Asteroidea)[J]. Marine & Freshwater Behaviour & Physiology, 1991, 19(1): 39-44.
[102]
CLEMENTS C S, HAY M E. Competitors as accomplices: seaweed competitors hide corals from predatory sea stars[J]. Proceedings of the Royal Society B: Biological Sciences, 2015, 282(1814): 20150714. DOI:10.1098/rspb.2015.0714
[103]
CAMPBELL A C. The form and function of the skeleton in pedicellariae from Echinus esculentus L[J]. Tissue and Cell, 1972, 4(4): 647-661. DOI:10.1016/S0040-8166(72)80036-3
[104]
CAMPBELL A C, COPPARD S, D'ABREO C, et al. Escape and aggregation responses of three echinoderms to conspecific stimuli[J]. The Biological Bulletin, 2001, 201(2): 175-185. DOI:10.2307/1543332
[105]
CASTILLA J C. Avoidance behaviour of Asterias rubens to extracts of Mytilus edulis, solutions of bacteriological peptone, and selected amino acids[J]. Marine Biology, 1972, 15(3): 236-245. DOI:10.1007/BF00383553
[106]
THOMPSON M, DROLET D, HIMMELMAN J. Localization of infaunal prey by the sea star Leptasterias polaris[J]. Marine Biology, 2005, 146(5): 887-894. DOI:10.1007/s00227-004-1497-1
[107]
HAMEL J F, MERCIER A. Prespawning behavior, spawning, and development of the brooding starfish Leptasterias polaris[J]. The Biological Bulletin, 1995, 188(1): 32-45. DOI:10.2307/1542065
[108]
GÜLER M, LÖK A. Foraging behaviors of sea stars, Marthasterias glacialis and Astropecten aranciacus (Asteroidea) and predator-prey interactions with warty venus clam, Venus verrucosa (Bivalvia)[J]. Journal of Experimental Marine Biology and Ecology, 2015, 465: 99-106. DOI:10.1016/j.jembe.2014.12.018
[109]
VADAS R L. Preferential Feeding: An optimization strategy in sea urchins[J]. Ecological Monographs, 1977, 47(4): 337-371. DOI:10.2307/1942173
[110]
SNYDER N R F, SNYDER H A. Alarm response of Diadema antillarum[J]. Science, 1970, 168(3928): 276-278. DOI:10.1126/science.168.3928.276
[111]
CAMPBELL A C. Observations on the activity of echinoid pedicellariae[J]. Marine & Freshwater Behaviour & Physiology, 1976, 4(1): 25-39.
[112]
MILLER R L. Evidence for the presence of sexual pheromones in free-spawning starfish[J]. Journal of Experimental Marine Biology and Ecology, 1989, 130(3): 205-221. DOI:10.1016/0022-0981(89)90164-0
[113]
ACHE B W, YOUNG J M. Olfaction: diverse species, conserved principles[J]. Neuron, 2005, 48(3): 417-430. DOI:10.1016/j.neuron.2005.10.022
[114]
BJARNADÓTTIR T K, FREDRIKSSON R, SCHIÖTH H B. The gene repertoire and the common evolutionary history of glutamate, pheromone (V2R), taste(1) and other related G protein-coupled receptors[J]. Gene, 2005, 362: 70-84. DOI:10.1016/j.gene.2005.07.029
[115]
LIBERLES S D, BUCK L B. A second class of chemosensory receptors in the olfactory epithelium[J]. Nature, 2006, 442(7103): 645-650. DOI:10.1038/nature05066
[116]
MOMBAERTS P. Seven-transmembrane proteins as odorant and chemosensory receptors[J]. Science, 1999, 286(5440): 707-711. DOI:10.1126/science.286.5440.707
[117]
CUMMINS S F, ERPENBECK D, ZOU Z, et al. Candidate chemoreceptor subfamilies differentially expressed in the chemosensory organs of the mollusc Aplysia[J]. BMC Biology, 2009, 7(1): 1-20. DOI:10.1186/1741-7007-7-1
[118]
CROSET V, RYTZ R, CUMMINS S F, et al. Ancient protostome origin of chemosensory ionotropic glutamate receptors and the evolution of insect taste and olfaction[J]. PLoS Genetics, 2010, 6(8): e1001064. DOI:10.1371/journal.pgen.1001064
[119]
LIANG D, WANG T, ROTGANS B A, et al. Ionotropic receptors identified within the tentacle of the freshwater snail Biomphalaria glabrata, an intermediate host of Schistosoma mansoni[J]. PLoS One, 2016, 11(6): e0156380. DOI:10.1371/journal.pone.0156380
[120]
AIZENBERG J, TKACHENKO A, WEINER S, et al. Calcitic microlenses as part of the photoreceptor system in brittlestars[J]. Nature, 2001, 412(6849): 819-822. DOI:10.1038/35090573
[121]
张继文, 田涛, 姜城, 等. 海燕视觉的初步研究[J]. 安徽农学通报, 2019, 25(8): 48-52.
ZHANG Jiwen, TIAN Tao, JIANG Cheng, et al. A preliminary study on the vision of Asteroidea[J]. Anhui Agricultural Science Bulletin, 2019, 25(8): 48-52. DOI:10.3969/j.issn.1007-7731.2019.08.021
[122]
PETIE R, GARM A, HALL M R. Crown-of-thorns starfish have true image forming vision[J]. Frontiers in Zoology, 2016, 13(1): 1-10. DOI:10.1186/s12983-016-0133-5
[123]
PETIE R, HALL M R, HYLDAHL M, et al. Visual orientation by the crown-of-thorns starfish (Acanthaster planci)[J]. Coral Reefs, 2016, 35(4): 1139-1150. DOI:10.1007/s00338-016-1478-0
[124]
GARM A, KORSVIGNIELSEN C, HALL M, et al. Eyes and negative phototaxis in juvenile crown-of- thorns starfish, Acanthaster species complex[J]. Biology Open, 2019, 8(6): bio041814.
[125]
MUELLER B, BOS A R, GRAF G, et al. Size-specific locomotion rate and movement pattern of four common Indo-Pacific sea stars (Echinodermata; Asteroidea)[J]. Aquatic Biology, 2011, 12(2): 157-164. DOI:10.3354/ab00326
[126]
SUMNER-ROONEY L, KIRWAN J D, LÜTER C, et al. Run and hide: visual performance in a brittle star[J]. Journal of Experimental Biology, 2021, 224(11): jeb236653. DOI:10.1242/jeb.236653
[127]
HENDLER G. Brittlestar color‐change and phototaxis (Echinodermata: Ophiuroidea: Ophiocomidae)[J]. Marine Ecology, 1984, 5(4): 379-401. DOI:10.1111/j.1439-0485.1984.tb00131.x
[128]
DELROISSE J, MALLEFET J, FLAMMANG P. De novo adult transcriptomes of two European brittle stars: spotlight on opsin-based photoreception[J]. PloS One, 2016, 11(4): e0152988. DOI:10.1371/journal.pone.0152988
[129]
BLEVINS E, JOHNSEN S. Spatial vision in the echinoid genus Echinometra[J]. Journal of Experimental Biology, 2004, 207(24): 4249-4253. DOI:10.1242/jeb.01286
[130]
YERRAMILLI D, JOHNSEN S. Spatial vision in the purple sea urchin Strongylocentrotus purpuratus (Echinoidea)[J]. Journal of Experimental Biology, 2010, 213(2): 249-255. DOI:10.1242/jeb.033159
[131]
ADAMS N L. UV radiation evokes negative phototaxis and covering behavior in the sea urchin Strongylocentrotus droebachiensis[J]. Marine Ecology Progress Series, 2001, 213(8): 87-95.
[132]
KEHAS A J, THEOHARIDES K A, GILBERT J J. Effect of sunlight intensity and albinism on the covering response of the Caribbean sea urchin Tripneustes ventricosus[J]. Marine Biology, 2005, 146(6): 1111-1117. DOI:10.1007/s00227-004-1514-4
[133]
SIGG J, LLOYD-KNIGHT K, BOAL J. UV radiation influences covering behaviour in the urchin Lytechinus variegatus[J]. Journal of the Marine Biological Association of the United Kingdom, 2007, 87(5): 1257-1261. DOI:10.1017/S0025315407055865
[134]
LIN C, ZHANG L, LIU S, et al. A comparison of the effects of light intensity on movement and growth of albino and normal sea cucumbers (Apostichopus japonicus Selenka)[J]. Marine & Freshwater Behaviour & Physiology, 2013, 46(5/6): 351-366.
[135]
CHOE H W, PARK J H, KIM Y J, et al. Transmembrane signaling by GPCRs: insight from rhodopsin and opsin structures[J]. Neuropharmacology, 2011, 60(1): 52-57. DOI:10.1016/j.neuropharm.2010.07.018
[136]
D'ANIELLO S, DELROISSE J, VALERO-GRACIA A, et al. Opsin evolution in the Ambulacraria[J]. Marine Genomics, 2015, 24(2): 177-183.
[137]
RAMIREZ M D, PAIRETT A N, PANKEY M S, et al. The last common ancestor of most bilaterian animals possessed at least nine opsins[J]. Genome Biology and Evolution, 2016, 8(12): 3640-3652.
[138]
PAGANOS P, ULLRICH-LÜTER E, CACCAVALE F, et al. A new model organism to investigate extraocular photoreception: opsin and retinal gene expression in the sea urchin Paracentrotus lividus[J]. Cells, 2022, 11(17): 2636. DOI:10.3390/cells11172636
[139]
LEUNG N Y, MONTELL C. Unconventional roles of opsins[J]. Annual Review of Cell and Developmental Biology, 2017, 33: 241-264. DOI:10.1146/annurev-cellbio-100616-060432
[140]
ZHANG X, SUN L, YUAN J, et al. The sea cucumber genome provides insights into morphological evolution and visceral regeneration[J]. PLoS Biology, 2017, 15(10): e2003790. DOI:10.1371/journal.pbio.2003790