海洋与湖沼  2017, Vol. 48 Issue (2): 221-231   PDF    
http://dx.doi.org/10.11693/hyhz20161000228
中国海洋湖沼学会主办。
0

文章信息

张丛, 鲍献文, 丁扬, 毕聪聪, 万凯. 2017.
ZHANG Cong, BAO Xian-Wen, DING Yang, BI Cong-Cong, WAN Kai. 2017.
南海北部陆架坡折带潮流和低频流特征分析
TIDAL AND SUBTIDAL CURRENT CHARACTERISTICS OVER THE SHELF EAK IN THE NORTHERN SOUTH CHINA SEA
海洋与湖沼, 48(2): 221-231
Oceanologia et Limnologia Sinica, 48(2): 221-231.
http://dx.doi.org/10.11693/hyhz20161000228

文章历史

收稿日期:2016-10-25
收修改稿日期:2016-12-19
南海北部陆架坡折带潮流和低频流特征分析
张丛1,2, 鲍献文1,2, 丁扬2, 毕聪聪1,2, 万凯3     
1. 中国海洋大学海洋与大气学院 青岛 266100;
2. 中国海洋大学物理海洋教育部重点实验室 青岛 266100;
3. 国家海洋局北海海洋工程勘察研究院 青岛 266061
摘要:利用旋转谱分析、调和分析和低通滤波的方法,对1987年8月至1988年1月南海北部东沙附近陆架坡折带处定点海流观测资料进行分析,研究了该区域定常余流、潮流和低频流的特征。各观测层次定常余流基本为西向流,垂向呈现较强的正压性。潮流以日分潮和半日分潮为主,呈顺时针方向旋转,全日潮流椭圆长轴普遍大于半日潮流,冬季K1分潮振幅在近底层明显增大,海流在中间层存在明显的惯性振荡。从能量角度分析,剩余流占海流总能量比例较大,定常余流能量主要存在于沿岸线方向,而垂直于岸线方向的能量主要由潮流和剩余流构成。低频流存在显著的季节变化,1988年1月呈现明显的顺时针旋转形态。冬季海表面风应力与次表层低频流有较强的相关性。结合OFES(Ocean General Circulation Model for the Earth Simulator)模拟结果,利用动量平衡分析的方法探究了动量方程中各项对低频流的贡献以及1988年1月次表层出现北向流的动力机制。冬季低频流具有较强的地转流特征,垂向分布受海水层化影响;东北风松弛和反气旋涡的联合作用是次表层出现偏北向流动的主要原因。
关键词南海北部    潮流    低频流    地转流    反气旋涡    
TIDAL AND SUBTIDAL CURRENT CHARACTERISTICS OVER THE SHELF EAK IN THE NORTHERN SOUTH CHINA SEA
ZHANG Cong1,2, BAO Xian-Wen1,2, DING Yang2, BI Cong-Cong1,2, WAN Kai3     
1. College of Oceanic and Atmospheric Sciences, Ocean University of China, Qingdao 266100, China;
2. Key Laboratory of Physical Oceanography, Ministry of Education, Ocean University of China, Qingdao 266100, China;
3. Beihai Offshore Engineering Survey Institute, State Oceanic Administration, Qingdao 266061, China
Abstract: Rotary spectral, harmonic and low-pass filter analyses were performed to examine the characteristics of the steady, tidal and subtidal currents over the shelf break in the northern South China Sea (NSCS) based on the observed current data derived from a mooring current meter from August 1987 to January 1988. Steady currents were mainly westward at each layer, showing a barotropic feature in the vertical. Observed tidal currents were dominated by diurnal and semi-diurnal tides with a clockwise rotation. Major axes of the diurnal tidal ellipses were longer than those of the semi-diurnal ones. Amplitude of K1 constituent obviously increased near the bottom in winter. There was a prominent inertial oscillation in the intermediate layer. Energy of the residual current was larger than other components in both along-and cross-shore directions. Energy of the steady current mainly existed in the along-shore direction, while energy in the cross-shore direction was controlled by the tidal current and residual current. Subtidal current featured a remarkable seasonal variation with a clockwise rotation at 50 and 100m layers in January 1988. A high correlation was achieved between the sea surface wind stress and subtidal current velocity at the subsurface layer in winter. Combining with the model-computed results from OFES (Ocean General Circulation Model for the Earth Simulator), the momentum budget was analyzed to investigate the contributions of the momentum balance terms to the subtidal current over the shelf break and the dynamical mechanism of the northward flow at the subsurface layer in January 1988. The results suggest that the subtidal current was prominently geostrophic in winter, and the northward subtidal flow was driven by both the northeasterly wind relaxation and the anticyclonic eddy passing the station in January 1988.
Key words: northern South China Sea     tidal current     subtidal current     geostrophic current     anticyclonic eddy    

南海是太平洋西部最大的边缘海, 由广阔的陆架、狭窄而陡峭的陆坡以及较深的中央海盆构成。南海北部海区一般指106°—121°E, 17°—24°N的区域 (图 1), 东部通过吕宋海峡与太平洋相连, 东北部经台湾海峡与东海相接。南海北部海区海流变化复杂, 受海底地形、海表面强迫 (季风、热通量、蒸发和降水)、潮流、地表径流以及周边海峡水交换等诸多因素影响。

已有的观测及研究表明, 南海北部潮流受四个主要分潮 (K1、O1、M2和S2) 控制 (Fang et al, 1999; Duda et al, 2004), 正压和斜压潮流均以全日潮为主 (邱章等, 1999, 2000; 司广成等, 2012), 内潮的潮流振幅存在显著的空间变化 (张效谦等, 2005)。方文东等 (2000)发现1998年5—6月东沙以南陆坡附近低频流的性质与夏季风场引起的直接效应不一致。Yang (2006)利用低通滤波的方法对南海北部陆架处的海流观测资料进行了分析, 认为冬季逆风流不是持续存在的, 是由东北风松弛引起的。杨庆轩等 (2008)利用旋转谱和频率波数谱等方法对南海北部定点锚系海流观测资料进行分析, 发现正压和斜压的全日潮和半日潮的振幅及潮流能量均存在明显的周期性振荡。何琦等 (2012)利用调和分析的方法对南海北部陆架陆坡区的海流观测资料进行研究, 发现陆坡区的定常余流存在明显的季节变化, 而陆架区余流具有明显的逆风性。熊学军 (2013)通过分析2006—2007年冬季近两个月的潜标观测结果, 发现冬季该海域流动基本为西南向, 北向和东北向流出现的时间很少。Li等 (2014)分析了南海北部陆架区锚系ADCP (acoustic doppler current profiler) 海流资料, 认为2009—2010年冬季南海北部陆架上的流动是风和中尺度涡共同驱动的结果。

传统观点认为南海暖流主轴大致位于南海北部陆架坡折带 (管秉贤, 2002), 该区域流动明显受到沿陆坡向西南方向传播的中尺度涡影响, 其特征和动力机制成为近年来学者关注的热点。但南海北部的海流观测资料主要来源于短期走航测流或周日连续锚定观测, 长期定点观测资料较少, 且大都限于水深较浅的陆架区域。由于陆架坡折带处海底地形变化剧烈, 数值模型对该区域流动的模拟结果存在较大的偏差 (Xue et al, 2004), 因此较长期的海流观测资料对研究该海域的流动特征具有重要的意义。本文利用1987年8月至1988年1月南海北部东沙以西位于陆架坡折带处的定点海流连续观测资料, 研究了该区域的定常余流、潮流和低频流的特征和季节变化规律, 初步分析了观测期间北向流出现的动力机制。

1 资料与方法 1.1 资料获取

1987年8月13日至1988年2月5日在东沙以西位于20°49′N, 115°41′E的C1站安放安德拉RCM-4型海流计进行三个阶段的锚系海流观测。C1站水深约340m, 观测站位置如图 1所示。观测采样间隔为15min, 垂向采样层次为50、100、200和300m。对海流数据进行质量控制剔除缺测和奇异值后, 选取了1987年8月14日至1988年1月31日每层16416个有效海流数据进行分析。同时还获得了50m层的温盐观测资料。选取空间分辨率为0.25°×0.25°, 时间分辨率为6小时的CCMP (Cross-Calibrated Multi-Platform) 风场数据 (Atlas et al, 2011) 与海流观测资料进行相关性分析。OFES (Ocean General Circulation Model for the Earth Simulator) 模型是基于MOM3 (Modular Ocean Model ver.3) 开发的全球海洋环流模型, 水平分辨率为0.1°×0.1°, 垂向分为54层, 能够较好模拟涡旋尺度的海洋动力过程。因此选用OFES模型后报的温盐、海流及海表面高度数据对1988年1月次表层出现北向流的动力机制进行分析。

图 1 南海北部区域 Fig. 1 The northern South China Sea (contours, observation site (asterisk) and reference site (dot)) 注:等值线为水深分布 (单位: m); 星号为安放海流计的观测站位; 圆点为参考站位置
1.2 分析方法

旋转谱分析能够较好的确定海流顺时针和逆时针旋转的能量, 并能清晰的显示海流信号的显著周期 (Ding et al, 2013)。本文通过对海流观测资料进行旋转谱分析, 确定其主要频率和能量信号。

以海流北向分量v(t, z) 为例, 采用调和分析方法可将海流分解为

    (1)

式中, 为定常余流, 是分析时段内准定常态的较为稳定的流动; 为潮流, 是各分潮流叠加之和; 为剩余流, 是实测海流去除定常余流和潮流后的剩余部分, 主要是流动中的高频成分 (于华明等, 2008; 何琦等, 2012)。本文利用T_TIDE调和分析程序 (Pawlowicz et al, 2002) 对各层海流观测时间序列进行调和分析, 得到各层海流的定常余流、四个主要分潮 (全日分潮K1和O1; 半日分潮M2和S2) 的潮流椭圆要素以及海流各个组分能量占总能量的比例。

另外, 利用pl66tn滤波器 (Beardsley et al, 1983) 对各层海流和风资料进行40小时的低通滤波, 得到去除潮流和惯性振荡等高频信号的低频流和风的时间序列, 并分析了次表层低频流的特征及其与海表面风的相关关系。

2 结果与分析 2.1 潮流特征分析 2.1.1 旋转谱分析

图 2为四个观测层次海流时间序列的旋转谱密度分布, 各层谱密度值均高于95%置信水平。分析结果显示, 各层海流具有相似的能量分布; 谱密度存在日周期和半日周期两个显著的频率峰值; 日周期频率的谱峰密度明显高于半日周期, 说明C1站处潮流以全日分潮为主; 各层潮流顺时针方向旋转的能量明显高于逆时针方向, 说明潮流在C1站处主要为顺时针运动; 日周期的信号在垂向上显现出近表层和近底层能量高、中层能量低的分布规律; 100和200m层存在频率约为0.75cpd (cycles per day) 的谱峰信号, 与C1站处的理论惯性频率 (f≈0.712cpd) 相近, 其能量值高于半日周期频率的能量值, 说明C1站处中间层存在较明显的惯性振荡。

图 2 50、100、200和300m层海流旋转谱 Fig. 2 Rotary spectra of currents measured at depths of 50, 100, 200, and 300m 注: 100、200和300m层旋转谱分别向下平移102、104和106
2.1.2 调和分析

8月中旬至翌年1月各层定常余流如图 3所示。8月下旬各层流速在垂向上变化不明显, 50和100m层流向为西偏北向, 而200和300m层为西偏南向; 9月50和100m层流速较小, 各层流向随深度变化不大; 10月50、100和200m层流速和流向变化均不明显, 而近底层出现一个较小的反向流动; 11月和12月各层流速随深度都呈现减小的趋势, 流向在垂向上变化不明显, 12月东北风较强, 50和100m层流速较大, 均超过20cm/s; 1月流速在100和200m层较大 (超过15cm/s), 而50和300m层较小, 流向基本不随深度变化。站位处理论Ekman深度约为110m, 但100m层流动较50m层没有明显的旋转, 说明上层定常余流除了受海表面风影响外, 还受该处海水温盐结构、黑潮入侵以及涡旋等其他因素的影响 (Cai et al, 2002; Hsueh et al, 2004; Xue et al, 2004)。综上所述, 除10月300m层外, 各月定常余流基本为西向流动, 垂向上具有较强的正压性。除个别时段外, 各层流速和流向随时间变化不明显。观测站位于传统的冬季逆风流流区, 但是从定常余流中没有发现持续存在的冬季逆风流。以上结果与何琦等 (2012)B站 (见图 1)50m层以下的观测结果相符。

图 3 各月50、100、200和300m层定常余流 Fig. 3 Monthly steady currents at depths of 50, 100, 200, and 300 m 注:红色箭头为海表面10m处月平均风矢量; 黑色箭头为定常余流矢量

根据潮流类型比率(W为分潮潮流椭圆长半轴), 计算得出各层K值分别为6.7、2.4、6.3和5.8, 可以看出除100m层潮流类型为不正规全日潮流外, 其余三层均为正规全日潮流。秋季 (8月下旬、9月和10月) 和冬季 (11月、12月和翌年1月) 主要分潮的潮流椭圆如图 4所示, 椭圆要素计算结果见表 1。结果表明, 全日潮流均沿顺时针方向旋转, 且普遍大于半日潮流, K1分潮最大流速为21.2cm/s, 而M2分潮仅为6.7cm/s; 冬季K1分潮300m层明显增强, 较秋季增大约16.5cm/s, 形成表底层较强、中间层较弱的垂向结构, 与Li等 (2014)M3站 (见图 1) 观测结果一致; 冬季K1分潮位相随深度减小, 近表层和近底层位相差接近180°, 这个特征与之前的研究结果相符 (Duda et al, 2008; Guo et al, 2012; Xu et al, 2013); 冬季K1分潮在近底层增强可能与海水层结强弱和内潮的产生有关 (Müller, 2012)。

图 4 秋季和冬季50、100、200和300m层4个主要分潮 (K1、O1、M2和S2) 的潮流椭圆 Fig. 4 Tidal ellipses for K1, O1, M2, and S2constituents at depths of 50, 100, 200, and 300m 注:红色椭圆代表冬季, 黑色椭圆代表秋季

表 1 秋季 (F) 和冬季 (W) 各层潮流椭圆要素 Tab. 1 Elliptical parameters of tidal currents at different layers in autumn (F) and winter (W)
分潮 频率 (/h) 水深 (m) W(cm/s) ω(cm/s) θ( ) χ( )
F W F W F W F W
K1 0.04178 50 15.1 18.3 –9.3 –13.4 122.0 127.0 314.7 283.9
100 2.7 9.3 –0.6 –5.8 109.4 149.3 41.2 275.1
200 7.9 7.8 –5.8 –1.2 95.2 108.9 204.5 130.1
300 4.6 21.1 –2.2 –9.1 114.5 108.2 137.3 112.3
O1 0.03873 50 13.4 8.3 –9.6 –4.5 87.6 89.6 207.8 79.0
100 8.5 6.3 –3.6 –2.7 68.3 72.7 237.3 102.8
200 13.6 5.5 –5.4 –0.5 133.7 136.4 354.1 224.7
300 4.6 9.1 –1.0 –2.1 160.0 126.8 32.5 228.1
M2 0.08051 50 3.0 5.0 –0.2 –1.2 172.7 157.0 122.4 287.7
100 6.7 4.4 –3.4 –0.6 172.0 170.9 144.1 307.4
200 3.7 2.2 0.0 0.9 122.1 107.9 123.0 206.7
300 3.2 3.8 –1.1 0.4 104.4 129.7 100.7 226.8
S2 0.08333 50 3.0 0.7 –2.3 0.2 138.0 111.2 157.0 90.7
100 2.1 1.2 0.7 0.2 101.4 149.6 91.1 143.7
200 1.8 1.1 0.4 0.5 66.3 8.3 70.2 26.0
300 0.8 1.2 –0.1 –0.5 112.7 12.3 136.1 8.2
注:表中潮流椭圆短轴 (ω) 正负代表旋转方向:负为顺时针旋转; 正为逆时针旋转; Wωθχ分别为分潮潮流椭圆的长半轴、短半轴、最大分潮流速的方向和迟角

将海流各个组分分解为沿岸线和垂直于岸线方向的分量, 各组分能量与实测海流平均动能的比值列于表 2, 其中uv分别代表观测流各组分的沿岸线和垂直于岸线方向的分量; E(u)、Eu) 分别代表沿岸线方向的实测海流、定常余流、潮流、剩余流的能量值。结果表明, 在垂直于岸线的方向上, 海流能量主要由潮流和剩余流组成; 由于各层全日分潮的主轴多为西北—东南向, 因此垂直于岸线方向的潮流能量比例大于沿岸方向; 定常余流的能量主要集中在沿岸线方向, 说明定常余流的流向基本与岸线平行; 剩余流能量所占的比例较大, 可达海流总能量的50%左右, 说明陆架坡折带处海流受短时间尺度的外强迫影响显著。冬季近表层和近底层的潮流能量比例明显高于中层, 垂向特征与冬季K1分潮潮流椭圆垂向分布特征相似。冬季各月300m层潮流能量比例明显大于秋季, 说明冬季近底层K1分潮增强对于潮流能量贡献很大。

表 2 1987年8月—1988年1月海流各组分能量比例 Tab. 2 Energy ratios of observed current components from August 1987 to January 1988
日期 (月/年) 水深 (m)
8/1987 50 19.27 42.66 38.07 13.11 63.03 23.86
100 47.47 8.47 44.05 10.11 10.19 79.70
200 63.81 20.43 15.76 0.42 71.55 28.03
300 41.46 18.83 39.71 1.23 51.58 47.19
平均 43.00 22.60 34.40 6.22 49.09 44.69
9/1987 50 4.99 47.99 47.02 0.11 54.91 44.98
100 2.94 22.17 74.89 0.12 26.99 72.89
200 33.47 26.15 40.38 0.05 60.48 39.48
300 14.69 34.90 50.42 2.03 50.36 47.61
平均 14.02 32.80 53.18 0.58 48.18 51.24
10/1987 50 33.77 24.09 42.14 2.11 45.79 52.10
100 29.05 21.27 49.68 10.00 28.10 61.89
200 28.35 11.90 59.75 0.15 36.49 63.36
300 7.69 10.96 81.35 0.76 12.07 87.16
平均 24.72 17.06 58.23 3.26 30.61 66.13
11/1987 50 33.76 13.13 53.12 0.01 28.45 71.54
100 27.93 7.30 64.77 1.17 13.04 85.79
200 25.29 7.29 67.42 0.03 29.89 70.07
300 27.19 26.85 45.96 1.31 68.06 30.63
平均 28.54 13.64 57.82 0.63 34.86 64.51
12/1987 50 59.03 18.21 22.76 0.09 67.41 32.49
100 57.13 13.75 29.11 2.47 35.37 62.16
200 42.31 5.49 52.20 0.15 39.93 59.92
300 8.23 36.89 54.88 1.29 67.34 31.37
平均 41.68 18.59 39.74 1.00 52.51 46.49
1/1988 50 26.85 44.84 28.31 0.21 67.86 31.93
100 40.67 19.10 40.24 0.93 24.32 74.76
200 61.10 9.73 29.17 2.48 45.44 52.08
300 18.88 46.03 35.09 0.97 79.46 19.56
平均 36.87 29.92 33.20 1.15 54.27 44.58
总平均 31.47 22.44 46.09 2.14 44.92 52.94
2.2 低频流特征分析

1987年8月至1988年1月低频风应力和低频流时间序列如图 5所示。8月中旬至9月为季风转换期, 风应力较弱且不稳定, 50和100m层流速和流向随时间变化显著; 而200和300m层主要为西南向流动, 在8月下旬流速和流向较稳定。10月各层流速和流向变化均十分剧烈, 50和100m层在短暂大风过程之后出现很强的西北向流, 且持续时间较长, 最大流速超过60cm/s; 200m层在10月下旬出现很强的西南向流, 随后很短时间内转为较强的东北向流。11月开始C1站处已经转为东北风, 整个冬季风速和风向一直较为稳定, 风应力最大可超过0.4N/m2; 从11月中旬开始, 50m层流动大部分为西南向, 流速最大约50cm/s, 在这期间偶尔出现偏北向流, 在1988年1月12日至17日最明显, 流速最大约为20cm/s, 流向呈现顺时针旋转的形态; 200和300m层流速明显小于上两层, 流向随时间变化明显; 200m层的流向出现一定周期性的摆动, 摆动的时间尺度约5—7天, 主要介于西北向和西南向之间, 西南向流普遍强于西北向流。

图 5 40小时低通滤波的50、100、200和300m层海流以及海表面10m处风应力矢量的时间序列 Fig. 5 The time series of 40h low-pass filtered wind stress vectors at 10m height and subtidal currents at depths of 50, 100, 200, and 300m

为研究50m层低频流受海表面风的影响, 将低频流投影至平均流速的方向, 将风应力投影至与平均流速夹角为–180°—180°的范围, 分别计算了秋季和冬季50m层低频流流速和投影至各方向的风应力分量之间的相关系数。图 6为相关系数随滞后时间和风应力旋转角度的分布, 95%和99%置信度的临界相关系数分别为0.27和0.35。结果表明, 秋、冬两季50m层流速与海表面风应力的相关系数均大于临界值, 秋季相关系数为0.5左右, 与冬季相比较弱, 固定的相关系数对应的夹角值随滞后时间变化较明显。冬季50m层流速与风应力相关性较好, 相关系数最大值出现在流向与风应力方向夹角–30°到60°之间的区域, 可超过0.75;由于冬季东北风风向较为稳定, 因此固定的相关系数对应的夹角值随滞后时间的变化不显著。综上所述, 秋、冬季海表面风应力对50m层流动影响均较明显; 由于冬季东北风较强且较稳定, 因此冬季50m层流动对海表面风的响应更加显著。

图 6 秋季和冬季50m层低频流和海表面10m低频风的滞后相关系数分布 Fig. 6 Correlations between observed subtidal currents at 50 m depth and surface wind stress at 10m height in autumn and winter
3 讨论

将OFES模型模拟的海流、温盐结果与50m层的观测资料进行对比, 可以发现11月中旬至翌年1月中旬, 模拟结果基本能够反映观测站位处的温盐和流动特征 (图 7)。假定风应力和底摩擦是线性的, 并将压强梯度力分解为两部分, 分别由海表面倾斜和密度水平梯度控制, 不考虑扩散作用, 则分量形式的水平动量方程可表示为:

图 7 50m层OFES模拟结果与观测资料对比 Fig. 7 The observed and simulated time series of temperature, salinity, and current vectors at 50m depth 注:黑色虚线之间的区域代表动量平衡分析所选时段
    (2)
    (3)

方程中x轴正向为东向, y轴正向为北向; (τsx, τsy) 为海表面风应力; (τbx, τby) 为底摩擦应力; H为水深; η为海表面高度起伏; 为动力高度; ρ为海水密度, 。方程左边各项分别为 (a) 惯性项; (b) 科氏力项; (c) 海表面高度起伏引起的压强梯度力项; (d) 密度水平梯度引起的压强梯度力项; (e) 风应力项; (f) 底摩擦项。

利用11月中旬至翌年1月中旬 (图 7中黑色虚线之间的区域) OFES模型模拟结果和观测的海流数据分别对50、100和200m层xy方向水平动量方程各项的量级进行估算, 得到惯性项的量级约为10–7, 风应力和底摩擦项约为10–6, 而科氏力和压强梯度力项约为10–5, 说明冬季各层流动主要受科氏力和压强梯度力控制, 具有较强的地转流特性。C1站处50和100m层每3天平均的科氏力 (Cori)、海表面高度引起的压强梯度力 (Pssh)、密度水平梯度引起的压强梯度力 (Pden) 和压强梯度力 (P=Pssh+Pden) 的时间序列如图 8所示。可以看出, 50和100m层科氏力和压强梯度力是动量平衡的主要项, PPssh同向, 说明P主要由Pssh决定, 而Pden对动量平衡的贡献相对较小, 因此冬季上两层低频流正压性较强。图 9是OFES模拟的C1站各月的密度剖面, 可以看出, 冬季混合层加深, 层结减弱, 因此上层流动的正压性增强。冬季C1站在50—200m之间存在明显的密度跃层, 50和100m层处于跃层及以上, 而200和300m层处于跃层以下。这说明冬季低频流的垂向分布和随时间变化的趋势除了受东北风影响外, 还与海水层化结构有关。通过计算冬季200m层PsshPden, 发现两者基本可以抵消, 说明冬季密度跃层以下受压强梯度力和科氏力平衡控制的流动较小, 证明了密度跃层以下海水运动较弱且受海表面强迫影响很小。

图 8 50和100m层OFES模拟的水平动量方程各项的时间序列 Fig. 8 Time series of horizontal momentum terms in x and y directions from OFES at 50 and 100m depth

图 9 OFES模拟的各月密度剖面曲线 Fig. 9 Monthly density profiles from OFES

图 10为OFES模拟的1988年1月6—21日C1站附近3天平均的50m层流场。模拟结果基本能够再现1988年1月50m层北向流出现的整个过程, 可以看出这期间有一个反气旋涡经过C1站。1月9日反气旋涡在C1站东侧形成, 沿等深线向西运动, 1月15日至18日其中心接近并经过C1站, 至1月24日完全离开C1站。在这期间反气旋涡的运动速度约为12—13cm/s, 与Rossby波在18°—22°N区域向西传播的相速度9—10±3cm/s一致 (Wang et al, 2008)。在反气旋涡的作用下, C1站50m层流矢量呈顺时针旋转。从动量平衡分析结果 (图 8) 也可以看出, 在1月份北向流存在的时段内, Pssh和科氏力项是50m层动量平衡的主导项, 说明C1站的北向流主要受反气旋涡的控制。但这期间观测得到的50m层流动并不完全沿海表面等高线运动, 且1月21日反气旋涡还没有离开C1站时流动已经转为西南向。通过相关性分析得出, 50m层流速的北向分量与海表面风应力的相关系数最大值 (大于0.6) 对应的风应力偏转角度 (从正北方向逆时针旋转120°左右) 与东北季风的风向差别不大, 因此, 东北风风应力的大小对50m层流速北向分量影响较大。图 11为低频风应力的距平值与50m层低频流速北向分量的时间序列。可以看出, 11月中旬至翌年1月中旬 (图 11中黑色虚线之间区域) 的大部分时段, 风应力的距平值与流速北向分量基本为反位相变化, 风应力大于平均态时, 对应的流速北向分量为负值, 流动基本为偏南向, 且流速随风应力增大; 当风应力减弱至平均态以下时, 流速北向分量有时为正, 说明这样的条件下有可能出现北向的流动。以上分析说明北向流的出现同时还受到东北风松弛的影响。如果不将风应力考虑成理想的线性形式, 风应力的作用仅存在于上Ekman层, 则动量方程中的风应力项与科氏力项、压强梯度力项具有相同的量级。由此可以说明, 1月份次表层北向流是风应力与反气旋涡共同驱动的结果。

图 10 1988年1月6—21日OFES模拟的C1站附近三天平均的50m层流场 Fig. 10 Simulated 3d-averaged current fields near C1 at 50 m depth on January 6 to 21, 1988 注:等值线为海表面高度 (单位: m); 红色箭头为观测的海流矢量; 蓝色实线为反气旋涡的运动轨迹; 蓝点为反气旋涡中心位置

图 11 50m层低频流北向分量与海表面10m低频风应力距平的时间序列 Fig. 11 Time series of northward component of subtidal current at 50m depth and anomaly of wind stress at 10m height 注:灰色虚线之间的区域代表低频流北向分量与风应力距平值反位相变化的时段
4 结论

本文通过分析1987年8月至1988年1月南海北部东沙附近陆架坡折带处定点海流观测资料, 得到以下结论:

(1) 各月定常余流基本为西向流, 随时间变化不显著, 垂向上有较明显的正压性; 在冬季的定常余流中没有发现持续的东北向逆风流。

(2) 潮流以全日和半日为显著周期, 其中全日潮流能量最大, 潮流顺时针旋转; 海流在中间层存在较显著的惯性振荡; 全日潮流椭圆长轴普遍大于半日潮流, 且均为顺时针旋转; 冬季K1分潮振幅在近底层增大非常明显, 位相随深度减小, 近表层和近底层相差约180°。

(3) 从能量的角度分析, 定常余流能量基本分布在沿岸方向, 垂直于岸线方向的能量主要由潮流和剩余流构成; 两个方向的剩余流能量均较大, 说明海流受瞬时外界强迫影响显著; 冬季近底层K1分潮增强对于潮流能量有较大贡献。

(4) 秋季由于季风转换, 流速和流向的垂向分布和随时间变化趋势均较复杂; 而冬季东北风较强且相对稳定, 各层低频流主要表现为西南向流动, 但在1988年1月存在顺时针旋转的偏北向流动; 冬季海表面风应力与50m层流速相关性较好, 表明东北风对50m层低频流有显著影响。

(5) 动量平衡分析结果表明, 冬季低频流主要受科氏力和压强梯度力控制, 具有明显的地转流特征; 海表面高度起伏引起的压强梯度力对于动量平衡的贡献明显大于密度水平梯度引起的压强梯度力; 低频流的垂向分布和随时间变化的趋势受海水层化结构的影响; 1988年1月50m层的北向流动是海水对东北风松弛和反气旋涡联合作用的响应。

参考文献
于华明, 鲍献文, 朱学明, 等, 2008. 夏季北黄海南部定点高分辨率实测海流分析. 海洋学报, 30(4): 12–2
方文东, 施平, 毛庆文, 等, 2000. 南海北部上层海洋变化的定点观测分析. 海洋学报, 22(5): 23–3
司广成, 侯一筠, 2012. 南海北部东沙岛附近的内潮和余流特征. 海洋与湖沼, 43(1): 10–1 DOI:10.11693/hyhz201201002002
邱章, 方文东, 1999. 南海北部春季海流的垂向变化. 热带海洋, 18(4): 32–3
邱章, 方文东, 2000. 南海北部大陆坡区斜压海流的垂向结构. 台湾海峡, 19(4): 405–41
张效谦, 梁鑫峰, 田纪伟, 2005. 南海北部450m以浅水层内潮和近惯性运动研究. 科学通报, 50(18): 2027–203 DOI:10.3321/j.issn:0023-074X.2005.18.017
何琦, 魏泽勋, 王永刚, 2012. 南海北部陆架陆坡区海流观测研究. 海洋学报, 34(1): 17–2
杨庆轩, 梁鑫峰, 田纪伟, 等, 2008. 南海北部海流观测结果及其谱分析. 海洋与湖沼, 39(6): 561–56 DOI:10.11693/hyhz200806004
管秉贤, 2002. 中国东南近海冬季逆风海流. 青岛: 中国海洋大学出版社, 4
熊学军, 2013. 中国近海环流及其发生机制研究. 青岛: 中国海洋大学博士学位论文, 83-84.
Atlas R, Hoffman R N, Ardizzone J, et al, 2011. A cross-calibrated, multiplatform ocean surface wind velocity product for meteorological and oceanographic applications. Bulletin of the American Meteorological Society, 92(2): 157–17 DOI:10.1175/2010BAMS2946.1
Beardsley R C, Limeburner R, Rosenfeld L K, 1983. CODE-1 moored array and large-scale data report. Mass., USA: Woods Hole Oceanographic Institution, 1-2
Cai S Q, Su J L, Gan Z J, et al, 2002. The numerical study of the South China Sea upper circulation characteristics and its dynamic mechanism, in winter. Continental Shelf Research, 22(15): 2247–226 DOI:10.1016/S0278-4343(02)00073-0
Ding Y, Chen C S, Beardsley R C, et al, 2013. Observational and model studies of the circulation in the Gulf of Tonkin, South China Sea. Journal of Geophysical Research:Oceans, 118(12): 6495–651 DOI:10.1002/2013JC009455
Duda T F, Lynch J F, Irish J D, et al, 2004. Internal tide and nonlinear internal wave behavior at the continental slope in the northern South China Sea. IEEE Journal of Oceanic Engineering, 29(4): 1105–113 DOI:10.1109/JOE.2004.836998
Duda T F, Rainville L, 2008. Diurnal and semidiurnal internal tide energy flux at a continental slope in the South China Sea. Journal of Geophysical Research:Oceans, 113(C3): C0302
Fang G H, Kwok Y K, Yu K J, et al, 1999. Numerical simulation of principal tidal constituents in the South China Sea, Gulf of Tonkin and Gulf of Thailand. Continental Shelf Research, 19(7): 845–86 DOI:10.1016/S0278-4343(99)00002-3
Guo P, Fang W D, Liu C J, et al, 2012. Seasonal characteristics of internal tides on the continental shelf in the northern South China Sea. Journal of Geophysical Research:Oceans, 117(C4): C0402
Hsueh Y, Zhong L J, 2004. A pressure-driven South China Sea Warm Current. Journal of Geophysical Research:Oceans, 109(C9): C0901
Li R X, Chen C S, Xia H Y, et al, 2014. Observed wintertime tidal and subtidal currents over the continental shelf in the northern South China Sea. Journal of Geophysical Research:Oceans, 119(8): 5289–531 DOI:10.1002/2014JC009931
Müller M, 2012. The influence of changing stratification conditions on barotropic tidal transport and its implications for seasonal and secular changes of tides. Continental Shelf Research, 47: 107–11 DOI:10.1016/j.csr.2012.07.003
Pawlowicz R, Beardsley B, Lentz S, 2002. Classical tidal harmonic analysis including error estimates in MATLAB using T_TIDE. Computers&Geosciences, 28(8): 929–93
Wang D X, Xu H Z, Lin J, et al, 2008. Anticyclonic eddies in the northeastern South China Sea during winter 2003/2004. Journal of Oceanography, 64(6): 925–935 DOI:10.1007/s10872-008-0076-3
Xu Z H, Yin B S, Hou Y J, et al, 2013. Variability of internal tides and near-inertial waves on the continental slope of the northwestern South China Sea. Journal of Geophysical Research:Oceans, 118(1): 197–21 DOI:10.1029/2012JC008212
Xue H J, Chai F, Pettigrew N, et al, 2004. Kuroshio intrusion and the circulation in the South China Sea. Journal of Geophysical Research:Oceans, 109(C2)
Yang K C, 2006. The non-persistent South China Sea warm current. Taipei, China: Master Dissertation of National Taiwan University, 21-3