

太平洋海面粗糙度的计算及在 ENSO 期间的变化

过 杰,郭佩芳, 周良明

(中国海洋大学环境学院,山东青岛 266003)

摘要:利用 T OPEX 高度计风速资料, 实现了 对太平洋海面 粗糙度(z₀)的计算。1997~1999 年正是厄尔尼诺与拉尼娜事件发生时期, 作者研究了 1997~1999 年 z₀ 在 ENSO 期间的变 化后发现:(1) EI Nion 发生期间赤道附近 z₀ 最大值在 A, C, B 3 个站点上移动; 最小值在 B, A 2 个站点上移动。(2) Li Nina 发生期间赤道附近 z₀ 最小值在 A 站点, 最大值主要在 B 站 点上。Li Nina 发生期间, 1999 年 15 个站点 z₀ 均大于正常 年份和 EI Nion 发生期间的 15 个 站点 z₀。(3) ENSO 期间, 四季 z₀ 与正常 年份相比都有显著改变。

关键词: ENSO; 厄尔尼诺; 拉尼娜; 海面粗糙度(z₀); 海面风速; 高度计 中图分类号: P733.31 文献标识码: A 文章编号: 1000 3096(2006) 06:0087-05

海面粗糙度是表征海面空气动力学粗糙程度的 物理量,它描写了海面微尺度起伏的程度,其变化规 律在某种程度上反映了海洋和大气之间动量输送过 程的主要特征。海面粗糙度是海洋调查中一个重要 的测量要素,但是大面积海面粗糙度的测量资料不 仅数量少,而且时空分布极不均匀。卫星高度计测量 的资料在数量、空间覆盖率、历时长度等方面都具有 前所未有的优势,但是其测量要素只有有效波高和 海面风速。作者利用高度计风速资料(风速资料实际 上是由后向散射系数反演出来的)实现对海面粗糙 度的时空研究。

ENSO 是厄尔尼诺和南方涛动的合称。厄尔尼 诺(西班牙语为圣婴):历史上一直是指每年圣诞节前 后,沿厄瓜多尔和秘鲁沿岸,出现一弱的暖洋流,它代 替了通常对应的冷水。近年来厄尔尼诺的名称已倾 向于用来指一种更大尺度的海洋异常现象,它不是 每年而是 3~7 a 发生一次。南方涛动用以描述热带 太平洋地区与热带印度洋地区气压场反向变化的翘 翘板现象。许多研究表明,赤道东太平洋海表水温异 常事件(厄尔尼诺)同南方涛动指数(SOI)之间有非 常好的相关关系。ENSO 既包含有高 SOI 和低 SOI 的特征,又包括赤道东太平洋的暖水事件(厄尔尼诺) 和冷水事件(拉尼娜)^[1]。作者研究的 1996 全年及 1997 年 1,2月份属正常年份,1997 年 3~ 12 月及 1998 年 1~5月属于厄尔尼诺发生时期,1998 年 6~ 12月及1999年1~12月属于拉尼娜发生时期[2]。

- 1 海面粗糙度
- 1.1 海面粗糙度定义

海面粗糙度(z₀)又称空气动力学粗糙长度,它定 义为风速等于零的高度^[3]。

1.2 海面粗糙度的反演

吹行于水面的风形成湍流边界层,根据 Blackar dar^[4]和 T ennek es^[5]的理论研究,无论是光滑海面还 是粗糙海面,在中性层结条件下,波面上湍流边界层 内的水平平均风速可表示为:

$$U = \frac{U_*}{k} \ln \left(\frac{z}{z_0} \right) \tag{1}$$

k 为 vonkarman 常数,大多数学者认为近于 0.35^[3]。
 取 z 等于 10,则(1)式变为:

$$\frac{U_{10}}{U_*} = \frac{1}{k} \ln\left(\frac{10}{z_0}\right) \tag{2}$$

式中 U* 为摩擦速度,可以通过雷诺应力

$$\tau_0 = -\rho \overline{Uw} = \rho U_*^2 \tag{3}$$

收稿日期: 2006 01 10;修回日期: 2006 03-26

作者简介: 过杰(1965), 女, 河南开封人, 硕士研究生, 从事 海洋遥感的研究, 电话: 0532 88656412, E-mail: guojie@ouc. edu. cn; 郭佩芳, 通讯作者 研究 M 简 报

来测定, 0为空气密度, U和 w 分别为水面上气流中 的水平和垂直湍流速度分量。在海 气相互作用的研 究中, 雷诺应力也可以通过关系: ^[6]

$$\tau_0 = C_{10} \rho U_{10}^2 \tag{4}$$

而引入高度 10 m 处平均风速(U₁₀)对应的阻力系数(C₁₀)。

$$U_{*}^{2} = C_{10} U_{10}^{2} \tag{5}$$

阻力系数是一个重要的物理量, 它决定了大气与海 洋间的动量传输率。它随风速而变化, 与海面粗糙度 有关^[7], 长期以来许多研究者以不同方法对其进行 测定。 $WuJing^{[8]}$ 于 1969 年给出了 C_{10} 与 U_{10} 的经验 关系:

$$C_{10} = 0.5 U_{10}^{1/2} \times 10^{-3}$$
 (6)

这样,结合(2)、(5)和(6)式,得到 z_0 与海面10m高 处风速的关系^[10]:

$$z_0 = 10 e^{-aU_{10}^{-1/4}}$$
(7)

其中, a= 20√5k。

2 太平洋海域zo 随季节变化情况

2.1 太平洋海域 1996 年 z₀ 随季节变 化情况 研究的海域为太平洋海域(120°E~120°W,
50°N~50°S),所用资料 TOPEX 高度计(1996年)资料。研究发现:(1)从空间来讲:太平洋 z₀ 最大区域 在南北半球西风带附近,其次在南北半球中纬度附近的大浪区, z₀ 最小区域出现在赤道附近。(2)从时 间变化来看:太平洋赤道附近冬秋季 z₀ 最大,其次是 夏季,春季较小。太平洋 30°N 附近 z₀ 冬季最大,其次是 夏季,春季较小。太平洋 30°N 附近 z₀ 夏季最大,其次是春、秋两季,夏季最小。太平洋 30°S 附近 z₀ 夏 季最大,其次是春、冬,秋季较小。太平洋 50°N 附近 z₀ 冬季最大,其次是秋、春,夏季最小。太平洋 50°S 附近 z₀ 夏季最大,其次是秋、春季,冬季较小。

图 1 太平洋 1996 年春、夏、秋、冬 z₀ 分布(mm)

Fig. 1 Distributions of surface roughness (z_0) for spring, summer, autumn, winter in 1996 in Pacific Ocean (mm)

研究

研究的海域为太平洋海域(120°E~120°W,50°N~50°S),所用资料 TOPEX 高度计(1996~1999年)的资料。

为了研究太平洋海域平均*z*0变化规律,作者在 太平洋赤道、南北中低纬度、南北中高纬度附近分别 选了3个站点(图3),用A,B,...O,15个字母来代表 15个站点的位置。表1列举了1996~1999年4年 春、夏、秋*z*0平均值。

Fig. 3 The distributing of 15 stations in Pacific Ocean

通过对太平洋海域(120 E~120 W, 50 N~50 S) 1996~1999 年 4 年 z₀ 的观察,可以发现以下规律:(1) 赤道附近 z₀ 与 1996 年相比,1997 年春季 A 站点附近

图 2 太平洋 1996 年赤道, 30° N, 50° N, 30° S, 50° S 附近四季 z₀ 比较 Fig.2 z₀ compare nearby equator 30° N, 50° N, 30° S, 50° S in Pacific Ocean

增大, B,C2个站点附近减小;夏季3个站点附近均减 小:秋季 B 站点附近增大, A, C 2个站点附近减小:冬 季 3 个站点附近均增大。1998 年春季 A, B, C 3 个站 点附近均增大;夏季 A,C 2个站点附近减小,B 站点附 近增大:秋季 A,C2 个站点附近减小,B 站点附近增 大:冬季 A,C 2 个站点附近减小,B站点附近增大。 1999 年四季 3 站点附近均增大。(2) 南北纬 30° 附近 z0 与 1996 年相比, 1997 年 30°N 附近春、夏、秋、冬, 分 别在(E,F),E,F,D5个站点附近均增大,其余均减 小; 30°S 附近春、夏、秋、冬,分别在 L, L, K, (J, L)5个 站点附近均增大,其余均减小;1998年30°N附近春、 夏、秋、冬,分别在(E,F),(E,F),F,(E,F)7个站点附 近均增大,其余均减小;30°S附近春、夏、秋、冬,分别在 L, K, J, L 4 个站点附近均增大, 其余均减小; 1999 年四 季 3 站点附近均增大。(3) 南北纬 50 附近 zo 与 1996 年相比, 1997年, 1998年, 1999年3年春、夏、秋、冬季, 3 站点附近均增大。(4) 1997 年春季 A.C.B 3 站点 zo 由大变小: 夏季 C, B, A 3 站点 zo 由大变小: 秋季 B, C, A 3站点z₀ 由大变小;冬季 A, C, B 3 站点z₀ 由大变 小。1998年春季 C, B, A 3 站点 z₀ 由大变小: 夏季 B, C.A3站点z0由大变小:秋季B.C.A3站点z0由大 变小;冬季 B, C, A 3 站点 z₀ 由大变小。1999 年春季 B, C, A 3站点 z₀ 由大变小; 夏季 C, B, A 3 站点 z₀ 由 大变小; 秋季 C, B, A 3 站点 z₀ 由大变小; 冬季 B, C, A 3 站点 zo 由大变小。

表1 太平洋有关位置粗糙度的时间变化

Tab. 1 Changing of the surface roughness with time and position in Pacific Ocean

		z ₀ (mm)														
年份	季节	А	В	С	D	Е	F	G	Н	Ι	J	K	L	М	Ν	0
1996	春	0.18	0.37	0.42	1.21	0.58	0.61	0. 99	0. 94	0.87	1.07	1.83	1.37	1. 79	1.6	2.06
	夏	0.27	0.41	0.58	0.6	0.37	0.55	1.37	1.37	1.29	0.55	0.67	0.48	1. 67	2.07	2.21
	秋	0.31	0.4	0.53	1.24	1.19	0.45	0.82	0.91	1.02	1.53	1.63	1.61	1.86	1.68	1.87
	冬	0.46	0.4	0.46	1.66	1.82	1.26	0.75	1.41	0.99	1.71	1.95	1.9	1.73	1.39	1.56
1997	±	0 -	0.01	0.00	0.50	0.01	0.70	0.05	0.00		1 22	1 (0	1 50		1 50	1.00
	眘	0.5	0.31	0.38	0.58	0.81	0.73	0.85	0.92	1.2	1. 32	1.68	1.56	2.07	1. 79	1.26
	夏	0.23	0.3	0.43	0.46	0.5	0.52	0.86	1.22	1.55	0.55	0.78	0.48	2.15	2.16	1.92
	秋	0.17	0.57	0.45	1.06	1.06	1	0.79	0.91	0.88	1.79	2.31	1.17	2.15	2.52	1.93
	冬	0.77	0.51	0.75	1.67	1.41	0.84	0.81	0.64	0.99	2.09	2.39	1.86	1. 52	1.5	1.94
1998																
	春	0.38	0.51	0.54	0.94	0.86	0.91	0.91	0.92	1.01	1.53	2.12	1.75	2.28	2.17	2.12
	夏	0.24	0.56	0.33	0.6	0.63	0.56	1.08	1.73	1.12	0.51	1.01	0.9	1.9	2.53	2.65
	秋	0.24	0.55	0.31	0.9	0.45	0.62	1.27	0.77	0.87	1.41	2.09	1.91	2.1	2.24	2.22
	冬	0.32	0.69	0.39	1.49	1.85	1.56	0.59	0.76	1.05	2.14	2. 11	2.03	1. 95	1.64	2.27
1999	+									• • • •		• • • •				
	昋	1.29	2.15	2.14	2.54	2.71	2.38	3.01	3.23	2.88	2.22	3.98	3.4	4. 47	4. 79	5.01
	夏	1.24	1.78	1.94	1.91	1.7	2.02	2.93	2.85	3.91	1.12	2.02	1.87	4. 29	4.72	4.61
	秋	1.11	1.75	1.88	2.24	2.54	2.83	2.36	2.79	3.22	2.82	3.34	3.43	4.18	4.13	5.26
	冬	1.68	2.09	2.04	3.71	3.76	3.14	2.25	2.13	2.4	2.64	4.91	4.39	3. 63	3.84	3.68

3 ENSO 事件

1996年及1997年1~2月是正常年份,1997年 3~12月及1998年1~5月属厄儿尼诺期间,1998年 6~12月及1999年1~12月属于拉尼娜期间^[2]。

1997年1~2月份,热带中、东太平洋主要维持 负距平,3月份除个别位置外,热带中、东太平洋基本 上处于正距平,厄儿尼诺现象开始出现,4~9月发 展,10~12月及1998年1月处于鼎盛时期,1998年 2~5月处于衰弱期;1998年6月突变,赤道两侧突然 出现负的海面温度距平,拉尼娜事件发生;6~10月 负距平向东西两边快速扩张,11~12月负距平达最 大;1999年1~12月维持负距平这一现象在延续^[4]。

4 太平洋海域zo 在 ENSO 期间的变化

从以上分析可以得出:(1)太平洋赤道附近 z₀1996年1~12月及1997年1~2月最大值出现在 C站点,最小值出现在A站点;北半球中低纬度地区 z₀春、夏、秋季最大值出现在D站点,冬季最大值出 现在E站点;北半球中高纬度地区z₀春、夏、秋、冬 最大值分别出现在 G, H, I, H 各站点; 南半球中低纬 度地区 z_0 春、夏、秋、冬最大值都出现在 K 站点, 最 小值都出现在 J 站点; 南半球中高纬度地区 z₀ 春、 夏、秋、冬最大值分别出现在0,0,0,M 各站点。(2) EI Nion 发生期间(1997年3月~1998年5月)太平 洋东部 SST 正距平作为起因在那里加热大气, 辐合 上升,减弱信风和 Walker 环流,西风东移,西风暴发, 赤道附近 z_0 最大值出现在1997年春季 A 站点.夏季 C 站点,秋季 B 站点,冬季 A 站点,1998 年春季 C 站 点。1997年秋、冬两季厄儿尼诺现象处于鼎盛时期. 除了秋季 A 站点外, A, B, C 3 站点 z_0 均比春、夏两 季对应的 z_0 大。北太平洋中低纬度地区 z_0 最大值 1997年春、夏、秋、冬及 1998年春出现在 E, F, E, D, D 各站点;北半球中高纬度地区 z₀ 春、夏、秋、冬及 1998年春最大值分别出现在 H, I, H, I, I 各站点; 南 半球中低纬度地区 zo 春、夏、秋、冬及 1998 年春最大 值都出现在 K 站点; 南半球中高纬度地区 z_0 春、夏、 秋、冬及1998年春最大值分别出现在 M, N, N, O, M 各站点。(3) Li Nina 发生期间(1998 年 6 月~1999 年 1~ 12 月),赤道两侧出现负的海面温度距平,负 距平向东西两边快速扩张,赤道附近信风和 Walker 环流加强:赤道附近 z_0 最大值主要出现在 B 站点,最

小值出现在 A 站点; Li Nina 发生期间 1998 年 11~ 12 月负距平达最大时, z_0 最大值在 B 站点,最小值出 现在 A 站点,且与 EI Nion 发生期间同时期相比各站 点 z_0 变小。1999 年 1~ 12 月维持负距平这一现象 在延续时,15 个站点附近 z_0 与 Li Nina 发生初期相 比增大。1999 年 15 个站点附近 z_0 与正常年份和 ENSO 期间相比增大。(4) ENSO 期间,太平洋 15 个 站点 z_0 与正常年份相比都有改变。

5 小结

作者利用 TOPEX 卫星高度计风速资料, 对 z_0 进 行了反演。可以发现, 海面风速的测量精度直接决定 了 z_0 的反演精度, 因而成为 z_0 反演的关键因素之一。 作者所用的高度计风速资料是由卫星高度计的后向 散射系数导出的, TOPEX/ POSEIDON 高度计所使用 的业务化模式函数的缺点是不能进行特高风速(大于 20m/s) 的反演, 因而得不到与此高风速所对应的 z_0 。

从 1996~1999 年 4 年 z_0 的分析可以发现: EN-SO 期间, z_0 与正常年份相比(1) EI Nion 发生期间赤 道附近 z_0 最大值出现 A, C, B 3 个站点上移动; 最小 值在 B, A 2 个站点上移动。1997 年秋、冬两季 厄儿 尼诺现象处于鼎盛时期,除了秋季 A 站点外, A, B, C 3 站点 z_0 均比 1997 年春、夏 两季对应的 z_0 大。(2) Li Nina 发生期间赤道附近 z_0 最小值在 A 站点,最大 值主要在 B 站点上。Li Nina 发生期间,1999 年 15 个站点 z_0 均大于正常年份和 EI Nion 发生期间的 15 个站点 z_0 。Li Nina 发生期间 1998 年 11~12 月负距 平达最大时, z_0 最大值在 B 站点,最小值出现在 A 站 点, 且与 EI Nion 发生期间同时期相比各站点 z_0 变 小。1999 年 1~12 月维持负距平这一现象在延续 时, 15 个站点附近 z_0 与 Li Nina 发生初期相比增大; 1999年 15 个站点附近 z_0 与正常年份和 ENSO 期间 相比增大。(3) ENSO 期间,四季 z_0 与正常年份相比 都有改变。

本文研究只是个例,是否具有普遍性有待今后进 一步研究。作者发现 z₀ 的异常与 ENSO 事件有关,它 们的相关机制有待进一步研究,至于它们有什么关系, 单从 z₀ 个例无法得出结论,有待今后进一步探讨。

参考文献:

- [1] 斯塔尔 R B. 边界层气象学导论[M]. 青岛:青岛海洋 大学出版社, 1991.1-457.
- [2] 冯士笮,李凤岐,李少菁.海洋科学导论[M]. 北京:高 等教育出版社, 2003.1-503.
- [3] 方立新, 陈戈. AVHRR 和 WEDGIS 热带太平洋海洋 温度分析系统[D]. 青岛: 中国海洋大学, 2003. 1-76.
- [4] Blackadar A K, Tennekes H. Asymptotic similarity in neutral barotropic planetary boundary layers [J]. J Atmos Sci, 1968, 25: 1 015 1 020.
- [5] Tennekes H. Free convection in the turbulent Ekman layer of the atmosphere [J]. J Atmos Sci, 1970, 27: 1 0271 034.
- [6] 文圣常,余宙文.海浪理论与计算原理 M].北京:科学 出版社,1984.308314.
- [7] 王秀芹,钱成春,王伟.风应力拖曳系数选取对风暴潮 数值模拟的影响[J].青岛海洋大学学报,2001,31(5): 640-646.
- [8] Wu J. Wind stress and surface rough ness at air-sea irr terface [J]. Geophys Res, 1969, 21(5): 707-714.
- [9] 周良明,郭佩芳.利用卫星高度计风速资料研究海面 粗糙度[J].海洋湖沼通报,2005,4:1014.

Calculation and ahanging of roughness of sea surface in Pacific Ocean in ENSO period

GUO Jie, GUO Perfang, ZHOU Liang-ming

(College of Physical and Environmental Oceanography, Ocean University of China, Qingdao 266003, China)

Received: Jan., 10, 2006

Key words: ENSO; El Nion; La Nina; the roughness of the sea surface; sea surface wind speed; satellite altimeter

Abstract: We calculated values of roughness in 15 points using wind speed by TOPEX satellite Altimeter. We studied the changes of roughness during 1997~ 1999 (ENSO period) and compared them with roughness in 1996. We find some characteristics as follows: The largest roughness nearby equator is moving from station A to station C to station B and the smallest roughness is moving from station B to station A during the EI Nion period. The smallest roughness is in station A and the largest roughness is in station B during LINina period. The roughness of 15 stations in 1999 is bigger than those in 1996, 1997, 1998. The roughness of 4 seasons has prominent change during ENSO period when compared with 1996.

(本文编辑:刘珊珊)