研究论文 · Linn ARTICLE

## 热带风暴天鹰期间南海西北部海域内部响应的观测分析

徐振华<sup>1, 2, 3</sup>, 尹宝树<sup>1, 2</sup>, 侯一筠<sup>1, 2</sup>

(1. 中国科学院 海洋研究所,山东 青岛 266071; 2. 中国科学院 海洋环流与波动重点实验室,山东 青岛 266071; 3. 中国科学院 研究生院,北京 100049)

摘要: 2005 年 7 月 28 日热带风暴天鹰(Washi)在南海东沙群岛西南海域生成,并向西北偏西推进,在 7 月 29 日增强为一个热带风暴,于 7 月 30 日在海南岛登陆。布放在南海西北部大陆架海域的锚系测站记录了天鹰过境期间温度和海流的响应过程。分析结果表明,伴随着热带风暴的强风应力引起强烈的垂向混合作用,使海表面温度下降 2℃,混合层加深 20 m,并且 8 m以下各水层也都有明显的降温过程,但降温幅度低于 8 m 层,降温开始的时间也随着深度的增加而延后。台风过后,观测海域的近惯性内波显著,其频率为 8.1×10<sup>-6</sup> Hz,略高于当地的惯性振荡频率(7.75×10<sup>-6</sup> Hz)。滤波后的海流数据分析显示,近惯性波动是从海面向深海处传播的,其影响大约持续了 10 d。本研究丰富了南海在台风期间响应过程的认识,可为近海海洋工程设计提供科学依据。

关键词: 南海; 热带气旋; 近惯性波动; 内波 中图分类号: P731 文献标识码: A

热带气旋是发生在热带亚热带海区的强烈的天 气过程, 是一种灾害性天气系统。热带气旋产生的海 面气旋式风应力及强烈的混合过程、会使海洋和大 气间产生大量的动量、能量和物质交换、从而引起上 层海洋强烈的响应过程,因此海洋对热带气旋的响 应也引起了许多研究者的关注<sup>[1~3]</sup>。海洋对热带气旋 的响应可分为两个不同的阶段:强迫过程和松弛过 程<sup>[4]</sup>。强迫过程即为海洋受强风应力作用和强气压变 化作用阶段,发生在热带气旋过境期间,主要是海 洋的局地响应、包括湍流引起的海洋表层的暖水和 次表层的冷水混合、垂向混合和混合层底卷吸加强 引起的海面和混合层的降温等。松弛过程发生在热 带气旋过境之后、在此阶段、海洋对于台风响应的 重要特征是台风引发的近惯性波动现象。Brooks 等<sup>[5]</sup> 分析了台风 Allen 期间的实测数据、发现在台风的作 用下产生了顺时针旋转的近惯性波动、运动轨迹近 似椭圆形。台风过后 3 d, 近惯性流的流速显著增强, 持续了大约5d左右的时间。近惯性波动的周期为当 地惯性周期的 85%左右, 在垂直方向上可以影响到 整个水层。松弛过程主要是海洋对风应力旋度的非 局地的斜压响应、强风输入到混合层的能量以近惯 性波动的形式向温跃层传播,惯性波动的频率有时 候略高于当地的惯性频率<sup>[6]</sup>、该过程可持续 5~ 10 d<sup>[7]</sup>。并且在强风应力的强迫作用下、海洋对热带 文章编号: 1000-3096(2010)06-0081-05

气旋的响应具有明显的右偏性, Church 等<sup>[8]</sup>发现在台风的强迫作用下,最大流速发生在台风路径右侧 80 km 处,可达 1 m/s,路径右侧混合层加深的范围和幅值都远远高于路径左侧。

南海是热带气旋活动频繁的海区,因此研究南 海海域对于热带气旋的响应特征具有重要的意义。 由于在极端天气情况下进行船舶观测比较困难,所 以在该海域热带气旋天气下的观测资料较少,朱大 勇和李立<sup>[9]</sup>根据海南岛东部陆架上的锚系浮标资料 分析了台风中心过境前后风和近表层的海流响应特 征,但该研究由于资料所限,并没有讨论海洋混合 层和跃层对台风的响应过程。在南海文昌内波实验 (WCIWE)中,中国科学院海洋研究所从 2005 年 4 月 到 2005 年 10 月,在南海西北部的文昌海域布设了单 站锚系对温、盐、流进行观测,为研究南海海洋对台 风的响应提供了宝贵的实测资料。作者主要采用 2005 年 7 月到 2005 年 8 月的观测数据,研究南海西 北部海洋上层温度和海流对热带风暴(Washi)的响应

收稿日期: 2009-05-26; 修回日期: 2009-06-15

基金项目:中国科学院知识创新工程重大项目(KZCX1-YW-12);国家 863 资助项目(2006AA09A109-2)

作者简介: 徐振华(1980-), 男, 山东青岛人, 博士研究生, 主要从事海 洋环境数值模拟和内波动力学研究, 电话: 0532-82898931, E-mail: xuzhenhua@qdio.ac.cn; 尹宝树,通信作者, E-mail: bsyin@qdio.ac.cn

过程。

## 1 热带风暴天鹰

2005 年 7 月 28 日天鹰在南海东沙群岛西南约 320 km 处发展成为一个热带低气压,并向西北偏西 推进(表 1)。在 7 月 29 日天鹰增强为一个热带风暴, 于 29~30 日穿过观测平台海域,在 29 日 12 时左右,

#### 表1 天鹰位置及强度

Tab. 1 Locations and intensities of Washi

具有中心低压 992 hPa 和 20 m/s 表面风速的天鹰经 过测站南部约 80 km 左右的海域,通过 QuikSCAT/ NCEP 混合风场发现测站在天鹰过境过程中最高风 速达到 15 m/s,对测站的资料分析发现该海域对热 带风暴天鹰有明显的响应。天鹰于 7 月 30 日 5 时 25 分在海南省琼海县长坡镇登陆,并于 7 月 31 日在 越南北部沿岸登陆,翌日凌晨在老挝北部消散。

| 时间       | 天鹰位             | [置 最低中心气]  | ±(hPa) 估计最高风i | 速(m/s) |
|----------|-----------------|------------|---------------|--------|
| 7月28日12  | 2:00 18.5°N, 11 | 14.6°E 998 | 13            |        |
| 18       | 3:00 18.7°N, 11 | 13.2°E 996 | 16            |        |
| 7月29日 00 | ):00 18.6°N, 11 | 12.5°E 996 | 16            |        |
| 06       | 5:00 18.6°N, 11 | 12.0°E 996 | 16            |        |
| 12       | 2:00 18.6°N, 1  | 11.7°E 992 | 18            |        |
| 18       | 3:00 18.8°N, 1  | 11.3°E 988 | 21            |        |
| 7月30日 00 | ):00 19.4°N, 11 | 10.2°E 988 | 21            |        |
| 06       | 5:00 19.5°N, 10 | 09.3°E 988 | 21            |        |
| 12       | 2:00 19.5°N, 10 | 08.3°E 984 | 23            |        |
| 18       | 3:00 19.8°N, 10 | 07.9°E 984 | 23            |        |
| 7月31日 00 | ):00 19.8°N, 10 | 07.0°E 984 | 23            |        |
| 06       | 5:00 20.3°N, 10 | 06.0°E 988 | 21            |        |
| 12       | 2:00 20.4°N, 10 | 04.4°E 992 | 18            |        |
| 18       | 3:00 20.5°N, 10 | 03.2°E 996 | 16            |        |

## 2 观测和数据

南海文昌内波实验的测站位于南海西北部海南 岛以东,水深 120 m 左右的大陆架海域(19°35 ' N, 112°E),见图 1,图中黑色实线表示等深线,单位为 m。海流观测装置采用的是声学多普勒剖面仪





(ADCP), 取样间隔为 10 min, 采样区间为 14~116 m, 垂向采样间隔为 2 m。温度观测使用的仪器是 24 个温度传感器和 5 个温盐传感器, 取样间隔为 1 min, 采样区间为 4~75 m, 在跃层附近加密观测, 垂向间 隔为 1~2 m。本文采用的数据从 7 月 22 日 00:00 到 8 月 10 日 24:00。

## 3 结果与分析

#### 3.1 海洋混合层的响应

台风引发的强混合将直接影响当地的海水层化 状况。2005 年 7 月 22 日~8 月 10 日的温度梯度分布 见图 2。在 29 日之前,海水上混合层的深度为 10 m 左右,在 20~30 m 水深之间海水存在较强的温度梯 度,最强温跃层梯度超过 0.3℃/m。在 29 日之后,海 水上混合层加深到 30 m 左右,其中最强温跃层分布 在 40~50 m 之间。而从 8 月 4 日开始,该海域出现了 一个双跃层的现象,但是在 15~30 m 之间,混合层的 梯度较小,低于 0.1 /m,这明显是由于天鹰引起 的强剪切流导致的。

海洋科学 / 2010 年 / 第 34 卷 / 第 8 期





图 2 2005 年 7 月 22 日~8 月 10 日的温度梯度图 Fig. 2 Temperature gradients from 22 July to 10 August

#### 3.2 不同水层温度的响应

为了滤除潮流的影响,对温度观测数据作了一 天的平滑处理,用处理后的数据绘制出温度时间序 列图,如图 3 所示,可以清晰地看出,在 7 月 29~30 日,热带风暴天鹰经过前后,观测站水温发生明显 的变化。29 日之前,各层海水都有一个明显的升温 过程,8 m以上水层,水温一致保持在 30 左右,而 20 m以浅的上混合层水温也都在 29 以上(图 4)。 25~75 m 水层,水温在 20~28 之间。从 29 日开始, 天鹰开始影响到观测海域,8 m 水层的水温下降达 2

左右。而8m以下各水层也都有明显的降温过程, 但是除了降温幅度低于8m层之外,降温开始的时 间也随着深度的增加而延后,并且次表层(40m)和 深层(75m)海水都表现出了明显的近惯性振荡的信 号,这说明台风具有极强的混合降温作用,台风引 起的抽吸和夹卷作用是温度下降的主要原因,并且 惯性振荡在垂直方向上具有逐渐向下传播的特征。 总体上来看,8m层表层海水在热带风暴天鹰的作用

下产生了一个降温和回温的过程,在7月31日





Fig. 3 Temperature series from 22 July to 10 August



图 4 温度等温线的时间序列图 Fig. 4 Temperature isotherms from 22 July to 10 August

水温迅速下降至最低温度,最大降温幅度超过 2℃, 然后温度开始逐渐回升,但是至 8 月 10 日,表层温 度仍比台风作用前的表层温度低 1℃左右。而表层以 下水层的温度在天鹰过后一直是降温的过程。

由图 4 可以看出,在台风前后,观测点的内波都 是活跃的。在 29 日之前,内波以全日内潮为主,与 观测站位其他时段内相似<sup>[10]</sup>,其最大振幅在 20 m 左 右。在陆架海域通常内潮强盛,惯性内波较弱,此与 深水大洋的情况不同。当台风天鹰过境时,情况发生 变化,惯性内波的能量超过内潮,因为风场的强迫 作用是生成惯性内波的主要机制<sup>[11]</sup>。该海域惯性内 波频率为 30 h 左右,且最大振幅可达 30 m。

#### 3.3 海流的响应

图 5 给出了观测站位从 7 月 22 日至 8 月 10 日, 各水层东西向流速和南北向流速的时间变化序列。 可以看出,在天鹰到达之前,流速较小,流速的剪切 也较弱。但是从 29 日开始,受到台风引起的强混合 的影响,流速开始表现出近惯性的波动,随着深度 的加深,流速减弱,最大流速出现在上混合层,可达 0.8 m/s。从相位上看,混合层内流速与深层流速方向 反向。剪切层在 40~50 m 之间,与作者通过观测温度 分析的最强温跃层的位置是一致的。对天鹰过境期 间的表层流速作旋转谱分析(图 6),分析发现近惯性 波动的频率为 8.1×10<sup>-6</sup> Hz,略高于当地的惯性振荡 频率 7.75×10<sup>-6</sup> Hz,属于自由近惯性内波,并且以顺 时针方向分量为主,这与 Brooks 等 <sup>[5]</sup>的研究结果是 一致的。







图 6 2005 年 7 月 22 日~8 月 10 日的表层海流旋转谱分布图 Fig. 6 Rotary spectra of surface current speed

上述分析说明了测站观测海流中存在着显著的 惯性振荡信号,为更清晰地研究近惯性运动过程, 对各层流速观测资料进行滤波得到近惯性波 段(30~40 h)的流速值,图 7 为带通滤波后得到的流 速剖面分布图。可以看出,东西方向和南北方向流速 信号相当,从 7 月 29 日开始,受热带风暴天鹰的影 响,近惯性运动的信号逐渐出现且加强。表层最先出 现近惯性波动的信号,并且上混合层的近惯性波动 明显要强于海水深层,这表明近惯性运动是受天鹰 带来的强风引起的,并且是从海面往深海处传播的。 近惯性运动的流速值在 8 月 3 日左右达到最大值,约 为 0.3 m/s,这一段时间在 40~50 m 强温跃层上下位 置存在明显的流向剪切,由上述分析,这明显是由 近惯性内波引起的,该过程持续近 10 d,然后慢慢 消减,与 Price 等<sup>[7]</sup>的研究结果也是基本一致的。



图 7 2005 年 7 月 22 日~ 8 月 10 日的近惯性波动流速剖面图 Fig. 7 Profiles of inertial current series from 22 July to 10 August

## 4 小结

根据布放在南海西北部大陆架海域的锚系测站 的观测资料分析该海域对热带风暴天鹰的响应过程、 得到以下结论: (1) 热带风暴引发的强混合将直接影 响当地的海水层化状况、强风应力引起强烈的垂向 混合作用,使海表面温度下降2℃,混合层加深20m, 而 8 m 以下各水层也都有明显的降温过程, 但降温 幅度低于 8 m 层, 降温开始的时间也从随着深度的 增加而延后、并且此表层和深层海水都表现出了明 显的近惯性振荡的信号。(2)在7月29日之前,内波 以全日内潮为主、与观测站位其他时段内相似、其 最大振幅在 20 m 左右。当台风经过时、情况发生变 化、惯性内波的能量超过内潮、因为风场的强迫作 用是生成惯性内波的主要机制。该海域惯性内波周 期为 30 h 左右, 且最大振幅可达 30 m。(3)海流也表 现出近惯性的波动,并且从海面往深海处传播,随 着深度的加深、流速减弱、最大流速出现在上混合



层,可达 0.8 m/s。混合层内流速与深层流速方向反向,剪切层在 40 ~50 m 之间,近惯性波动的频率为 8.1×10<sup>-6</sup> Hz,略高于当地的惯性振荡频率 7.75×10<sup>-6</sup> Hz,属于自由近惯性内波,并且以顺时针方向分量 为主。

#### 参考文献:

- Price J F, Mooers C, Leer J. Observation and simulation of storm-induced mixed-layer deepening[J]. J Phys Oceanogr, 1978, 8: 582-599.
- [2] Price J F. Upper ocean response to a hurricane[J]. J Phys Oceanogr, 1981, 11: 153-175.
- [3] Hearn C J, Holloway P E. A three-dimensional barotropic model of the response of the Australian North west shelf to tropical cyclones[J]. J Phys Oceanogr, 1990, 20: 60-80.
- [4] Price J F, Sanford T B, Forristall G Z. Forced stage response to a moving hurricane[J]. J Phys Oceanogr, 1994, 24: 233-260.

- [5] Brooks D A. The wake of Hurricane Allen in the western Gulf of Mexico[J]. J Phys Oceanogr, 1983, 13: 117-129.
- [6] Shay L K, Elsberry R L. Near-intertial ocean current response to a Hurricane Frederic[J]. J Phys Oceanogr, 1987, 17: 1249-1269.
- [7] Price J F. Internal wave wake of a moving storm. Part I: scales, energy budget and observations[J]. J Phys Oceanogr, 1983, 13: 949-965.
- [8] Church J A, Foyce T M, Price J F. Current and density observations across the wake of Hurricane Gay[J]. J Phys Oceanogr, 1989, 19: 259-265.
- [9] 朱大勇, 李立. 台风 Wayne 过后南海北部陆架海域的 近惯性振荡[J]. 热带海洋学报, 2007, **26**(4): 1-7.
- [10] Xu Zhenhua, Yin Baoshu, Hou Yijun, *et al.* A study of internal solitary waves observed on the continental shelf in the northwestern South China Sea[J]. Acta Oceanologica Sinica, 2010, 29(3): 18-25.
- [11] 范植松. 海洋内部混合研究基础[M]. 北京: 海洋出版社, 2002. 130.

# Response of the interior water column over the northwestern South China Sea during Washi

## XU Zhen-hua<sup>1,2,3</sup>, YIN Bao-shu<sup>1,2</sup>, HOU Yi-jun<sup>1,2</sup>

(1. Institute of Oceanology, the Chinese Academy of Sciences, Qingdao 266071, China; 2. Key Laboratory of Ocean Circulation and Waves, the Chinese Academy of Sciences, Qingdao 266071, China; 3. Graduate University of the Chinese Academy of Sciences, Beijing 100049, China)

Received: May., 26, 2009

Key words: the South China Sea; tropical cyclone; near-inertial wave; internal wave

**Abstract:** In July 2005, tropical storm Washi, which originated from the southwest of Dongsha Island in the South China Sea, moved towards northwest by west, intensified into a tropical storm on July 29, and finally landed on the Hainan Island on July 30. A mooring buoy deployed over the northwest shelf of the South China Sea recorded the res- ponse of temperature and current during this period. The results revealed strong vertical mixing induced by strong wind force, making the sea surface temperature decreased by  $2^{\circ}$ C and depth of mixed layer deepened by 30 m. The layer below 8 m also displayed apparent cooling phenomenon, with less decreasing amplitude. The beginning of the cooling feature lagged with the increase of the depth. After the passage of Washi, the motions of internal waves were dominated by inertial oscillations, with the frequency around  $8.1 \times 10^{-6}$  Hz, which was higher than the local inertial frequency ( $7.75 \times 10^{-6}$  Hz). Band-filtered currents indicated that inertial oscillation propagated from the sea surface to the deep layer and lasted about 10 days. This study offers more understanding about response of ocean to typhoons in the South China Sea and can provide scientific basis for ocean engineering.

(本文编辑: 刘珊珊)