4 种经济海藻脂肪酸组成分析

(1. 苏州大学 医学部 基础医学与生物科学学院, 江苏 苏州 215123; 2. 常熟理工学院 生物与食品工程学院, 江苏 常熟 215500; 3. 江苏省海洋与水产研究所, 江苏 南通 226007)

摘要:采用改进的 Bligh-Dyer 法提取脂溶性成分,气相色谱-质谱联用法(GC-MS)进行分离和鉴定,C19:0 内标确定总脂及各组分含量,研究了鼠尾藻(Sargassum thunbergii)、浒苔(Enteromorpha prolifera)、龙须菜(Gracilaria lemaneiformis)和红毛菜(Bangia sp.)4种经济海藻的脂肪酸组成及含量。结果表明,4种海藻都检测出 C14-C22 脂肪酸,总脂含量在 12~19 mg/g 之间,不饱和脂肪酸为主要组成成分,含量均超过 60%。不饱和脂肪酸中以多不饱和脂肪酸(PUFAs)为主,富含 n-3 和 n-6 系列 PUFAs, n-6 与n-3 系列 PUFAs 之比均低于 2。比较 4 种海藻脂肪酸组成特点表明,鼠尾藻以 C16、C18 和 C20 为主要组成成分,具褐藻类脂肪酸组成特征;浒苔以 C16 和 C18 为主要组成成分,具绿藻类脂肪酸组成特征;龙须菜和红毛菜以 C16 和 C20 类脂肪酸为主,具典型红藻类脂肪酸组成特征,同时二者又有不同之处,分别显示真红藻与原始红藻脂肪酸组成的特点。

关键词: 鼠尾藻(Sargassum thunbergii); 浒苔(Enteromorpha prolifera); 龙须菜(Gracilaria lemaneiformis); 红毛菜(Bangia sp.); 脂肪酸; 气相色谱质谱法

中图分类号: Q547 文献标识码: A 文章编号: 1000-3096(2012)04-0007-06

海藻是重要的海洋生物资源,种类丰富,在我国已记录800种左右,其中有经济价值的有100多种,主要是褐藻、红藻和绿藻等大型种类[1-2]。鼠尾藻(Sargassum thunbergii)隶属褐藻门(Phaeophyta),在我国北起辽东半岛南至雷州半岛都有分布,是我国海洋野生植物中极为丰富的大型经济海藻[3]。浒苔(Enteromorpha prolifera)属绿藻门(Chlorophyta),广泛分布于我国南北海区,是资源丰富的绿藻资源^[4]。龙须菜(Gracilaria lemaneiformis)和红毛菜(Bangia sp.)同属红藻门(Rhodophyta),分属真红藻亚纲(Florideophycidae)和红毛菜亚纲(Bangioideae)。龙须菜产于我国北方沿海,以山东沿海分布较多^[6];红毛菜是海洋原始藻类的代表,在我国南北方沿海都有分布,以东南沿海为多^[5]。龙须菜和红毛菜都是重要的经济栽培海藻。

脂肪酸是一端含有一个羧基的长脂肪族碳氢链有机物,依据饱和度的不同,分为饱和脂肪酸(SFA)、单不饱和脂肪酸(MUFA)和多不饱和脂肪酸(PUFA)^[7]。海藻脂质含量较低,一般为 0.1%~1.0%,但不饱和脂肪酸(UFA)含量较高,尤其富含n-3 和 n-6

系列 PUFAs,是 PUFAs 的重要来源^[8-9]。丹麦科学家 Dyerberg^[10]1978 年报道, n-3 系列 PUFAs 具有抗动脉 粥样硬化、血栓、高血脂和高血压以及消除炎症等 重要生理活性,引起人们对不饱和脂肪酸研究的广泛关注^[7]。 Kaneniwa 等^[11]对海藻多不饱和脂肪酸组 成的研究,发现其具丰富的 n-3 和 n-6 系列 PUFAs, n-6/n-3PUFAs 比率低。Jamieson等^[12]、Khotimchenko等^[13-14]分别报道了不同种属常见海藻的脂肪酸组成特点,认为脂肪酸组成具有种属特征,红藻主要含 C16和C20类脂肪酸,绿藻主要是C16和C18类脂肪酸,褐藻主要有C16、C18和C20类脂肪酸。蔡春等^[15]、李宪催等^[16]在对我国海藻脂肪酸分析研究中,也报道了多种海藻的脂肪酸组成具有种属特异性的特点^[15-16]。

本研究以大型海藻中的重要经济物种为对象, 分析不同种属海藻脂肪酸组成特征以及差异性, 重 点比较 n-3 和 n-6 系列 PUFAs 在经济海藻中的组成

收稿日期: 2010-12-17; 修回日期: 2011-06-10

资助项目: 国家 863 计划项目(2006AA10A413)资助

作者简介: 张敏(1983-), 女, 山东临沂人, 硕士研究生, 研究方向为细胞生物学, 电话: 15020351146, E-mail: zhangmin840818@163.com

特点,以期为了解海藻资源特点及其进一步开发利用提供基础性资料。

1 材料与方法

1.1 材料及前处理

测试材料采集于 2010 年春季, 龙须菜和鼠尾藻 采自青岛海区自然生长藻体, 红毛菜和浒苔在黄海 南部海区的紫菜栽培伐架上采摘获取。上述材料采 用低温法带回实验室, 洁净海水清洗, 剔除杂藻杂 物, 蒸馏水漂洗 3 次, 低温风干, 研磨, 100 目过筛, -20°C保存备用。

1.2 脂肪酸提取

采用改进的 Bligh-Dyer(m-BD)法^[17]进行脂肪酸 提取。0.2 g 藻粉,加入 10 mL 混合比例为 1:2:0.8 的 氯仿、甲醇和蒸馏水溶剂,匀浆,加入 C19:0 内标 40 μg, 40 KHz 超声处理 5 min, 5 000 g 离心 5 min, 收集上清。沉淀部分重复上述操作,共提取 3 次,合并上清,加入等体积混合比 1:1 的氯仿和蒸馏水溶液,使其终浓度为氯仿:甲醇:蒸馏水= 1:1:0.9。加入 1 mL 5%氯化钠混匀,静置。上层为水相,含盐类和水溶性物质,下层为氯仿层,氯仿层转至旋转蒸发仪,旋转干燥、获得总脂肪酸。

在上述脂肪酸测样中,加入 1 mL 1.5%(W/V) NaOH/CH₃OH 溶液,55%C水浴保温 15 min,再加入 2 mL 5%(V/V)HCl/CH₃OH 溶液,继续 55%C水浴保温 20 min。取 2 mL 正己烷,加入上述反应体系混匀,静置分层,吸出上层正己烷相,再向下层水相中加入 2 mL 正己烷,重复上述步骤,合并 3 次吸出液,于旋转蒸发器内蒸干,1 mL 正己烷定容,待分析。

1.3 GC-MS 分析条件

仪器: QP2010 气相色谱-质谱分析仪, AOC-20i 自动进样器(日本 SHIMADZU 公司), 30 m× 0.25 mm×0.25 um RTX-Wax 色谱柱(美国 SUPELCO 公司)。

GC 条件: 进样口温度 220℃, 检测器温度 250℃, 载气为高纯氦气(99.999%), 柱流速 1.0 mL/min, 进样时间 1 min, 溶剂延迟 3 min, 柱起始温度 60℃, 保持 2 min, 以 15℃/min 升温至 120℃, 然后以 2.5℃/min 升温至 220 ,保持 15 min。采用分流进样模式,分流比 50:1,进样量 1 μ L。

MS 条件: 电子轰击(EI)离子源, 电子能量 70 eV,

离子源温度 230 ,接口温度 220 ,选取全程离子 碎片扫描(SCAN)模式,质量扫描范围为 $45\sim450$ m/z。

1.4 统计分析

实验设置 3 个重复, 实验数据表示为平均值生标准差(*n*=3)。脂肪酸含量的计算先采用内标法计算实际含量, 然后换算成百分含量。应用统计软件Origin7.0 对实验数据进行标准误差分析。

2 结果

2.1 总离子流图谱

鼠尾藻、浒苔、龙须菜和红毛菜的脂肪酸成分总离子流图(图 1、2、3、4)显示,4 种经济海藻含有C14-C22 的脂肪酸,其脂肪酸组成相似。各脂肪酸组分按出峰顺序依次为 C14:0、C15:0、C16:0、C16:1、C17:0、C18:0、C18:1、C18:2、C18:3、C20:0、C20:1、C20:2、C20:3、C20:4、C20:5、C22:0、C22:1 和 C22:5,所有组分在保留时间 55.0 min 内均达到基线分离。内标 C19:0 出峰时间在 39.5 min。

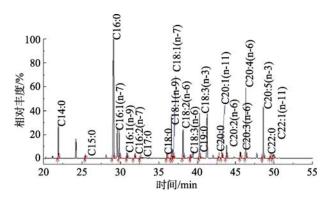


图 1 鼠尾藻脂肪酸甲酯总离子流色谱图 Fig. 1 TIC of fatty acid methyl esters from S. thunbergii

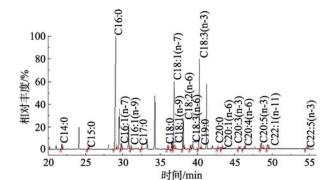


图 2 浒苔脂肪酸甲酯总离子流色谱图 Fig. 2 TIC of fatty acid methyl esters from *E. prolifera*

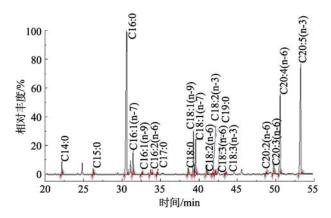


图 3 龙须菜脂肪酸甲酯总离子流色谱图

Fig. 3 TIC of fatty acid methyl esters from G. lemaneiformis

2.2 脂肪酸组分

根据气相色谱-质谱总离子流图中各组分的离子

碎片质量谱图,通过 NIST05 及 NIST05s 谱图库检索,结合标准谱图确认其成分,同时采用内标法测得总脂及各组分含量。定性、定量结果如表 1。

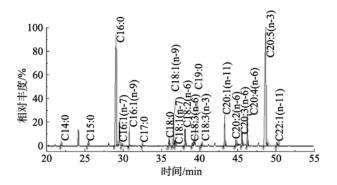


图 4 红毛菜脂肪酸甲酯总离子流色谱图

Fig. 4 TIC of fatty acid methyl esters from Bangia sp.

表 1 4 种海藻脂肪酸组成及相对含量

Tab. 1 The compositions and relative contents of fatty acids in the four algae

脂肪酸	鼠尾藻(n=3)	浒苔(n=3)	龙须菜(n=3)	红毛菜 (n=3)
C14:0	4.89±0.21	1.17±0.13	1.61±0.1	0.20±0.04
C15:0	0.46 ± 0.04	0.21 ± 0.08	0.80 ± 0.06	0.11 ± 0.03
C16:0	29.13 ± 0.65	36.89 ± 1.93	36.06 ± 2.61	30.19 ± 1.08
C16:1(n-7)	4.69±0.19	1.35 ± 0.23	3.28 ± 0.12	0.17 ± 0.04
C16:1(n-9)	0.87 ± 0.08	0.76 ± 0.21	0.31 ± 0.04	2.68 ± 0.24
C16:2(n-7)	0.75 ± 0.09	_	0.68 ± 0.08	_
C17:0	0.08 ± 0.01	0.13 ± 0.02	0.18 ± 0.03	0.05 ± 0.01
C18:0	0.79 ± 0.04	0.77 ± 0.06	0.94 ± 0.06	1.26 ± 0.12
C18:1(n-9)	7.53±0.18	1.43 ± 0.16	6.49 ± 0.39	4.40 ± 0.4
C18:1(n-7)	0.69 ± 0.06	16.87 ± 0.19	5.02 ± 0.31	0.78 ± 0.1
C18:2(n-6)	5.03 ± 0.08	7.41 ± 0.07	1.34 ± 0.11	2.62 ± 0.24
C18:2(n-3)	_	_	0.31 ± 0.07	_
C18:3(n-6)	0.62 ± 0.05	0.87 ± 0.05	0.60 ± 0.06	0.43 ± 0.05
C18:3(n-3)	8.22 ± 0.08	26.23 ± 0.27	0.17 ± 0.04	0.20 ± 0.04
C20:0	0.22 ± 0.01	0.14 ± 0.01	_	_
C20:1(n-11)	2.48 ± 0.03	0.31 ± 0.08	_	4.93±0.26
C20:2(n-6)	2.47 ± 0.04	_	0.22 ± 0.02	1.04 ± 0.12
C20:3(n-6)	1.11±0.01	0.82 ± 0.18	1.94±0.15	2.26±0.21
C20:4 (n-6)	13.83±0.21	0.51 ± 0.05	14.21±0.54	5.05±0.47
C20:5 (n-3)	12.22±0.06	2.54 ± 0.12	25.85±0.28	42.89±1.47
C22:0	0.38 ± 0.02	_	_	_
C22:1(n-11)	3.54 ± 0.05	1.23±0.63	_	0.74 ± 0.1
C22:5(n-3)	_	0.36 ± 0.09	_	_
\sum SFAs	35.95±0.61	39.95±0.96	39.59±1.39	31.80±0.89
\sum UFAs	64.05±0.60	60.02±0.92	60.41±1.34	68.20 ± 0.89
∑MUFAs	19.79±0.52	22.84 ± 0.97	15.09 ± 0.85	13.71±1.33
\sum PUFAs	44.26 ± 0.27	37.86 ± 0.67	45.32±1.49	54.51±0.46

注: " — "表示该组分痕量

2.3 总脂含量

4 种海藻总脂含量如图 5 所示。鼠尾藻中鉴定出21 种脂肪酸,总脂含量 13.54 mg/g; 浒苔鉴定出19 种脂肪酸,总脂在 4 种海藻中最低,为 12.64 mg/g; 龙须菜和红毛菜均鉴定出18 种脂肪酸,二者总脂含量相对较高,分别为16.99 mg/g 和18.28 mg/g。4 种海藻总脂含量的范围在12~19 mg/g 之间。

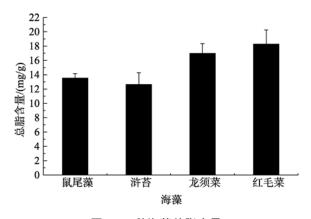


图 5 4 种海藻总脂含量

Fig. 5 The total lipid contents in the four algae

2.4 SFAs、UFAs 含量及组成

4 种海藻 SFAs 都以 C16:0 为主,而 UFAs 组成有明显差异。鼠尾藻 UFAs 主要是 C18:1(n-9)、C18:2(n-6)、C18:3(n-3)、C20:4 及 C20:5; 浒苔 UFAs 组分主要为 C18:1(n-7)、C18:2(n-6)及 C18:3(n-3); 龙须菜 UFAs 以 C20:4 和 C20:5 为主,红毛菜 C20:5 含量显著,高达 42.89%。4 种海藻 SFAs 范围在31.80%~39.95%之间,UFAs 在 60.05%~68.20%之间,SFAs 与 UFAs 含量之比在1:2 左右(图 6)。

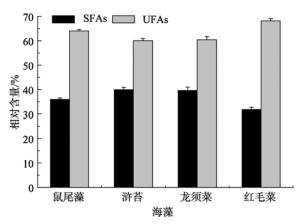


图 6 4 种海藻 SFAs 与 UFAs 相对含量

Fig. 6 The relative contents of SFAs and UFAs in the four algae

2.5 n-3 和 n-6 系列 PUFAs 含量及组成

4种海藻 n-3 和 n-6 系列 PUFAs 组成如图 7 所示。鼠尾藻 PUFAs 占总脂的 44.26%,其中 n-3 系列含量占总脂 20.45%,n-6 系列占 23.06%,n-6/n-3 系列 PUFAs 之比为 1.13;浒苔的 PUFAs 占总脂的 37.86%,n-3 系列含量占总脂 27.54%,n-6 系列占 8.79%,n-6/n-3 系列 PUFAs 比值为 0.32;龙须菜中 PUFAs 占总脂含量的 45.32%,n-3 系列含量为总脂的 26.33%,n-6 系列为 18.75%,n-6/n-3 系列 PUFAs 比例为 0.71;红毛菜 PUFAs 含量相对较高,占总脂含量的 54.51%,n-3 系列 PUFAs 相对含量为 43.09%,n-6 系列为 11.41%,n-6/n-3 系列 PUFAs 之比为 0.27。

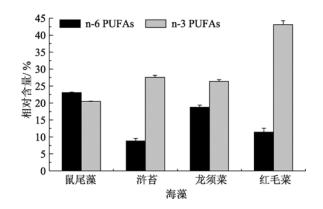


图 7 4 种海藻 n-6 及 n-3 系列 PUFAs 相对含量 Fig. 7 The relative contents of n-6 and n-3 PUFAs in the four algae

3 讨论

3.1 4种海藻脂肪酸组成特征

海藻脂肪酸组成具有种属特异性^[12-16]。红藻主要含十六碳 SFAs 和二十碳 PUFAs,几乎不含二十二碳 PUFAs ^[18]。绿藻以十六碳 SFAs 和十八碳 UFAs 为主,含有微量的二十碳 PUFAs,具有较高含量 α-亚麻酸是绿藻脂肪酸组成的突出特征^[19]。褐藻所含脂肪酸种类较红藻和绿藻丰富,以十六碳 SFAs、十八碳 UFAs 和二十碳 PUFAs 为其脂肪酸主要组分^[14]。本文测试结果显示,鼠尾藻所含脂肪酸种类较浒苔、龙须菜和红毛菜丰富,其中 C16:0、C18:1(n-9)、C18:2(n-6)、C18:3(n-3)、C20:4 和 C20:5 是主要成分,占总脂肪酸的一半左右;浒苔以 C16:0、C18:1(n-7)、C18:2(n-6)及 C18:3(n-3)为主,含有微量的二十碳 PUFAs(C20:4 和 C20:5),具有较高含量 α-亚麻酸 (C18:3 n-3);龙须菜和红毛菜以 C16:0、C20:4 和

C20:5 为主, 几乎不含二十二碳 PUFAs。4 种海藻脂肪酸组成特点与前人对海藻脂肪酸的研究报道相似, 鼠尾藻具褐藻类脂肪酸组成特征, 浒苔表现绿藻的脂肪酸组成特征, 龙须菜和红毛菜显示典型的红藻脂肪酸组成特征。

一般认为,红藻脂肪酸组成是有相对高的十六碳 SFAs 和二十碳 PUFAs(C20:4 和 C20:5)^[18]。本研究结果表明,红毛菜与龙须菜在二十碳 PUFAs 组成上有明显差异,龙须菜 C20:4 和 C20:5 相对含量都较高,而红毛菜以 C20:5 为主要组分,仅含微量的C20:4。马家海等(2002)^[22]报道红毛菜脂肪酸 C20:5 含量高达 51.74%,Kayama 等^[20]、陈人弼等^[21]报道条斑紫菜和坛紫菜的二十碳 PUFAs 也都以 C20:5 为主,其含量超过 50%,仅含微量 C20:4。而仙菜目、隐丝藻目、杉藻目和海索面目等真红藻则富含 C20:4 和 C20:5^[15-16]。根据已有研究结果可以认为,二十碳 PUFAs 中 C20:4 和 C20:5 的相对含量水平是真红藻和原始红藻脂肪酸组成的区分特征。

3.2 4 种海藻 n-3 与 n-6 系列 PUFAs 组成 特点

n-3 与 n-6 系列多不饱和脂肪酸含量及其比值是 衡量脂肪酸价值的重要指标、特别是 n-3 系列 PUFAs 在人体的营养、发育和健康等方面起着重要作用[8-9]。 紫菜、浒苔、马尾藻和江蓠等经济海藻的脂肪酸组 成中, 都富含 n-3 与 n-6 系列 PUFAs, 尤其是 n-3 系 列的EPA和DHA, 这些海藻中n-6与n-3系列PUFAs 相对含量的比率均低于 3[21-26]。 紫菜属和红毛菜属海 藻含有丰富的 n-3 系列 PUFAs, EPA 占到总脂肪酸的 50%左右[20-22]。本研究中浒苔、江蓠和红毛菜含有较 高 n-3 系列 PUFAs, 其中又以红毛菜的 n-3 系列 PUFAs 含量显著, 鼠尾藻虽含有较高的 n-6 系列 PUFAs、但 4 种经济海藻 n-6 与 n-3 系列 PUFAs 比率 均低于 2。人类膳食结构中 n-3 PUFAs 相对缺乏[27]、 联合国卫生组织 WHO^[28]推荐饮食中 n-6/n-3 摄入比 例应低于 4~5。本文研究结果表明、经济海藻富含 n-3 系列 PUFAs, 并且 n-6/n-3 比例符合健康膳食的 要求、具有良好的开发利用前景。

参考文献:

- [1] 施之新, 谢树莲, 华栋. 中国淡水藻志: 红藻门·褐藻门(第十三卷)[M]. 北京: 科学出版社, 2006: 1-30.
- [2] 曾呈奎.中国经济海藻志[M]. 北京: 科学出版社, 1962.

- [3] 曾呈奎, 张俊甫. 中国北部的经济海藻[J]. 山东大学学报, 1952, 2(1): 57-82.
- [4] 董美龄. 中国浒苔属植物地理学的初步研究[J]. 海 洋与湖沼, 1963, 5(1): 46-51.
- [5] 孙爱淑, 曾呈奎. 中国红毛菜繁殖方式和染色体研究[J]. 海洋与湖沼, 1998, 29(3): 269-273.
- [6] 张俊甫, 夏邦美. 中国江蓠属植物地理学的初步研究[J]. 海洋与湖沼, 1962, 4(3-4): 189-196.
- [7] 胡征宇,徐敏,毕永红.中国藻类脂肪酸研究[C]//刘永定,范晓,胡征宇.中国藻类学研究.武汉:武汉出版社,2001:254-261.
- [8] Colomobo M L, Rise P, Giavarin F, et al. Marine Macroalgae as Sources of Polyunsaturated Fatty Acids[J]. Plant Foods for Human Nutrition, 2006, 61: 67-72.
- [9] 朱路英, 张学成, 宋晓金, 等. n-3 多不饱和脂肪酸 DHA、EPA 研究进展[J]. 海洋科学, 2007, 31(11): 78-85.
- [10] Dyerberg J, Bang H O, Stoffersen E, et al. Eicosapentaenoic acid and prevention of thrombosis and atherosclerosis [J]. The Lancet, 1978, 15(2): 117-119.
- [11] Kaneniwa M, Kaminishi Y, Kunimoto M. Fatty acid compositions of nineteen species of marine algae mainly obtained from the Yamaguchi Prefecture coast[J]. Shimonoseki University Fisheries, 1998, 46: 191-195.
- [12] Jamieson G R, Reid E H. The component fatty acids of some marine algal lipids [J]. Phytochemistry, 1972, 11(4): 1423-1432.
- [13] Khotimchenko S V, Vaskovsky V E, Titlyanova T V. Fatty Acids of Marine Algae from the Pacific Coast of North California [J]. Botanica Marina, 2002, 45: 17-22.
- [14] Khotimchenko S V. Fatty acids of brown algae from Russian Far East [J]. Phytochemistry, 1998, 49: 2363-2369.
- [15] 蔡春. 24 种海藻中脂肪酸含量的研究[J]. 中国海洋药物, 1996, 57(1): 22.
- [16] 李宪璀, 范晓, 韩丽君, 等. 中国黄、渤海常见大型海藻的脂肪酸组成[J]. 海洋与湖沼, 2002, 33(2): 215-224.
- [17] Bligh E G, Dyer W J. A rapid method of total lipid extraction and purification [J]. Canadian Journal of Biochemistry and Physiology, 1957, 37: 911-917.
- [18] Levy I, Maxim C, Friendlander M. Fatty acid distribution among some red algal macrophytes [J]. Phycol,

1992, 28: 299-304.

- [19] Khotimchenko S V. Fatty acids of green macrophytic Algae from the Sea of Japan [J]. Phytochemistry, 1993, 32: 1203-1207.
- [20] Kayama M, Lijima N, Kuwahara M, et al. Effect of water temperature on the fatty acid composition of *Porphyra* [J]. Bull Jap Soc Sci Fish, 1985, 51: 687.
- [21] 陈人弼. 坛紫菜主要营养成分的分析[J]. 台湾海峡, 1999, 18: 465-468.
- [22] 马家海, 李水军, 纪焕红, 等. 红毛菜的氨基酸和脂肪酸分析[J]. 中国海洋药物, 2002, 5: 40-42.
- [23] 李来好,杨贤庆,吴燕燕,等.马尾藻的营养成分分析和营养学评价[J].青岛海洋大学学报,1997,27(3):

319-324.

- [24] 孙伟红,冷凯良,王志杰,等. 浒苔的氨基酸和脂肪酸组成研究[J]. 渔业科学进展,2009,30(2):106-109.
- [25] 范晓, 韩丽君, 周天成. 中国沿海经济海藻化学成分的测定[J]. 海洋与湖沼, 1995, 26(2): 200-207.
- [26] 陶平, 许庆陵, 姚俊刚, 等. 大连沿海 13 种食用海藻 的营养组成分析[J]. 辽宁师范大学学报: 自然科学版, 2001, 24(4): 406-410.
- [27] 唐传核, 徐建祥, 彭志英. 脂肪酸营养与功能的最新研究[J]. 中国油脂, 200), 25(6): 20-23.
- [28] FAO/WHO Ad Hoc expert committee. Energy and protein requirement [R]. FAO Nutrition Meeting Report Series, 1973: 52: 40-73.

Analysis of the fatty acid composition of four economic seaweeds

ZHANG Min¹, LI Rui-xia¹, YI Ji-feng², SHEN Song-dong¹, HU Chuan-ming³, YING Shang-yun², TANG Jun², ZHANG Tao², XU Pu²

(1. School of Medicine and Life Sciences, Medical College of Suzhou University, Suzhou 215123, China; 2. Department of Biology and Food Engineering, Changshu Institute of Technology, Changshu 215500, China; 3. Marine Fisheries Institute of Jiangsu Province, Nantong 226007, China)

Received: Dec.,17,2010

Key words: Sargassum thunbergii; Enteromorpha prolifera; Gracilaria lemaneiformis; Bangia sp.; fatty acid; GC-MS

Abstract: The fat-soluble components were extracted using a modified Bligh-Dyer method, which were further separated and identified by gas chromatography-mass spectrometry (GC-MS), with C19:0 as internal control. The fatty acid composition of four economic algaes including *Sargassum thunbergii*, *Enteromorpha prolifera*, *Gracilaria lemaneiformis* and *Bangia* sp. were determined. The C14-C22 fatty acids were detectable in all of the four algae with total lipid contents varying between 12-19 mg/g. The unsaturated fatty acids were the main components among the fatty acids, which accounted for more than 60%. The polyunsaturated fatty acids (PUFAs), especially the n-6 and n-3 PUFAs, were the main components among the unsaturated fatty acids. The content ratios of n-6/n-3 PUFAs were all less than 2. The comparison of fatty acid composition showed that fatty acid designated C16, C18 and C20 were the major composition in *S. thunbergii*, exhibiting typical fatty acid composition characteristic of brown algae. C16 and C18 were the major fatty acid composition in *E. prolifera*, the typical characteristic of green algae. Both *G. lemaneiformis* and *Bangia* sp. mainly contained C16 and C20, which was the typical characteristic of red algae. Meanwhile, *G. lemaneiformis* and *Bangia* sp. exhibited typical composition characteristic of Florideophycidae and Bangioideae, respectively.

(本文编辑:康亦兼)