湛江湾电厂脱硫酸性废水排放对海洋叶绿素影响研究

梁春林¹,陈春亮²,孙省利²,张际标²

(1. 广东海洋大学 信息学院, 广东 湛江 524088; 2. 广东海洋大学 海洋资源与环境监测中心, 广东 湛江 524088)

摘要:为了清晰理解湛江湾内某电厂脱硫酸性废水排放引起海水pH的变化分布及其对叶绿素浓度的影响, 在野外调查及实验室模拟的基础上建立叶绿素浓度对pH的响应模式,并基于 ECOMSED 海洋模式和水质 模型预测湛江湾叶绿素浓度的变化率和影响范围。实验室模拟结果表明,叶绿素浓度受pH 影响较大,比较 适宜叶绿素合成的pH 区间为 7.5~8.5,叶绿素浓度对pH 的响应模式可以用二次多项式函数表达。预测结果 表明,电厂脱硫酸性废水排放导致湛江湾叶绿素浓度下降超过1.0%的全潮极端影响面积为 16.10 km², 而引 起叶绿素浓度增加超过 1.0%的全潮极端影响面积为 2.18 km², 分别占湛江湾海域面积的 8.47%和 1.15%。

关键词:影响预测;叶绿素;脱硫酸性废水;ECOMSED;海洋生态 中图分类号:P76 文献标识码:A 文章编号:1000-3096(2014)02-0039-07 doi:10.11759/hykx20130120001

海水脱硫工艺已有 40 多年的发展历程, 广泛应 用于火力发电、炼铝、炼油等工业炉窑的烟气脱硫^[1-2], 其主原理是利用天然海水含有大量的可溶盐并具有 天然的酸碱缓冲能力来洗涤烟气中的 SO₂, 达到净 化烟气的目的^[3]。然而, 大量的 SO₂ 被海水吸收了后, 经过复杂的物理和化学作用, 被氧化成为稳定的 SO²⁻, 并使海水的 pH 降低^[4-5]。因此, 海水洗涤烟 气后排入大海是否会给海洋环境带来二次污染, 是 否会对周边海域的生态环境造成负面影响, 越来越 受到海洋研究者和有关管理部门的密切关注。在海 水脱硫工艺实施前, 必须定量分析脱硫酸性废水排 放对海洋环境的污染, 预测其对海洋生态系统的影 响, 为烟气海水脱硫工艺应用提供科学依据。

1 材料与方法

1.1 研究材料

本文以湛江湾内东南角沿岸规划建设的某电厂 为研究对象,分析与预测其脱硫酸性废水排放对海 洋叶绿素的影响。该电厂拟规划建设 2 台 350 MW 掺烧煤气的供热机组,烟气脱硫工艺拟将天然海水 提升到脱硫吸收塔喷淋,冲洗烟气后排入脱硫曝气 池,充分化学反应后溢流进入排水箱涵,再从循环 水排放口排入湛江湾海域。烟气海水脱硫工艺取、 排水采用深取、浅排方案,取水口位于水深 7 m 处, 排水口位于自由海面,脱硫酸性废水排放流量为 31.4 m³/s, pH 排放限值执行不劣于三类海水水质标 准(pH≥6.8)。电厂烟气海水脱硫工艺取、排水口紧 靠海湾深槽和湾口,具体布设见图 1。

湛江湾位于我国大陆最南端的雷州半岛,东临 南海,属于半封闭的沉溺型港湾,素以天然深水港 湾著称,具有良好的水动力交换条件,受沿岸水影 响较小。湾内主要有南三岛、特呈岛、东头山岛和 东海岛等岛屿,与外海相隔,形成掩护,风浪平静,

Marine Sciences / Vol. 38, No. 2 / 2014

收稿日期: 2013-01-20; 修回日期: 2013-04-06

基金项目:国家海洋局海洋公益性行业科研专项项目(200905005-05, 201105008-5)

作者简介:梁春林(1975-),男,广东湛江人,副教授,硕士,主要从 事海洋数值模拟研究,电话:13828285528,E-mail:yes2384735 @126.com

湾口位于南三岛和东海岛之间, 宽约 2 km。水动力 以潮汐作用为主, 潮汐、潮流主要是太平洋潮波进入 南海后形成, 受附近海岛和底摩擦影响, 潮汐特征 变得比较复杂, 有明显不正规半日潮特征, 潮汐水 道呈树枝状自南向北延伸至内陆。其水域面约 190 km², 水深约 26~44 m, 平均纳潮量 6.3 亿m³, 最大达 11.7 亿m³, 年平均潮差约 2.17 m, 最大潮差为 5.45 m, 年平均水温 24.1℃, 年平均盐度 3.02%, 年平均pH为 8.0。

1.2 预测方法

海洋生态环境影响分析与预测,是对人类即将 开发利用海洋资源可能导致的海洋生态响应进行分 析和预测,并提出消除负面影响的技术措施和改善 海洋生态环境的应对策略。研究方法可分为定性评 价和定量预测两种类型、其中以描述性的、定性的评 价方法发展最为成熟、复杂的、定量的预测方法仍处 研究探索阶段,发展尚不成熟,方法选择应依据研 究的对象、评价的内容、预测的目的和要求进行综 合选择。本文主要研究滨海电厂烟气脱硫酸性废水 排放引起海水 pH 变化可能对海洋叶绿素产生的影 响、其预测方法适宜采用数值模拟研究。具体实施过 程首先开展湛江湾海水 pH 本底值的现状调查和天 然海水样本采集;然后在实验室模拟海水样本的 pH 变化,并定时监测海水样本叶绿素浓度的变化,从 监测结果建立叶绿素对 pH 响应模型;最后应用 ECOMSED 海洋模式的水动力模块和溶解示踪物输 运模块建立电厂烟气脱硫酸性废水扩散三维数值模 型、模拟湛江湾海域的水动力过程和该电厂脱硫酸 性废水的时空输移路径,以及其引起海水 pH 变化的 影响范围,并依据 pH 模拟结果和叶绿素对 pH 响应 模型、定量预测该电厂烟气脱硫酸性废水排放对海 洋叶绿素的影响范围和程度。

2 数学模型

2.1 脱硫酸性废水扩散模型

电厂烟气脱硫酸性废水扩散三维数值模型基于 ECOMSED 海洋模式的水动力模块和溶解示踪物输 运模块构建, ECOMSED 海洋模式是较为成熟的浅海 三维水动力学模式,基于静力学假设和 Boussinesq 近似的海洋封闭方程组,采用水平曲线正交网格和 σ 垂向坐标,可以应用模拟海洋和淡水系统中的水 位、海流、波浪、温度、盐度、示踪物以及沉积物 的时空分布等,是一个集成化的海洋数值计算模式。 该模式在我国沿海海域均有应用,例如苗庆生等^[6] 建立的象山港三维温排水扩散数值模型,堵盘军等^[7] 建立的杭州湾三维动边界潮流模型,林建伟^[8]建立 的厦门湾三维动边界潮流模型等。ECOMSED 海洋 模式的水动力连续方程见公式(1),雷诺平均动量方 程见方程(2)、(3)和(4)状态方程,在深度 *z* 处的压强 见公式(5)。

$$\nabla \cdot \overline{V} + \frac{\partial W}{\partial Z} = 0 \tag{1}$$

$$\frac{\partial U}{\partial t} + \overline{V} \cdot \nabla U + W \frac{\partial U}{\partial z} - fV = -\frac{1}{\rho_0} \frac{\partial P}{\partial x} + \frac{\partial}{\partial z} \left[K_{\rm M} \frac{\partial U}{\partial z} \right] + \frac{\partial}{\partial x} \left[2A_{\rm M} \frac{\partial U}{\partial x} \right] + \frac{\partial}{\partial x} \left[A_{\rm M} \left(\frac{\partial U}{\partial y} + \frac{\partial V}{\partial x} \right) \right] + qU^*$$
(2)

$$\frac{\partial V}{\partial t} + \overline{V} \cdot \nabla V + W \frac{\partial V}{\partial z} + fU = -\frac{1}{\rho_0} \frac{\partial P}{\partial y} + \frac{\partial}{\partial z} \left[K_{\rm M} \frac{\partial V}{\partial z} \right] + \frac{\partial}{\partial y} \left[2A_{\rm M} \frac{\partial V}{\partial y} \right] + \frac{\partial}{\partial x} \left[A_{\rm M} \left(\frac{\partial U}{\partial y} + \frac{\partial V}{\partial x} \right) \right] + qV^*$$

$$\rho g = -\frac{\partial P}{\partial z}$$
(4)

 $P(x, y, z, t) = P_{\text{atm}} + g\rho_0\eta + g\int_Z^0 \rho(x, y, z', t)dz'$ (5)

式中, U、 V 分别为 x、 y 方向流速, W 为垂向流速, ρ_0 为海水参考密度, ρ 为海水现场密度, g 为重力加速度, P 为压强, 科氏参数 f 通过 β 平面假设($f=f_0+\beta y$)引入, q 为源(汇)单位面积的流量, 源时 q 取正值, 汇时 q取负值, U^* 、 V^* 为 x、 y 方向的流速, P_{atm} 为大气压, A_M 为湍流动量混合的水平涡度扩散系数, K_M 为湍流动 量混合的垂向涡度扩散系数。

电厂烟气脱硫酸性废水扩散 pH 连续方程见公式(6),式中 C 为海水 pH, C_S 为电厂烟气脱硫酸性废 水 pH, A_H 为温盐湍流混合的水平涡度扩散系数, K_H 为温盐湍流混合的垂向涡度扩散系数。

$$\frac{\partial C}{\partial t} + \frac{\partial UC}{\partial x} + \frac{\partial VC}{\partial y} + \frac{\partial (W - W_{\rm s})C}{\partial z} = \frac{\partial}{\partial x} \left(A_{\rm H} \frac{\partial C}{\partial x} \right) + \frac{\partial}{\partial y} \left(A_{\rm H} \frac{\partial C}{\partial y} \right) + \frac{\partial}{\partial z} \left(K_{\rm H} \frac{\partial C}{\partial z} \right) + qC_{\rm s}$$
(6)

2.2 叶绿素对 pH 响应模型

海水叶绿素对 pH 的响应模型基于实验模拟建 立,通过实验室模拟海水样本的 pH 变化,并长期、 定时监测海水样本叶绿素浓度变化,再从监测结果 拟合叶绿素浓度对 pH 响应的数学模式求得。模拟试 验海水样品采集于电厂附近海域,具体位置见图 1, 采集时间为 2013 年 4 月 12 日。试验时,取约 75 L 海水样品分别注入 6 个敞口大玻璃缸,曝露于无太 阳直晒的见光空气环境,并利用盐酸(AR)、氢氧化钠 (AR)和 pH 计对各缸海水样品的 pH 进行测调, 拟测 调各缸初始 pH 为 6.7, 7.0, 7.3, 7.6, 7.9, 8.2, 实际调 试的 pH 分别为 6.71, 7.05, 7.27, 7.62, 7.91, 8.17。其 中,为保证实验过程不因营养盐匮乏而引起叶绿素 的额外变化,实验中按 30 mol/L NaNO₃、4 mol/L K₂HPO₃、20 mol/L Na₂SiO₃ 的比例添加到每个实验缸 中,以确保实验过程营养盐的充足供应。试验环境温 度变化区间为 19~26℃,相对湿度变化区间为 78%~95%,每天中午 12:00 时采集叶绿素样品,采用 分光光度法(紫外可见分光光度计)测定其浓度。持续 8 d 的连续监测,记录叶绿素浓度对 pH 响应监测结 果,把所有测得的叶绿素浓度数据进行汇总,并对 pH 作图,具体结果如图 2 所示。

图 2 叶绿素浓度对 pH 的响应模式 Fig. 2 Respond model of Chlorophyll to pH

由图 2 可知, 叶绿素浓度受 pH 影响较大, 比较 适宜叶绿素合成的 pH 区间为 7.5~8.5, pH 过高或过 低均不利于叶绿素的合成。在所监测的 pH(6.7~8.8) 范围内, 叶绿素浓度(y)随 pH(x)变化的趋势可以用二 次多项式函数表达, 具体见公式(7), 拟合相关系数 $R^2 = 0.715$ 。

 $y = -5.408x^2 + 86.90x - 302.4 \tag{7}$

3 计算结果与分析

3.1 水动力数值计算

数值计算范围经纬度坐标为 20°0′12"~ 21°10′52"N和 110°18′36"~110°36′0"E,电厂烟气海 水脱硫工艺取、排水口坐标分别为(21°04′20.56"N, 110°29′28.00"E)和(21°04′24.45"N, 110°29′51.75"E), 海流观测站C1、C2、C3坐标分别为(21°4′30"N, 110°28′24"E)、(21°5′6"N, 110°33′24"E)、(21°08′18"N, 110°25′06"E),具体见图 1。计算空间网格步长 x= 100 m, *y*=80 m; 开边界水位采用 M2、S2、N2、 K1、P1 和 O1 等 6 个主要分潮调和常数计算; 电厂 烟气海水脱硫工艺取、排水流量均为 31.4 m/s; 海水 水温、盐度取年平均值, 分别为 24.1℃和 3.02%; 湾 内海水 pH 季节变化不明显, 初始值为 8.02; 水深数 据取自中华人民共和国海事局出版的海图资料, 利 用内插方法计算网格点水深。

水动力模型输出对应时段(2011 年 8 月 24 日 10:00 时~2011 年 8 月 26 日 12:00 时)的模拟结果(流 速、流向)与 3 个野外调查站观测资料进行对比分析, 具体见图 3。

由海流对比图 3 可知, 各海流观测点计算所得 的流速、流向与观测资料基本吻合, 计算误差较小, 水动力模拟结果基本能反映湛江湾海域的涨、落潮 流变化过程。电厂烟气海水脱硫工艺取、排水后, 湛 江湾海域大潮涨潮、落潮过程流场模拟结果见图 4。

数值计算结果显示, 湛江湾海域潮汐特征为不 规则半日潮, 大潮涨潮过程流速介于 0.8~0.9 m/s 之 间, 落潮过程流速在 1.1~1.2 m/s 之间, 落潮流速比 涨潮流速大, 表层流速比底层流速大, 流向主要受 到地形的限制。涨潮潮流自外海由湾口沿西北方向 进入湛江湾, 进入湾口后, 主潮流折向西, 沿南三岛 西航道西进, 至石头角航道与南三岛航道的交汇处 再转向西北, 落潮流向与涨潮流向相反, 潮流基本 沿湾内深槽往复流动。综上所述, 水动力数值计算结 果与野外海流观测资料相一致, 其结果可以作为电 厂脱硫酸性废水扩散三维数值模拟的基础。

3.2 pH 数值计算

湛江湾水动力环境主要受潮汐作用,河流和沿岸水对其影响很小。依据水动力数值计算结果,联合电厂烟气脱硫酸性废水扩散 pH 连续方程,求得脱硫酸性废水扩散范围及 pH 变化分布,数值计算结果见表 1 和图 5,其中表层、中层和底层分别表示水深值的 10%、50%和 80%。

由图 5 和表 1 可知, 电厂脱硫酸性废水排放引 起海水 pH 变化的空间影响范围随潮流流向呈带状 分布, 影响范围窄而长, 但排放口位于湛江湾口强 流区, 脱硫酸性废水与海水的酸碱中和作用也相对 较强, pH 呈显著变化(pH 7.8)的影响范围仅局限在 废水排放口附近。其中, 大潮与小潮相比, 大潮流速 较大, 与海水的混合比小潮充分, 引起海水 pH 变化 (pH 7.9)的各层次面积都较小潮大; 但由于采用自

图 4 大潮涨、落潮过程流场 Fig. 4 Flow distribution chart of rising and falling tide

由表面排水方案,引起pH显著变化(pH 7.4)的表层 面积较小潮小,在中层和底层,大潮与小潮的影响 面积基本相等。同时,电厂脱硫酸性废水排放引起表 层海水 pH 变化率最大,中层海水 pH 变化率次之,底 层海水 pH 变化率最小, pH 6.8 的区域主要集中在 表层。综上所述,电厂脱硫酸性废水排放引起海水

海洋科学 / 2014 年 / 第 38 卷 / 第 2 期

表 1	大潮、	小潮 pH 变化范围

Tab. 1	Affecting area of	pH changes	of spring and	neap tide
		P	· · · · · · · · · · · · · · · · · · ·	

潮汐类型	层次	pH	面积(km ²)	向西距离(km)	向东距离(km)	向南距离(km)	向北距离(km)
大潮	表层	6.8	1.25	1.24	0.61	1.59	0.22
		7.4	8.28	3.13	1.88	4.33	0.37
		7.8	29.84	6.51	3.06	5.85	0.76
		7.9	66.32	8.11	10.82	6.87	4.92
	中层	6.8	0.65	0.95	0.13	0.96	0.10
		7.4	3.96	3.02	0.95	2.68	0.22
		7.8	24.58	6.51	2.54	5.78	0.73
		7.9	61.18	8.11	10.82	6.83	4.56
	底层	6.8	0.44	1.02	0.00	0.76	0.06
		7.4	2.41	2.99	0.09	1.55	0.10
		7.8	17.41	6.51	2.32	5.78	0.73
		7.9	50.82	8.14	10.82	5.85	4.29
小潮	表层	6.8	2.79	1.24	1.76	3.97	0.26
		7.4	10.10	2.69	2.54	5.74	0.45
		7.8	30.77	5.84	5.14	5.85	1.78
		7.9	62.98	7.33	6.44	7.03	3.39
	中层	6.8	0.87	1.06	0.21	1.27	0.18
		7.4	5.77	2.69	1.69	3.94	0.45
		7.8	24.35	5.77	3.66	5.85	1.35
		7.9	57.96	7.33	6.03	7.03	3.11
	底层	6.8	0.63	1.06	0.09	0.84	0.10
		7.4	2.93	2.69	1.21	1.59	0.45
		7.8	16.05	5.73	2.73	5.78	1.08
		7.9	47.35	7.33	4.88	7.03	2.96

pH 变化的程度与影响范围均取决于附近海域潮流流 速的大小,潮流流速大,pH 变化的空间影响范围大, 但 pH 变化率较小;潮流流速小,pH 变化的空间影响 范围小,但 pH 变化率较大。

3.3 叶绿素影响预测

依据 pH 数值计算结果和叶绿素浓度对 pH 响应 方程公式(7),可求得电厂脱硫酸性废水排放引起湛 江湾海域叶绿素浓度变化的极端影响范围,具体见 表 2。其中,湛江湾海域面积约 190 km²,海水 pH 本 底值为 8.02;全潮(包括大潮和小潮)极端影响范围是 指同一网格点按照最低 pH 计算;设 y 为自然条件下 海水叶绿素浓度, Δy 为电厂脱硫酸性废水排放引起 海水叶绿素浓度变化值,叶绿素浓度变化率 δ =100 × Δy /y。

由表 2 可知, 电厂脱硫酸性废水排放对湛江湾海 域叶绿素浓度存在明显的影响, 其中导致叶绿素浓度 下降超过1.0%的全潮极端影响面积为16.10 km², 而引 表 2 全潮叶绿素极端影响范围

Tab. 2 Affecting area of chlorophyll

8	1.2	
叶绿素浓度变化率	影响面积	占湾内海域面积
(%)	(km^2)	(%)
3.0	0.12	0.06
2.0	0.37	0.20
1.0	2.18	1.15
0.0	88.53	46.59
-1.0	16.10	8.47
-2.0	7.14	3.76
-3.0	2.38	1.25

起叶绿素浓度增加超过 1.0%的全潮极端影响面积为 2.18 km²,分别占湛江湾海域面积的 8.47%和 1.15%。 同时,依据叶绿素浓度对 pH 响应模式,具体见图 2, 当海水 pH=7.9 时,叶绿素浓度对 pH 响应曲线存在 极大值点,即 pH 对海水叶绿素浓度的正、负影响并 存。可见,电厂脱硫酸性废水排放对叶绿素浓度的影 响由海水 pH 本底值和酸性废水 pH 排放限值共同决

图 5 大潮、小潮 pH 等值线 Fig. 5 The contours of pH of spring and neap tide

定, 当海水 pH 本底值大于 7.9 时, 酸性废水排放对 叶绿素浓度的增加呈积极作用; 当海水 pH 本底值小 于 7.9 时, 酸性废水排放对叶绿素浓度的增加呈消极 作用; 但是叶绿素浓度的变化率直接受酸性废水 pH 排放限值控制。

4 结束语

海水资源丰富,综合开发利用海水资源服务社 会、经济可持续发展一直是研究的热点^[9]。而电厂脱 硫酸性废水直排入海既改变了海水的化学特性,又 可能影响海洋生态系统健康,相对于物理模型而言, 数值模拟具有更高的经济效益和易用价值^[10]。本文 以湛江湾内规划建设的某电厂为例,基于海洋水动 力模型,联合水质模型和叶绿素浓度对 pH 的响应模 式预测电厂脱硫酸性废水排放引起海水 pH 的变化 分布及其对湛江湾叶绿素浓度的影响。预测结果表 明,电厂脱硫酸性废水排放导致湛江湾叶绿素浓度 明,电厂脱硫酸性废水排放导致湛江湾叶绿素浓度 可降超过 1.0%的全潮极端影响面积为 16.10 km²,而 引起叶绿素浓度增加超过 1.0%的全潮极端影响面积 为 2.18 km²,分别占湛江湾海域面积的 8.47%和 1.15%,负面影响大于正面影响。该预测模型以广泛应 用的 ECOMSED 海洋模式为基础,更有实验室监测数 据为依据,体现出预测模型建模的科学性和可靠性, 对海洋经济发展、海洋环境治理等有着重要的意义。

参考文献:

- Wu Zhaoxia. The Flakt-Hydro process: flue gas desulfurization by use of seawater[J]. International Journal of Environment and Pollution, 1999, 12(1): 67-72.
- [2] Zhao Yi, Ma Shuangchen, Wang Xiaoming, et al. Experimental and mechanism studies on seawater flue gas desulfurzation[J]. Journal of Environmental Sciences, 2003, 15(1): 123-128.
- [3] 王志轩.火电二氧化硫环境影响与控制对策[M].北 京:中国环境科学出版社, 2002.
- [4] 孔火良,吴慧芳,金保升. 燃煤电厂烟气脱硫技术及 其主要工艺[J]. 能源环境保护, 2002, 16(6): 22-28.

- [5] 郝海玲,张瑞生,李明举.我国燃煤电厂脱硫技术应用现状及展望[J].电力环境保护,2006,22(3):13-17.
- [6] 苗庆生,周良明,邓兆青.象山港电厂温排水的实测 和数值模拟研究[J].海岸工程,2010,29(4):1-11.
- [7] 堵盘军,胡克林,孔亚珍,等. ECOMSED 模式在杭 州湾海域流场模拟中的应用[J]. 海洋学报,2007, 29(1):7-16.
- [8] 林建伟. ECOMSED 模式在厦门湾海域潮流场模拟中的应用[J]. 福建水产, 2008(2): 60-64.
- [9] 黄宗汉.烟气海水脱硫工艺的实践经验及其改进的 探讨[J].环境保护, 2005, (3): 33-35.
- [10] 姚彤. 海水烟气脱硫工艺在我国的应用状况及发展 前景[J]. 工程建设与设计, 2004, (8): 6-8.

The impact of the acidic effluent discharge from power plant on chlorophyll in Zhanjiang Bay

LIANG Chun-lin¹, CHEN Chun-liang², SUN Xing-li², ZHANG Ji-biao²

(1. School of Information, Guangdong Ocean University, Zhanjiang 524088, China; 2. Monitoring Center for Marine Resources and Environments, Guangdong Ocean University, Zhanjiang 524088, China)

Received: Jan., 20, 2013

Key words: prediction of impact; chlorophyll; acidic effluent of desulfuration; ECOMSED; marine ecology

Abstract: To investigate the effect of the acidic effluent from power plants draining into Zhanjiang Bay on the sea water pH changes and chlorophyll concentration. The mode of chlorophyll concentration to pH was established through field survey and laboratory simulation. Then, ECOMSED and water quality model were applied to predict the change rate and influenced scope of chlorophyll in Zhanjiang Bay. The experimental results showed that the chlorophyll concentration was significantly impacted by pH. The pH range of 7.5 to 8.5 is the optimal pH range for chlorophyll synthesis. The responsing mode of chlorophyll concentration to pH may be defined by a quadratic equation. The predicted results showed that the extreme area of chlorophyll concentration decreased 1.0% is 16.10 km² during the spring and neap tide, when the acidic effluent from power plants drained into Zhanjiang Bay. But, the extreme area of chlorophyll concentration increased 1.0% is 2.18 km² during the spring and neap tide. The percentages of extreme area were 8.47% and 1.15% of Zhanjiang Bay, respectively.

(本文编辑:康亦兼)