绿海龟 α -actin 基因的 cDNA 克隆与序列分析

陶翠花¹, 刘莹莹², 赵丽媛¹, 许 敏^{1,2}, 祝 茜^{1,2}

(1. 国家海洋局 第三海洋研究所, 福建 厦门 361005; 2. 山东大学(威海) 海洋学院, 山东 威海 264209)

摘要:为探究绿海龟(Chelonia mydas)α-actin 基因序列的相关信息,作者利用 RT-PCR 和 RACE 方法从 绿海龟肌肉组织中获得了α-actin 基因的 cDNA 全长序列,共 1347bp(GenBank 登录号为 JX073650)。所 得序列包含一个 1134 bp 的开放阅读框,编码由 377 个氨基酸组成的蛋白,该蛋白 7~377 位为 Actin 结 构域,14~17 位有一个糖基化位点,无信号肽;预测分子量为 42.0 kDa,理论等电点为 5.23。将编码区 序列与 GenBank 上同源序列进行比对发现,核苷酸序列相似性均在 85.4%以上,氨基酸序列相似性均 在 98.9%以上,说明α-actin 基因作为编码蛋白是高度保守的。

关键词: 绿海龟(*Chelonia mydas*); α-actin 基因; RACE 技术 中图分类号: Q781 文献标识码: A 文章编号: 1000-3096(2014)03-0098-06 doi: 10.11759/hykx20121006001

绿海龟(*Chelonia mydas*)隶属于爬行纲(Reptilia), 龟鳖目(Testudinata),海龟科(Cheloniidae),海龟属 (*Chelonia*),是在中国沿海分布的 5 种海龟之一,也 是中国二级重点保护野生动物^[1-2]。近百年来,由于 人类对海龟进行了掠夺性地乱捕滥杀、盗挖龟卵,加 上对其生存环境的破坏和污染,海龟的数量在全世 界范围内急剧下降^[3-7]。目前,世界自然保护联盟 (IUCN)和濒危野生动植物种国际贸易公约(CITES) 均将其确定为濒危物种^[8-9]。

肌动蛋白(Actin)是一类存在于所有真核细胞 中、在进化过程中高度保守的蛋白质超家族、与 细胞内许多重要的功能活动有关。在高等动物细胞 内, Actin 大致分为 6 种, 其中 4 种具有肌肉组织特 异性,包括α-心肌型、α-骨骼肌型、α-血管平滑肌 型和 γ-内脏平滑肌型;其余两种广泛分布于各个 组织中,包括 β 和 γ 亚型,均为细胞质型^[10-11]。 actin 基因作为管家基因,在生物体内生理或病理 状态下都持续恒量表达、因而在很多量化的试验 中、被当作内参(Internal control)基因。鉴于绿海龟 分子方面的研究主要集中在种群遗传结构和系统 发生关系^[12-23]方面,蛋白编码基因研究较少^[24]. 肌动蛋白尤其是 α -actin 基因的研究尚未见报道, 因此, 作者对绿海龟的 α-actin 基因的序列及结构 进行了初步探究、以期为今后进一步研究 actin 基 因结构、功能和表达分析以及绿海龟的遗传学研究 积累基础资料。

1 材料和方法

1.1 材料

试验材料为采自中国南海的绿海龟的肌肉组织 样品,液氮速冻后于-70℃冰箱保存备用。总 RNA 提取试剂盒(PureLink[™] RNA Mini)购于 Invitrogen 公 司,反转录试剂(SuperScript Reverse Transcriptase)、pMD18-T 载体购于 Takara 公司,胶回收纯化 试剂盒(E.Z.N.A.[®] Gel Extraction Kit)购于 Omega 公 司,其余试剂为上海生工产品。

1.2 总 RNA 提取

将超低温保存的样品放入组织匀浆器,加入 Trizol reagent 冰浴匀浆。其余步骤参照 Invitrogen 公 司试剂盒说明书进行组织总 RNA 的提取。用 0.8% 的琼脂糖凝胶电泳鉴定总 RNA,用英国 Picodrop 公 司 Pico100 型超微量紫外分光光度计测定总 RNA 的 浓度及纯度。

1.3 cDNA 的合成

根据 CLONTECH 公司 SMART(Switching mec-

海洋科学 / 2014 年 / 第 38 卷 / 第 3 期

收稿日期: 2012-10-06; 修回日期: 2013-04-10

基金项目: 国家海洋局第三海洋研究所基本科研业务费专项资金项目 (2010006); 国家海洋公益性行业科研专项(201105011)

作者简介: 陶翠花(1984-), 女, 新疆阜康人, 助理研究员, 硕士, 主要 从事海洋生物学研究, 电话: 0592-2195211, E-mail: taocuihua@163.com 祝茜, 通信作者, 电话: 0592-2191907, E-mail: qianzhu@sdu.edu.cn

hanism at 5' end of RNA transcript)技术略加改动, 合 成 cDNA。第一链 cDNA 合成所用引物为: Oligo-anchor R: 5'-GACCACGCGTATCGATGTCGA CT₁₆(A/C/G)-3'和 Smart F: 5'-TACGGCTGCGAGAA GACGACAGAAGGG-3'。取总 RNA(1-5 μ g)4 μ L 加 入 Smart F 和 Oligo anchor R 引物各 100 μ mol/L, 混 匀; 70 水浴 5 min, 立即置于冰上冷却 2 min; 瞬时 离心, 使各成分集合于管底; 再于冰盒中加入以下 试剂: 5×反应缓冲液 5 μ L, RNA 酶抑制剂 25 U, 10 mmol/L dNTP 混合物 1.25 μ L; 反转录酶 1 μ L(200 U/ μ L); 最 后加 DEPC 水至 25 μ L, 42℃水浴 60 min; 然后 70℃ 温浴 15 min, 冰浴 10 min, 然后分装保存于–20℃。

1.4 绿海龟 α-actin 基因片段的克隆

根据 GenBank 上的相关序列(登录号分别为 AF416707, NM_203763, NM_001086591, AY986486), 采 用 Primer premier 5.0 软件辅以人工方法设计兼并引 物,委托 Invitrogen 公司进行合成。引物序列为 P1: 5' ATRCCAGCAGAYTCCATACC 3', P2: 5' CTGTSTT GTCCCTRTACGC 3'。

取 2 μL 1.3 中的反转录产物进行 PCR 扩增,反 应体系为: PCR mix kit 12.5 μL, Taq 酶 0.2 μL(5 U/μL), cDNA 模板 1 μL, Primer P1/P2(10 μmol/L)各 1 μL, 灭菌蒸馏水 9.3 μL。反应条件为: 94℃预变性 10 min; 94℃变性 40 s, 52℃退火 40 s, 72℃延伸 1 min, 30 个 循环;最后 72℃延伸 10 min。PCR 反应在 Bio-Rad C1000 型梯度 PCR 仪上进行。PCR 产物使用 DNA 快速纯化回收试剂盒(Omega 公司)经 1.5%琼脂糖凝 胶进行回收、纯化,纯化产物与 pMD18-T 载体(TaKaRa 公司)连接,转化感受态大肠杆菌,用含有氨苄青霉素 的LB固定培养基进行蓝白斑筛选,挑取阳性克隆进行 鉴定后,送至上海生工生物技术有限公司测序。

1.5 5'和 3'RACE 扩增

根 据 测 序 结 果 设 计 RACE 引物: GSP1: 5'AGCGTGGCTACTCCTTTGT3', GSP2: 5'AATG AAGGATGGCTGGAAG3', 分别与通用引物 3'anchorR: 5'GACCACGCGTATCGATGTCGAC3'和 5' primer: 5'TACGGCTGCGAGAAGACGACAG AA3' 配对。PCR 扩增反应条件均为: 94℃预变性 10 min; 94℃变性 40 s, 55℃退火 40 s, 72℃延伸 1 min, 30 个 循环;最后 72℃延伸 10 min。5'和 3'端获得的片段 按照克隆部分片段的方法进行克隆测序。

1.6 序列分析

使用 DNAman、Clustal W、Bioedit 软件并结合

人工校对将部分片段、5'端和 3'端进行序列拼接,获 得全长 cDNA 序列,并设计引物(F1: 5'CTGA ACCCTAAAGCTAACCG3', R1: 5'CTTGCGATGGA CAATGGATG3)进行序列验证。通过 NCBI 的 ORF 程序获得开放阅读框(ORF)信息,利用 ExPASy 在线 软件获得其相应的氨基酸序列,并对氨基酸进行性 质(分子量、等电点)预测。利用 SignalP 3.0(http://www. cbs.dtu.dk/services /SignalP/)进行信号肽的预测。利用 SMART (http://smart. embl heidelberg.de/)进行结构域的 预测。蛋白的三级结构预测在 SWISS-MODEL (http://swissmodel.expasy.org/)上进行,利用 PyMol软 件进行三维结构的建构与标注。

2 结果

2.1 绿海龟 α-actin 基因扩增结果

经过序列的拼接、整理后,获得 α-actin 基因全 长 cDNA 序列,共 1347 bp(GenBank 登录号为 JX073650)。该序列包含 8 bp 的 5'端非编码区序列, 205bp 的 3'端非编码区序列,以及 1134 bp 的完整开 放阅读框序列。序列 3'端有一典型加尾信号 (AATAAA),其后 24 bp 处找到 poly(A)尾巴。该基因 共编码 377 个氨基酸,其中第 14-17 位为糖基化位点 NGSG(图 1)。

2.2 绿海龟 α-actin 结构预测

根据在线软件分析,该基因编码的蛋白分子量 为 42.0 kDa,理论等电点(pI)为 5.23。经预测,该蛋 白第 7-377位氨基酸为 Actin 的结构域(图 2),高保守, 无信号肽。

将推定的氨基酸序列进行三维结构预测,获 得的三级结构模型如图 3 所示,结果发现,绿海龟 的 α-actin 蛋白与人(*Homo sapiens*)的 α-actin 蛋白 结构^[25-27]很吻合,主要由 α-螺旋、β-转角、随机卷曲 和延伸链组成。

2.3 核苷酸及氨基酸序列相似性比对

将该片段在 GenBank 上进行比较,结果显示: 与热带爪蟾(Xenopus tropicalis)、非洲爪蟾(Xenopus laevis)、牛蛙(Rana catesbeiana)、牛(Bos taurus)等的 α-actin 基因核苷酸序列的同源性在 85.4%以上;与 热带爪蟾、牛蛙、牛、人(H. sapiens)、野猪(Sus scrofa)、 小白鼠(Mus musculus)等物种氨基酸序列的同源性达 100.0%,与其他物种氨基酸序列的同源性达 98.9% 以上(表 1)。总体上,绿海龟 α-actin 的保守性非常高。

		10		20	3	0	4	40	50		60
1	TTTTTTT	TATGTO	GTGACG	ATGAG	GAAACT	ACCGO	CGCTCG	TGTGCC	GACAACC	GCTCCC	GGGC
1		M	C D	D E	Е Т	Т	A L	V C	D N	G S	G
61	TGGTGAA	AGGCCC	GCTTC	GCCGGA	GACGA	TGCCC	CCAGG	GCCGTC	TTCCCT	ГССАТС	GTCG
20	L V I	K A	G F	A G	D D	Α	P R	A V	F P	S I	V
121	GCCGCCC	CCAGGC	CACCAG	GGTGT	TATGGTT	GGCA	TGGGT	CAGAAA	GATTCC	TATGTA	GGTG
40	GR	P R	ΗQ	G V	M V	GΝ	M G	QK	D S	Y V	G
181	ATGAGG	CTCAGA	AGCAAG	AGAGG	TATCCT	GACGC	CTGAAA	TATCCO	CATTGAA	CATGGC	CATCA
60	DE	AQ	S K	R G	I L	Т	L K	Y P	ΙΕ	H G	Ι
241	TCACCAA	ACTGGG	GATGAT	ATGGA/	AAGAT	CTGGC	CACCAC	ACTTTC	TACAAT	GAACTG	CGCG
80	I T N	V W	D D	M E	K I	W	н н	T F	Y N	E L	R
301	TGGCTCC	CTGAGG	AACAC	CCTACC	TTGCTC	ACGG	AGGCCO	CCCCTG	AACCCTA	AAGCT	AACC
100	V A P	'E	Е Н	РТ	LL	ΤI	E A	P L	N P	K A	Ν
361	GTGAAA	AGATGA	ACCCAG	ATAAT	GTTTGA	AACCT	TCAAT	GTGCCA	GCCATG	TATGTG	GCAA
120	R E I	КМ	ΤQ	I M	F E	Т	F N	V P	A M	Y V	А
421	TCCAGGO	CTGTCT	TGTCCC	TATAC	GCCTCTC	GTCG	TACCA	CAGGCA	TTGTTC	ГТБАСТС	CTG
140	I Q A	A V	LS	LY	A S	GR	Т	T G	I V I	LDS	5
481	GTGATG	GTGTCA	CCCAC	AACGTA	CCTATC	TATG	AAGGTT	TATGCT	CTGCCTC	ATGCCA	TCA
160	G D	G V	ΤН	N V	ΡI	Y	E G	Y A	L P	ΗA	Ι
541	TGCGTCT	GGATC	TGGCAG	GGCAGC	GATCTO	JACTG	ACTAC	CTCATG.	AAGATCO	CTCACTO	GAGC
180	M R L	D	L A	G R	D L	T I	D Y	L M	K I	L T	Е
601	GTGGCTA	ACTCCT	TTGTGA	CAACA	GCTGAA	CGTG	AGATTO	GTCCGT	GACATTA	AGGAG	AAGT
200	R G Y	s s	F V	Т Т	A E	R	ΕI	V R	D I	K E	Κ
661	TGTGCTA	TGTTG	CTCTGG	ACTTT	GAGAAT	GAAAT	FGGCCA	CTGCTC	GCCTCCT	CTTCTT	CTC
220	L C Y	v	A L	D F	E N	E N	M A	Т А	A S	SS S	S
721	TGGAGA	AGAGC	ГАТGAA	TTGCC	GATGG	ГCAGG	TGATC	ACAATT	GGTAAT	GAACGT	TTCC
240	LEI	K S	Y E	LP	D G	Q	V I	ΤΙ	G N	E R	F
781	GCTGCCC	CAGAGA	ACTCTC	ГТССАG	CCATCC	TTCAT	TGGTA	TGGAAT	CTGCTG	GTATTC.	ATG
260	R C I	ΡE	T L	F Q	P S	FΙ	G	M E	S A	GII	Η
841	AAACTAG	CCTACA	ATAGC	ATCATO	GAAGTG	IGATA	TTGAC	ATCCGT	AAGGAT	CTGTAT	GCCA
280	ET	ΓΥ	N S	I M	K C	D	I D	I R	K D	LY	Α
901	ACAATG	FCCTTT	CAGGT	GTACA	ACCATG	TACCO	CTGGTA	TTGCTC	GACCGCA	TGCAGA	AAG
300	N N V	/ L	S G	G T	T M	Y	P G	I A	D R	M Q	K
961	AAATCAG	CTGCAT	TGGCT	CCTAGC	ACTATG	AAGA	TCAAG	ATCATT	GCCCCAC	CCTGAG	CGCA
320	E I T	A	L A	P S	T M	K I	I K	ΙΙ	A P	P E	R
1021	AGTACTO	CTGTCT	GGATTC	GTGGC	TCCATC	CTAGC	CATCTC	TGTCCA	CCTTCCA	AGCAGA	TGT
340	K Y S		W I	G G	S I	L	A S	LS	Г	Q Q N	N
1081	GGATCAG	GCAAAG	CAGGAG	TACGA	TGAGGC	TGGT	CCATCC	ATTGTC	CATCGC	AAGTGC	TTCT
360	WIS	S K	Q E	Y D	E A	G	P S	I V	H R	K C	F –
1141	AAGTGC	СТТТТС	CTCAAT	TTACC	FCCCAC	ГCAGG	GATGAT	GACATI	ATGCTT	CTTGGA	GTC
380	*										
1201	TTCCAGO	CAATCC	TTCCTG	AACTC	ГСТТСА	JTCAT	TGTAC	AGTTTG	ГТТАСАС	CACCCGT	GC
1261	AATTTAT	TTTGT	GCTTCT	ТСТААТ	ATTTAT	TTGCT	TTATA	AATAAA	CAAGGA	TCTGGC	GAC
1321	TTGCAAG	ССТААА	AAAAA	AAAAA	AAA		-		-		
		_									

图 1 绿海龟 α-actin 基因的核苷酸序列和推导的氨基酸序列

Fig. 1 The nucleotide and deduced amino acid sequences of α-actin gene from *C. mydas* 方框标注为起始密码子和终止密码子,星号代表终止密码子;下划线表示加尾信号 AATAAA; 灰色代表糖基化位点;左边数字为核苷 酸及氨基酸的编号

The letters in box are start codon and stop coden; The asterisk (*) represents the stop codon; The underlined letters are polyadenylation signal; The numbering of nucleotide and amino acid sequences is shown on the left

表 1 绿海龟与其他动物 α-actin 基因全长 cDNA 序列的相似性比较

Tab.1	Similarity	comparisons o	f full-length o	cDNA of (α-actin gene	between C	C. mydas and	other species
-------	------------	---------------	-----------------	-----------	--------------	-----------	--------------	---------------

物种	GenBank 登录号	碱基同源性(%)	氨基酸同源性(%)
热带爪蟾(X. tropicalis)	NM_203763	88.0	100.0
非洲爪蟾(X. laevis)	NM_001086591	87.6	99.7
牛蛙(R. catesbeiana)	AY986486	87.0	100.0
牛(B. taurus)	NM_005159	87.0	100.0
人(H. sapiens)	BC009978	86.9	100.0
鲱(Clupea harengus)	GQ455648	86.7	98.9
野猪(S. scrofa)	NM_001170517	86.4	100.0
大西洋鲑(Salmo salar)	BT043781	86.2	98.9
斑马鱼(D. rerio)	NM_001001409	86.2	99.4
非洲鲫鱼(Tilapia mossambica)	AB037866	86.1	98.9
斑点叉尾鮰(Ictalurus punctatus)	NM_001201266	85.9	99.2
小白鼠(M. musculus)	BC062138	85.9	100.0
暗绿 鲀(Tetraodon nigroviridis)	CR696699	85.4	99.4
短鳍珍灯鱼(Lampanyctus regalis)	AF503592	85.4	98.9

100 200

Fig. 2 Structural domain of C. mydas α-actin

图 3 理论预测的绿海龟 α-actin 蛋白及与人 α-actin 蛋白 (3dawA)的结构叠合

Fig. 3 Three-dimensional structure of modeled α -actin protein from *C.mydas* and its structural superposition of α -actin protein with *H. sapiens* (3dawA)

2.4 系统进化树的构建

利用 Clustal W 程序对表 1 中物种的 α-actin 基因 核苷酸序列进行多序列比对,并将比对结果用 MEGA4.0 生成系统进化树(Neighbor-Joining method), 结果表明(图 4),绿海龟的 α-actin 基因序列先与热带 爪蟾、非洲爪蟾和牛蛙聚类在一起,再与牛、野猪、 人和小白鼠聚类,而与鱼类亲缘关系较远,基本与 传统分类相一致。

3 讨论

Actin 普遍存在于真核生物中, 在转录、转录调

Fig. 4 Phylogenetic tree of α -actin gene based on nucleotide sequences

控、RNA 的加工和运输、维持细胞结构和细胞内运 动等过程中发挥着重要作用,是在进化中高度保守 的蛋白质家族^[28]。作者所获得的绿海龟 α-actin 基因 核苷酸序列与热带爪蟾、非洲爪蟾、牛蛙等物种的 同源性为 85.4%以上,其所编码的氨基酸序列与其 他物种的同源性达 98.9%以上,表明 α-actin 基因的 核苷酸序列虽然在不同物种中存在较大变异,但氨 基酸序列却保持了高度的稳定性和一致性。蛋白质 的进化速率主要取决于功能上的需要或选择压力^[29], Actin 蛋白的高度保守性暗示着其在进化过程中承受 着较大的选择压力,在生物体内执行着重要的生物 学功能。在脊椎动物中,存在于肌肉组织中的 Actin 蛋白是可收缩器官的重要组成^[30]、绿海龟的 Actin 蛋 白对其生长发育的具体作用目前还没有报道, 需要 进一步的研究。

脊椎动物的 actin 基因在很多物种中已被克隆, 如人、斑马鱼、原鸡、非洲爪蟾等,也有学者克隆了 绿海龟的β-actin 基因片段,但α-actin 基因目前尚未 见公开报道。本文利用 RT-PCR 和 RACE 方法首次 克隆出绿海龟的α-actin 基因全长 cDNA 序列,丰富 了 actin 基因的资料库,并对该基因的结构进行了初 步探究,为进一步研究相关基因的表达及功能奠定 了基础。

致谢:感谢海南师范大学陈忠教授、山东大学威海分校海 洋学院李玉春教授及孔令明在收集样品过程中提供的帮助,感谢山东大学威海分校海洋学院杨慧在软件分析中提 供的帮助。

参考文献:

- [1] 中华人民共和国濒危物种进出口管理办公室.常见
 龟鳖类识别手册[M].北京:中国林业出版社,2002:
 112-113.
- [2] 张孟闻,宗愉,马积藩.中国动物志,爬行纲(第一卷)[M].北京:科学出版社,1998:75-84.
- [3] IUCN Marine Turtle Specialist Group. About marine turtles: Hazards[EB/OL].[2011.02]. http://www.iucnmtsg.org/hazards.
- [4] Asrar F F. Decline of marine turtle nesting populations in Pakistan[J]. Marine Turtle Newsletter, 1999, 83: 13-14.
- [5] Spotila J R, Reina R D, Steyermark A C, et al. Pacific leatherback turtles face extinction[J]. Nature, 2000, 405: 529-530.
- [6] Anne B M, Marydele D. Status justification for listing the Hawksbill turtle (*Eretmochelys imbricata*) as critically endangered on the 1996 IUCN red list of threatened animals[J]. Chelonian Conservation and Biology, 1999, 3(2): 200-224.
- [7] Sella I. Sea turtles in the Eastern Mediterranean and Northern Red Sea[C]//World Conference on Sea Turtle Conservation- Biology and Conservation of Sea Turtles, Smithsonian Institution Press, Washington, D.C. Bjorndal K. A. 1982, 417-423.
- [8] IUCN. IUCN red list of threatened species [EB/ OL].[2011.02]. http://www.iucnredlist.org/apps/redlist.

- [9] CITES. The CITES appendices [EB/OL]. [2012.4.3]. http://www.cites.org/eng/appendices.shtml.
- [10] Vandekerchkove J, Weber K. At least six different actins are expressed in a higher mammal: an analysis based on the amino acid sequences of the aminoterminal tryptic peptide[J]. Journal of Molecular Biology, 1978, 126: 783-802.
- [11] Vandekerchkove J, Weber K. The complete amino acid sequence of actins from bovine aorta, bovine heart, bovine fast skeletal muscle, and rabbit, slow skeletal muscle: a protein-chemical analysis of muscle actin differentiation[J]. Differentiation, 1979, 14: 123-133.
- [12] Bowen B W, Meylan A B, Ross J P, et al. Global population structure and natural history of the green turtle (*Chelonia mydas*) in terms of matriarchal phylogeny[J]. Evolution, 1992, 46(4): 865-881.
- [13] Karl S A, Bowen B W, Avise J C. Global population genetic structure and male-mediated gene flow in the green turtle (*Chelonia mydas*): RFLP analyses of anonymous nuclear Loci[J]. Genetics, 1992, 131: 163-173.
- [14] Lahanas P N, Miyamoto M M, Bjorndal K A, et al. Molecular evolution and population genetics of greater caribbean green turtles(*Chelonia mydas*) as inferred from mitochondrial DNA control region[J]. Genetica, 1994, 94: 57-67.
- [15] Encalada S E, Lahanas P N, Bjorndal K A, et al. Phylogeography and population structure of the atlantic and mediterranean green turtle *Chelonia mydas*: a mitochondrial DNA control region sequence assessment[J]. Molecular Ecology, 1996, 5(4): 473-483.
- [16] Peare T, Parker P G. Local genetic structure within two rookeries of *Chelonia mydas* (the green turtle)[J]. Heredity, 1996, 77:619-628.
- [17] Lahanas P N, Bjorndal K A, Encalada S E, et al. Genetic composition of a green turtle (*Chelonia mydas*) feeding ground population: evidence for multiple origins[J]. Marine Biology, 1998, 130: 345-352.
- [18] Bass A L, Witzell W N. Demographic composition of immature green turtles (*Chelonia mydas*) from the East Central Florida coast: evidence from mtDNA markers[J]. Herpetologica, 2000, 56(3):357-367.

海洋科学 / 2014 年 / 第 38 卷 / 第 3 期

- [19] Roberts M A, Schwartz T S, Karl S A. Global population genetic structure and male-mediated gene flow in the green turtle (*Chelonia mydas*): analyses of microsatellite loci[J]. Genetics, 2004, 166(4): 1857-1870.
- [20] Noria O C, Grobois A A, Dutton P H, et al. Conservation genetics of the East Pacific green turtle (*Chelonia mydas*) in Michoacan, Mexico[J]. Genetica, 2004, 121: 195-206.
- [21] Dethmers K M, Broderick D, Moritz C, et al. The genetic structure of Australasian green turtles (*Chelonia mydas*): exploring the geographical scale of genetic exchange[J]. Molecular Ecology, 2006, 15(13): 3931-3946.
- [22] Formia A, Godley B J, Dontaine J F, et al. Mitochondrial DNA diversity and phylogeography of endangered green turtle (*Chelonia mydas*) populations in Africa[J]. Conservation Genetics, 2006, 7: 353-369.
- [23] Bourjea J, Lapegue S, Gagnevin L, et al. Phylogeography of the green turtle, *Chelonia mydas*, in the Southwest Indian Ocean[J]. Molecular Ecology, 2007, 16(1): 175-186.
- [24] Yasuda A, Yamaguchi K, Papkoff H, et al. The complete amino acid sequence of growth hormone from

the sea turtle (*Chelonia mydas*)[J]. General and Comparative Endocrinology, 1989, 73(2): 242-251.

- [25] Arnold K, Bordoli L, Kopp J, et al. The Swiss-model workspace: a web-based environment for protein structure homology modelling[J]. Bioinformatics, 2006, 22: 195-201.
- [26] Schwede T, Kopp J, Guex N, et al. Swill-model: An automated protein homology-modeling server[J]. Nucleic Acids Research, 2003, 31: 3381-3385.
- [27] Guex N, Peitsch M C. Swiss-model and the Swiss-PdbViewer: an environment for comparative protein modelling[J]. Electrophoresis, 1997, 18: 2714-2723.
- [28] Wilma A H. Cell and molecular biology of nuclear actin[J]. International Review of Cell and Molecular Biology, 2009, 273: 219-263.
- [29] Tourasse N J, Li W H. Selective constraints, amino acid composition, and the rate of protein evolution[J]. Molecular Biology and Evolution, 2000, 17(4): 656-664.
- [30] Anna F, Ines D R, Francesca S, et al. Actin isoforms in amphioxus *Branchiostoma lanceolatum*[J]. Cell and Tissue Research, 1998, 292(1): 173-176.

Cloning and sequence analysis of full-length cDNA of α-actin gene from *Chelonia mydas*

TAO Cui-hua¹, LIU Ying-ying², ZHAO Li-yuan¹, XU Min^{1, 2}, ZHU Qian^{1, 2}

(1. Third Institute of Oceanography, State Oceanic Administration, Xiamen 361005, China; 2. Ocean College, Shandong University (Weihai), Weihai 264209, China)

Received: Oct., 6, 2012 **Key words:** *Chelonia mydas*; α-actin gene; RACE

Abstract: To explore the sequence and characteristic of α -actin gene from *Chelonia mydas*, the full-length cDNA sequence of α -actin gene was cloned using RT-PCR and RACE technique, which was consisted of 1347 bp nucleotides (GenBank accession number: JX073650), with a putative open reading frame (ORF) of 1134 bp encoding a deduced 377 amino acid protein containing a glycosylation site (from 14 to 17) and an Actin domain (from 7 to 377). The molecular weight of the protein was 42.0 kDa and the isoelectric point (pI) was 5.23. The nucleotide sequence similarity of α -actin gene between *C. mydas* and other species was above 85.4%, while the similarity of amino acid sequence that 98.9%, suggesting that α -actin gene was highly conserved. This study has enriched the Actin gene database and provided basic data for further studies on expression and function of relevant genes.

(本文编辑: 谭雪静)