二氧化碳海洋封存的技术和研究现状

张海滨1, 卢 迪1, 王永昌1, 田文爽1, 沈国飞2, 宋学行2, 魏 伟2

(1. 海油总节能减排监测中心有限公司, 天津 300452; 2. 中国科学院上海高等研究院 中国科学院低碳转化 科学与工程重点实验室, 上海 201210)

> 摘要:全球变暖的问题正变得日益严峻,碳减排碳中和已成为国际社会的共识和努力目标。作为 CO₂ 减排的重要方式之一,二氧化碳捕集、利用与封存(Carbon Capture, Utilization and Storage, CCUS)近年 来备受关注并且发展迅猛。CO₂海洋封存作为其中一种最具潜力的减排方式,了解其发展现状对进一 步研究 CO₂封存具有重要的参考价值。本文介绍了 CO₂海洋封存的方法和封存机理,总结了该技术在 国内外研究进展。此外,文章还概述了我国在 CO₂海洋封存上的巨大潜力和库源匹配上的优势,以及 海洋封存对环境可能造成的影响。最后,指出推进 CO₂海洋封存技术的研究并开发相应的能力,将有 助于加速推进碳减排进程、尽快实现碳中和目标。

关键词:二氧化碳捕集、利用和封存;海洋封存;研究进展;海洋环境;海洋酸化 中图分类号:X701 文献标识码:A 文章编号:1000-3096(2024)4-0108-14 DOI:10.11759/hykx20230801001

进入新世纪以来,全球变暖的趋势日益加剧,极端 气候事件成为"新常态",气候变暖的影响也越来越显 著,人类社会和自然环境遭到了严重的威胁^[1]。联合国 政府间气候变化专门委员会(Intergovernmental Panel on Climate Change, IPCC)在2023年发布的报告中明确指出, 2011 年至 2020 年. 全球地表温度比 1850 年至 1900 年 升高了 1.1 ℃^[2], 这对世界的生态系统及人类未来的可 持续发展构成了严峻的挑战。科学界普遍认为,全球变 暖的主要原因在于人类活动排放的温室气体不断增多[3]。 其中, 二氧化碳(CO2)的过度释放对于加剧全球变暖这 一过程起到至关重要的作用,由于过度消耗和滥用化石 能源,这种影响也越来越明显。美国国家海洋和大气管 理局(National Oceanic and Atmospheric Administration, NOAA)莫纳罗亚大气基线观察站发现, 2022年5月大气 环境中的 CO₂ 含量已经突破数百万年的极限, 达到 4.21×10⁻⁴的历史新高,相较于工业化前其含量水平提升 超过了 50%。如果在未来几十年内人类无法削减化石能 源的利用和温室气体的排放,2100年空气中的CO2浓度 预计将达到惊人的 5.70×10⁻⁴, 全球平均气温将上升约 1.9 °C^[4-6]。CO₂与其他温室气体一起,吸收了原本会逃 逸到太空中的热量,并将其重新辐射回地面,导致地球 的温度持续增加,从而引发一连串极端天气事件,如极 端的雨季、洪涝灾害、强烈的台风等。随着世界的不断 变暖, 厄尔尼诺现象的出现次数也在不断上涨, 这给人

类的家园带来了直接的、甚至不可逆转的破坏。持续增加的温室气体排放还会造成南北极的冰川融化甚至消失,导致海洋水位上涨,从而给地球带来巨大的威胁,包括物种的毁灭、濒临消亡^[7-10]。

因此人类必须从政治、经济、技术、法律等各 个方面积极主动地寻求长期有效的解决方案,携手 深化国际合作,实现 CO₂减排的目标。为了缓解温室 气体对地球气候的影响、减少 CO₂的排放,世界各国 一方面应减少传统化石燃料的使用,另一方面也要 积极开发和利用风能太阳能等新能源,并寻求新的 限制温室气体排放的途径,在减少 CO₂的排放量的 同时保证经济的快速发展^[11-13]。二氧化碳捕集、利 用和封存(CCUS)技术是指将 CO₂从工业过程、能源 消耗或大气中分离后加以利用或直接封存(图 1),这 是一项切实可行的减排方法,被认为是未来大规模 减少 CO₂排放、减缓全球变暖的主要途径之—^[1416]。

收稿日期: 2023-08-01; 修回日期: 2023-11-10

基金项目:中海油能源发展股份有限公司重大科技专项"CCUS一体化低成本技术研究及应用"

[[]Foundation: Major Science and Technology Projects of CNOOC Energy Development Co., Ltd, Research and Application of Low-cost Integrated CCUS Technology]

作者简介:张海滨(1983—),男,山东潍坊人,博士,高级工程师,主要 从事 CCUS 技术、双碳数字化等方面的研究,E-mail: zhanghb11@ cnooc.com.cn; 沈国飞(1982—),通信作者,男,江苏东台人,博士,副研 究员,主要从事 CCUS 方向的模拟计算研究,E-mail: shengf@sari.ac.cn

目前,国际社会上的传统能源研究机构如国际能源 署(International Energy Agency, IEA)、石油输出国组 织(Organization of the Petroleum Exporting Countries, OPEC)等,以及一些国际能源协调机制如国际能源 论坛(International Energy Forum, IEF)、联合国政府间 气候变化专门委员会(IPCC)等,都一致认为 CCUS 技术将成为人类社会未来的主要碳减排技术,应当 加大投入并将之付诸实践^[17]。

图 1 CCUS 技术及主要类型示意图^[14] Fig. 1 Schematic of possible CCUS systems

CO₂的封存方法有很多种,如生物封存、矿化封存等,但主要还是以陆地封存和海洋封存为主^[18-19],而 CO₂海洋封存被认为是最具发展潜力的一种实现 CO₂减排的方法^[20]。本文介绍了 CO₂海洋封存的方法和封存机理,概述了该技术在国内外的研究进展,并指出 CO₂海洋封存可能造成的环境影响,同时也 对我国 CO₂海洋封存前景提出了展望。

1 CO2海洋封存技术

海洋碳封存是一种碳减排理念,不但封存潜力 巨大,而且比陆地碳封存更加安全可靠。目前海洋 封存 CO₂主要包括三种形式:一是将 CO₂压缩后直 接注入深海 1 500 m 以下,以气态、液态或者固态 的形式封存在海洋水柱之下,其中固态 CO₂的封存 效率最高^[21];二是将 CO₂注入到海床巨厚的沉积层 中,封存在沉积层的孔隙水之下,即海洋沉积物封 存;三是 CO₂置换强化开采海底天然气水合物进行 封存。

1.1 海洋水柱封存

海洋水柱封存方法是将捕获的 CO₂ 以一定的方 式注入到海洋中,依靠海水中的 CO₃²⁻和 HCO₃等游 离的离子,通过一系列物理和化学反应将 CO₂ 溶解 和吸收,最终实现海洋水柱封存。CO₂ 主要以4种无 机碳形式存在于海水之中,其中 HCO₃占据了95%的 比例,它与 H₂CO₃、CO₃²⁻和溶解态的 CO₂构成了一 个比较稳定的、巨大的缓冲系统。在不断增大的深 度条件下,CO₂受到的压力会越来越大,其密度也会 变得比海水稠密,最终会进入到重力稳定状态,并 存在于负浮力区(Negative Buoyancy Zone, NBZ)。

在海洋水柱封存中, CO₂所处的状态主要取决于 CO₂所注入的深度。当 CO₂注入到海洋的浅水区时, 它通常是气态的。在水深小于 500 m 时,连续注入的 CO₂会形成大量的羽状流。这些羽状流中含有大量的 CO₂ 气泡,其中一部分会慢慢溶解在周围的水体中, 另一部分在完全溶解前会逐渐上浮并最终释放到大 气中^[22]。CO₂ 在海水中的溶解度受到所处区域纬度

图 2 CO₂海洋水柱封存示意图^[23] Fig. 2 Overview of ocean water column concepts

和水温的影响,特别在高纬度海区,CO₂的溶解性会更加明显,因为这里的海水温度较低,且密度较大。 另外,洋流可以强化CO₂与海水的混合作用、加速海 水对CO₂的溶解,从而提升碳封存的效果。当水深大 于500m小于2500m时,CO₂以正浮力的液态形式 存在,注入的CO₂仍会形成富含CO₂液滴的羽流^[24]。 但是在大部分海域,CO₂液滴表面将会与周围海水发 生化学水合反应,在液滴表面形成一种类似固体的 水合物,这样就会增加CO₂液滴的密度、减缓CO₂ 液滴上浮的速度,进而增强CO₂在海水中的溶解。随 着深度的增加,CO₂密度也会逐渐增加。在3000m水 深的条件下,CO₂的密度会明显大于周围海水,CO₂会 逐渐下沉到海底形成液态CO₂湖泊(图 2)。碳湖表面 会形成CO₂水合物覆盖层,这更有利于封存CO₂。

1.2 海洋沉积物封存

海洋沉积物封存是通过将 CO₂ 注入到海底的多 孔床层中,在沉积物层的高压和低温的条件下,使 CO₂ 形成晶体状的水合物(图 3),从而实现 CO₂在海 底沉积物层内的有效封存(图 4)^[26-27]。Koide 等最早提 出将 CO₂封存到深海沉积物中,并经过大量的研究针 对不同深度的海域提出了相应的理论建议^[28]。他们将 海床划分为三个深度范围,浅水区海床(<300 m)、深 海海床(300~3 700 m)和超深海床(>3 700 m)。他们认 为 CO₂在海底沉积物中是安全的,即使有少量的 CO₂ 从海底渗出,也会分散并溶解到海水中去。在水深约 300 m以下深海区域的沉积层中,环境温度通常会低 于 5 ℃,此时存在水合物形成区(Hydrate Formation Zone, HFZ), CO₂ 会形成一种在海水中性质稳定的 CO₂水合物盖层。由于晶状水合物在海水中的溶解速 率极低,因此可以有效地降低 CO₂对海洋生态系统 的影响。此外, CO₂水合物的产生不仅可以显著降低 沉积层的孔隙度,甚至还会堵塞沉积层的孔隙,增 强沉积层的密闭性,从而提升其封藏的能力并改善封存的效果^[29-30]。海洋沉积物的岩石类型主要以砂 岩和玄武岩为主,其中高渗砂岩能够有效封存 CO₂,而深海域玄武岩和高深砂岩中富含的钙、镁等物质 元素则可以与 CO₂反应生成稳定的碳酸盐,而且这 种反应速率很快,甚至 95%以上的 CO₂在不到两年 的时间内就可以被矿化为碳酸盐矿物^[31-35]。将 CO₂

图 4 CO₂海洋深海沉积物封存示意图^[36] Fig. 4 Schematic of carbon sequestration in deep-sea sediments

液体注入到至少 3 000 m 的深海和几百米的海底沉 积物中进行封存,由于那里的孔隙液浓度比较低, 而且 CO₂还可以形成水合物,这就可以保证 CO₂的 永久储藏^[27]。

1.3 CO2置换天然气水合物封存

CO₂的封存也可以与可燃冰开采相结合,即在一 定的温度和压强下在天然气水合物储层中注入 CO₂ 置换出甲烷(图 5)^[37]。可燃冰指的是天然气水合物,是 天然气和水在高压低温条件下生成的一种长得像冰 块的物质,因为这种"冰块"是可以点燃的,所以俗 称为可燃冰。可燃冰是一种清洁能源,1m³的可燃冰 能释放 164 m³的甲烷,按油气标准当量约相当于 0.16 t 原油,其储量大、热值高,有望成为未来石化燃 料的理想替代能源^[38-39]。虽然有丰厚的储量,但可燃 冰在开采时,很容易因为甲烷气体泄漏逃逸加剧温室 效应,进而污染大气环境。此外,开采之后可燃冰的 减少和消失会削弱海底的地面强度,进而会改变沉积 物的工程力学性质。此举可能会导致海底软化,进而 诱发地质灾害如海底滑坡甚至塌方等,破坏海底构造 以及海洋钻井平台、通讯电缆等设施^[40]。

1993年, Ebinuma等^[41]发表了关于CO₂开采可燃 冰的报道。1996年, Ohgaki等^[42]提出一种新的想法, 即使用CO₂来置换海底水合物沉积层中CH₄。相关 研究表明,该技术的应用在热力学和动力学方面不

图 5 CO₂封存置换甲烷示意图

存在问题,并且 CO₂ 置换可燃冰中 CH₄ 的过程并不 需要额外的能量^[43-44]。CO₂ 置换法可以让可燃冰在地 底打破晶体笼状结构,使甲烷逃逸出来,然后把它 们从地底用管道输送到地面。CO₂ 置换天然气水合物 有很大的经济和环保优势,由于在相同的温度压力 条件下,CO₂ 水合物稳定性优于可燃冰,当 CO₂ 置 换开采 CH₄时,既能提升 CO₂的资源利用率,促进天 然气的开采,保证海底水合物沉积层的稳定性,又 能利用海洋存储空间大、潜力大的特点,最大化实现 CO₂ 的封存,一举实现经济价值和环保价值。

2 CO₂海洋封存研究进展

CO2封存是 CCUS 技术的关键环节之一。CO2海 洋封存是将 CO2封存到海底以下的地质储层中(图 6),

该技术具备多项优势。全球海洋面积占据了地球表 面积的 71%, 是陆地面积的两倍有余, 因此该技术对 温室气体减排的潜在贡献巨大。海洋是地球上最大 的活跃碳库, 在封存 CO₂方面拥有巨大的开发潜力, 其碳储量约是陆地的 20 倍、大气的 50 倍^[22, 29]。在 千年尺度上, CO₂在海洋与大气中大致保持着平衡。 当大气中 CO₂的浓度持续在 3.50×10⁻⁴~1×10⁻³范围内 时,海洋海水理论上可吸收 2 300~10 700 Gt 的 CO₂。 释放到大气中的 CO₂最终会有 80%将被封存在海洋 中^[22, 45], 然而由于密度跃层对深海与海洋表面海水 的阻隔,导致海洋自然吸收过程相对缓慢, 需要几 千年才能与碳酸盐沉积物达到平衡^[46]。CO₂海洋封存 是加速海洋吸收 CO₂的过程, 也是一个有效可行的封 存方案。

图 6 海洋封存技术示意图^[22] Fig. 6 Ocean storage methods

Marchetti 是首个尝试实现 CO₂海洋封存的科学 家,他的工作为海洋封存 CO₂的研究和发展奠定了基 础。1977年,Marchetti^[47]提出将 CO₂在适当的燃料转 换点收集后,通过一定方式压缩后注入到地中海,然 后海底洋流会将 CO₂转移至大西洋深层海水中,使其 在几个世纪内无法与大气接触。Hirai 等^[48-49]通过实验 研究发现,液态 CO₂在特定条件下以一定速度注入到 相应深度的深海可以实现完全溶解,其溶解速率受到 外部环境因素的影响,如周边海水的流速,海水压 力、温度等。Ametistova 等^[50]研究发现,将 CO₂注入 深海域或超深海域可以极大限度地减少对海洋环境 的影响。Shindo 等^[51-54]研究发现,当压力超过 35 MPa 后,液态的 CO₂ 会保持长期稳定;在特定位置注入的 CO₂将会沉积在海底,从而形成一个巨大的海底湖泊。 基于热力学相平衡考虑,可以合理地假设,CO₂将在海 水/液体 CO₂界面形成水合物。Goldthorpe^[55]指出,捕获 的 CO₂可以永久储存在深海海沟中,在 3 000 m 深处, CO₂ 会变成比海水密度更大的液体,这会导致它自然 地沉落到海底,在理想情况下会沉入某种洞中,形成 一个水下湖泊,并且在很长一段时间内,CO₂可能会 固化。Goldthorpe 通过计算认为在印度尼西亚群岛以 南地区、位于地表以下 6 000 m 的巽他海沟是一个很 好的储存位置,它可以容纳 19 000 Gt 液化 CO₂,这超 过了目前所有已知的全球化石燃料储量可产生的 CO₂;

其他包括琉球海沟或波多黎各海沟也可能是很好的 CO₂储存地点,不过他同时也承认,在真正实施之前 仍需要做更多的研究,尤其是要防止 CO₂顶部扩散或 导致海洋酸度增加^[55]。

虽然深海封存理论上潜力巨大,但是封存成本 比较高,在技术可行性和对海洋生物的影响上还需 要更进一步的研究。在过去的几十年里,世界各国对 CO₂海洋封存方法进行了深入的探索和发展,不仅 在理论方面取得了长足的进步,而且在技术层面也 得到了大幅提升(图 7)。当前,正在进行 CO₂的海底 封存研究与实践的主要还是美国、日本、澳大利亚 和欧盟等发达国家。

图 7 全球不同发展阶段的 CCS 设施示意图^[56] Fig. 7 World map of CCS facilities at various developmental stages

2.1 国外 CO₂海洋封存进展

挪威是较早开展 CCS 技术研究及实践的国家之一。挪威 Equinor 公司的 Sleipner 封存项目(位于挪威 大陆架南部的北海海域)是 CO₂ 海底地质封存运行时 间最长、最为成熟的案例^[57]。该项目从 1996 年 8 月 开始运行,其 CO₂来自气田天然气伴生气,项目将伴 生的 CO₂ 分离出来后直接注入附近区域地质层海床 下 1 000 m 处,目前注入量可达到每年 100 Mt^[56-60]。 Snøhvit 封存项目则位于挪威大陆架北部的巴伦支海 海域,该项目将气田生产的天然气输送至挪威北部沿 岸 Melkøya 岛上的工厂里,然后将它们转化为液化天 然气(Liquefied Natural Gas, LNG),再将从 LNG 中分 离出来的 CO₂输送回 Snøhvit 气田区域海床下 2 600 m 的砂岩层进行封存。该项目自 2008 年起开始运行,每 年通过该项目封存的 CO₂约为 0.70 Mt^[56,61-62]。

美国埃克森美孚(Exxon Mobil)于 2021 年宣布计划 进行"Houston Ship Channel Project"项目,该项目旨在捕 集位于得克萨斯州休斯顿地区的发电、炼油和化工厂产 生的 CO₂,并通过专门的管线系统将其安全、高效地运输 到墨西哥湾进行离岸封存。项目拟分为两个阶段实施:一 期目标是到 2030 年, 期望能实现每年 50 Mt 的 CO₂ 封存 量; 二期是到 2040 年, 通过该项目可实现每年降低 CO₂ 排放 100 Mt 的目标。该项目如果能顺利实施, 将会成为 目前全球已规划 CCUS 项目中最大规模的项目^[63-66]。

日本苫小牧港 CCS 示范项目在 2016 年到 2019 年投产使用,该项目位于日本北海道的沿海炼油厂 内。项目从炼油厂氢气生产设施中捕集 CO₂,捕集系 统每年捕集至少 0.1 Mt 的 CO₂,随后将这些 CO₂注入 到近海岸深部地质储层中储存并进行监测。2019 年底, 该项目按计划实现了 CO₂ 累计封存 0.3 Mt 的目标并 停止注入,目前的监测并没有发现 CO₂出现逃逸的现 象,今后该公司还将继续密切关注这一情况^[67-69]。

巴西国家石油公司(Petrobras)在桑托斯盆地 Pre-Salt 油田 CCS 项目是世界上最大的碳捕获网络, 该 项目位于距离里约热内卢海岸 300 km 的超深海域, 年封存能力为 7 Mt, 目标是到 2025 年实现 40 Mt 的 CO₂封存量。截至 2019 年 12 月, Petrobras 已向岩石 储层注入超过 14 Mt 的 CO₂^[56, 70-72]。

在澳大利亚, Santos 的 Bayu-Undan 天然气液化 和海上地质封存 CCS 项目已进入详细前端工程和设

计阶段,该项目将利用现有天然气管道来输送 CO₂, 以期达到安全、永久的封存效果。项目预计每年可 储存多达 10 Mt 的 CO₂,相当于澳大利亚年碳排放量 的 1.5%左右^[72-74]。

2.2 国内 CO₂海洋封存进展

我国的海域地质条件优越, 地壳较为稳定, 沉积 盆地广泛分布, 地层厚度较大, 同时也存在较多的构 造地层圈闭,这些都为CO,海洋封存提供了良好的条 件,预计我国海域地质封存潜力可达 2 580 Gt^[75-76]。 然而,我国目前还没有对海域开展基于实际调查数据 的全面性评价。国家海洋局"中国二氧化碳海底封存 能力评估与风险控制技术预研究"项目对我国近海 11 个大型沉积盆地的封存适宜性和封存潜力进行了初 步评估,结果表明大部分近海盆地均具有较好的封存 适宜性。渤海盆地、北黄海盆地、南黄海盆地、东海 陆架盆地、台西盆地、台西南盆地、珠江口盆地、北 部湾盆地、琼东南盆地、南海中南部诸盆地均具备封 存适宜性。其中渤海盆地的封存可操作性相对比较高, 而且其相关的技术条件也最为成熟,是开展实际封存 实验的理想盆地;珠江口盆地的理论封存容量比广东 省 CO₂集中排放量大得多,而且与海岸线距离较近, 非常适合进行实际的封存工程,同时该盆地盖层条件 也比较好,具有良好的渗透性,北部水深更是低至 200 m, 具有巨大的潜力进行大规模封存^[77]。而且我 国的 CO₂ 排放主要集中在山东、河北、江苏、广东等 沿海省份,这对 CO,海洋封存也有着极为有利的库源 匹配上的优势[78]。

我国针对 CCUS 的布局也正在不断拓展。2021 年 8 月,中国海油宣布将在珠江口盆地开始我国首 个 CO₂海底封存示范项目^[79]。该项目距离深圳西南 约 200 km,封存深度在海床下约 800 m,这是属于恩 平 15-1 油田开发的配套环保项目。恩平 15-1 油田群 位于我国南海,其伴生气中 CO₂含量高达 95%,项目 将对这些 CO₂ 进行捕集,经过处理后再回注到海底 进行封存,在提高原油采收率的同时实现 CO₂减排, 这对海上油田的绿色低碳开发具有重要的示范意 义。项目预计每年可封存 0.3 Mt 的 CO₂,累计可封存 1.5 Mt 以上,相当于植树近 1 400 万棵^[80-81]。

2022 年 6 月,中国海油宣布与广东省发展与改 革委员会、壳牌和埃克森美孚共同合作开展最大规 模达 10 Mt 级的大亚湾区 CCS/CCUS 集群研究项目, 这也是我国首个海上规模化 CCS/CCUS 集群研究项 目。项目将通过捕集装置对大亚湾石化区排放的 CO₂ 实现全面收集,然后输送到合适的海域进行封存, 预计第一阶段 CO₂封存量为每年 3~5 Mt,第二阶段 力争实现 5~10 Mt 级的 CO₂封存量。该项目的实施 不仅可以提供丰富的技术数据和宝贵的工程经验, 还可以为我国大规模开展 CCS/CCUS 项目打造全链 条示范性基地,增强我国 CCS/CCUS 全产业链技术水 平,从而加快该产业的体系建设和能力发展,有效 支撑我国的碳中和目标^[82-83]。

2023年6月,中国海油在恩平15-1油田正式实施CO₂封存能力达1.5 Mt的示范工程,开始规模化向海底地层注入伴随海上石油开采产生的CO₂。这是我国海上首个百万吨级CO₂封存工程,将在CCS技术方法适用范围、封存效率损失、运行成本、泄漏风险等方面提供经验。该项目的成功投用提供了一个完整的解决方案,标志着我国已经成功掌握了海上CO₂封存和监测的全流程设备和技术体系,实现了我国海上CO₂封存领域从无到有的重要突破,对最终实现碳达峰碳中和目标具有重要意义^[84-85]。

尽管近年来我国 CCS 技术在不断发展, 各技术 环节均取得了长足的进步, 部分技术甚至已经具备 商业化应用潜力。但与世界发达国家相比, 我国 CCS 技术研发工作起步较晚, 目前各技术环节发展不平 衡, 一些技术还存在瓶颈尚未突破, 海底管道输送 CO₂等技术仍缺乏经验。整体上, 我国海洋技术尚处 于早期研究阶段, 与实现规模化和全流程示范应用 的目标相比还存在较大的差距^[14]。

3 CO₂海洋封存的环境问题

CO₂ 深海储存可能会对海洋环境造成污染,将 CO₂ 储存于深海中也可能会带来海水酸化等问题, 对海洋生物及其食物链造成严重的危害^[86-90]。一方 面捕集到的 CO₂气体中常混有许多有害物质,如含 铅、镍、汞等元素,这些有害物进入深海后有可能对 海洋水体造成污染^[91]。另一方面,封存在海底的 CO₂ 可能会存在泄露的潜在风险,某些深海钻探工程可 能会影响到封存的 CO₂,进而导致其溢出,这会对 环境构成严重的威胁。研究表明,如果确实发生了 CO₂泄漏,泄漏的 CO₂将与周围海水迅速反应,从而 导致海水 pH 值的局部大幅降低,使得当地海水强 烈酸化^[92-94]。CO₂一旦进入海水就会溶解产生碳酸 (H₂CO₃),大多数碳酸会迅速离解为氢离子(H⁺)和碳 酸氢根(HCO₃)离子。这些反应非常迅速,CO₂水合生

成碳酸的时间尺度只有数十秒,随后的酸碱反应的 时间尺度更是仅为 µs^[95-96]。Martinez-Cabanas 等^[97] 进行了海洋 CO2 泄漏实验, 初始没有 CO2 泄漏时海 水的 pH 值为 8.030; 在第 8 天当 CO2 泄漏流速设置 为 143 kg·d⁻¹时, 研究观测到海水的 pH 值将会急剧 下降到 7.987。过量的氢离子会与碱性的碳酸根离子 (CO₃²⁻)反应生成碳酸氢根离子,这会引起海水中的 碳酸根离子浓度降低。碳酸根离子的减少降低了 CaCO₃的饱和状态,使得 CaCO₃的溶解增加,导致 牡蛎、蛤蜊、海胆、浅水珊瑚、深海珊瑚和钙质浮 游生物等钙化生物难以建造和维护外壳和其他碳酸 钙结构^[89, 94, 98-102]。海水酸化不仅会影响钙化过程, 甚至还会对生殖行为产生负面影响^[103]。关键底栖物 种的变化可能会对生物扰动和营养循环产生重大影 响^[104-105],导致元素的生物地球化学循环发生一连 串变化,从而危及海洋底栖生物群落^[106-107]。CO2渗 漏还可能导致沉积物-水界面的生物地球化学发生变 化, CO2 泄漏可能会导致某些容易溶解的微量元素从 沉积层中快速进入海水,其他易溶解的则会缓慢增 强溶解到海水^[108]。海水中重金属可溶性组分的增加 可能会导致从海底到中上层系统的海洋生态中产生 有毒的级联效应^[91]。海水 pH 的下降还会对磷的循环 产生严重影响,降低海洋沉积物中磷的埋藏效率, 导致水体中磷浓度增加,并促进富营养化,尤其是 在浅水区[109]。这些都会对海洋生物及其食物链,甚 至海洋生态系统造成严重影响。而且海洋碳封存时 间长、覆盖范围大,因此很难对 CO2 的泄漏进行长时 段的实时监测。

4 海洋 CO2 封存技术的发展方向

全球气候变暖的形势日趋严峻,要实现本世纪 末将全球平均气温升高限制在 2 ℃的目标,我们不 仅要降低碳排放,还应加强碳封存技术的研究。作为 封存技术中的一种富有前景、发展潜力巨大的技术, 海洋碳封存是减少大气中 CO₂浓度的有效方法,是实 现可持续发展的重要手段。未来海洋碳封存研究的 方向应主要侧重于技术经验、成本能耗、安全选址、 泄漏监测等几个方面。

在海洋中储存二氧化碳没有明显的不可逾越的 技术障碍,经验的缺乏可能会影响海洋 CO₂封存技 术的发展^[22]。由于发展水平有限,对海洋 CO₂封存 技术的成本也难以估计,这就需要各国广泛开展示 范性工程项目以积累经验、提升技术,降低成本和能 耗,方便评估整体流程的可行性和经济性等,为后 期大规模应用奠定基础。安全选址上应主要关注成 本、环境安全及社会政治问题,同时也要大力发展监 测技术,包括化学和生物监测等,尽量避免万一泄 漏或事故造成对人类生活和生态环境的影响。此外, 在海洋中进行碳封存没有法律可以依据,应该构建 完备的海洋碳封存法律框架,制定相应的责任制度 和监管机制,保障海洋碳封存的实施。

5 结语

我国经济体量大,具有能源消费多、碳排放总量 高的特征,双碳目标的实现面临着较大的压力。 CCUS 是实现碳中和关键核心技术,海洋作为 CO₂ 封存的一个理想场所,潜力巨大、优势明显,势必成 为 CO₂封存技术的中流砥柱。在 CO₂海洋封存的研 究中,海洋生态环境的保护也是一个不可忽视的因 素。海洋封存技术的发展离不开各领域科研人员的 协同合作,我国科研人员需要密切关注国外 CO₂海 洋封存的先进技术和经验,加强国际合作与交流, 共同探索和研究有效的海洋封存技术,以期达到更 好的效果。政府部门也要通过政策引导及财政扶持, 共同推进我国 CO₂海洋封存技术的进步。

参考文献:

- CHAPMAN D A, LICKEL B. Climate change and disasters: How framing affects justifications for giving or withholding aid to disaster victims[J]. Social Psychological and Personality Science, 2016, 7(1): 13-20.
- [2] IPCC. Climate change 2023: Synthesis report[R]. Geneva, Switzerland: IPCC, 2023.
- [3] HASZELDINE R S. Carbon capture and storage: How green can black be?[J]. Science, 2009, 325(5948): 1647-1652.
- [4] SONGOLZADEH M, SOLEIMANI M, TAKHT RAVA-NCHI M, et al. Carbon dioxide separation from flue gases: A technological review emphasizing reduction in greenhouse gas emissions[J]. The Scientific World Journal, 2014, 2014: 828131.
- [5] SONG C F, LIU Q L, DENG S, et al. Cryogenic-based CO₂ capture technologies: State-of-the-art developments and current challenges[J]. Renewable and Sustainable Energy Reviews, 2019, 101: 265-278.
- [6] STEWART C, HESSAMI M A. A study of methods of carbon dioxide capture and sequestration—the sustainability of a photosynthetic bioreactor approach[J]. Energy Conversion and Management, 2005, 46(3): 403-420.
- [7] SUN Y, ZHANG X B, REN G Y, et al. Contribution of

urbanization to warming in China[J]. Nature Climate Change, 2016, 6(7): 706-709.

- [8] PETERS G P, MARLAND G, LE QUÉRÉ C, et al. Rapid growth in CO₂ emissions after the 2008–2009 global financial crisis[J]. Nature Climate Change, 2012, 2(1): 2-4.
- [9] GULEV S K, THORNE P W, AHN J, et al. Changing state of the climate system[M]//MASSON-DELMOTTE V, ZHAI P, PIRANI A, et al. Climate Change 2021: The physical science basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, United Kingdom and New York, NY, USA: Cambridge University Press, 2021: 287-422.
- [10] EYRING V, GILLETT N P, ACHUTARAO K M, et al. Human influence on the climate system[M]//MASSON-DELMOTTE V, ZHAI P, PIRANI A, et al. Climate Change 2021: The Physical science basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, United Kingdom and New York, NY, USA: Cambridge University Press, 2021: 423-552.
- [11] 崔荣国,郭娟,程立海,等. 全球清洁能源发展现状 与趋势分析[J]. 地球学报, 2021, 42(2): 179-186.
 CUI Rongguo, GUO Juan, CHENG Lihai, et al. Status and trends analysis of global clean energies[J]. Acta Geoscientica Sinica, 2021, 42(2): 179-186.
- [12] LIU F Q, MAUZERALL D L, ZHAO F Q, et al. Deployment of fuel cell vehicles in China: Greenhouse gas emission reductions from converting the heavy-duty truck fleet from diesel and natural gas to hydrogen[J]. International Journal of Hydrogen Energy, 2021, 46(34): 17982-17997.
- [13] PANCHASARA H, SAMRAT N H, ISLAM N. Greenhouse gas emissions trends and mitigation measures in Australian agriculture sector—A review[J]. Agriculture, 2021, 11(2): 85.
- [14] 蔡博峰,李琦,张贤,等.中国二氧化碳捕集利用与封存 CCUS 年度报告(2021)——中国 CCUS 路径研究[R]. 生态环境部环境规划院,中国科学院武汉岩土力学研究所,中国 21 世纪议程管理中心,2021.
 CAI Bofeng, LI Qi, ZHANG Xian, et al. Annual report on carbon dioxide capture, utilization, and storage (CCUS) in China (2021) research on China's pathways of CCUS[R]. Chinese Academy of Environmental Planning, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, The Administrative Center for China's Agenda 21, 2021.
- [15] 张贤, 李凯, 马乔, 等. 碳中和目标下 CCUS 技术发展定位与展望[J]. 中国人口·资源与环境, 2021, 31(9): 29-33.

ZHANG Xian, LI Kai, MA Qiao, et al. Orientation and

prospect of CCUS development under carbon neutrality target[J]. China Population, Resources and Environment, 2021, 31(9): 29-33.

- [16] LACKNER K S. A guide to CO₂ sequestration[J]. Science, 2003, 300(5626): 1677-1678.
- [17] 孙玉景,周立发,李越. CO₂海洋封存的发展现状[J]. 地质科技情报, 2018, 37(4): 212-218.
 SUN Yujing, ZHOU Lifa, LI Yue. Development status of CO₂ marine sequestration[J]. Geological Science and Technology Information, 2018, 37(4): 212-218.
- [18] 张泉,林进,折印楠,等. 我国二氧化碳地质封存潜 力评价研究进展[J]. 中国石油和化工标准与质量, 2022, 42(11): 144-146.
 ZHANG Quan, LIN Jin, SHE Yinnan, et al. Research progress on the potential evaluation of carbon dioxide geological storage in China[J]. China Petroleum and Chemical Standard and Quality, 2022, 42(11): 144-146.
- [19] 孙腾民,刘世奇,汪涛.中国二氧化碳地质封存潜力 评价研究进展[J].煤炭科学技术,2021,49(11):10-20.
 SUN Tengmin, LIU Shiqi, WANG Tao. Research advances on evaluation of CO₂ geological storage potential in China[J]. Coal Science and Technology, 2021, 49(11):10-20.
- [20] KU H C, MIAO Y H, WANG Y Z, et al. Frontier science and challenges on offshore carbon storage[J]. Frontiers of Environmental Science & Engineering, 2023, 17(7): 80.
- [21] DAI Z X, ZHANG Y, STAUFFER P, et al. Injectivity evaluation for offshore CO₂ sequestration in marine sediments[J]. Energy Procedia, 2017, 114: 2921-2932.
- [22] BREWER P G, PELTZER E T, FRIEDERICH G, et al. Experimental determination of the fate of rising CO₂ droplets in seawater[J]. Environmental Science & Technology, 2002, 36(24): 5441-5446.
- [23] METZ B, DAVIDSON O, CONINCK H, et al. IPCC special report on carbon dioxide capture and storage[R]. New York: Cambridge University Press, 2005.
- [24] ADAMS E E, GOLOMB D S, HERZOG H J. Ocean disposal of CO_2 at intermediate depths[J]. Energy Conversion and Management, 1995, 36(6): 447-452.
- [25] CIRCONE S, STERN L A, KIRBY S H, et al. CO₂ hydrate: Synthesis, composition, structure, dissociation behavior, and a comparison to structure I CH₄ hydrate[J]. The Journal of Physical Chemistry B, 2003, 107(23): 5529-5539.
- [26] TOHIDI B, YANG J, SALEHABADI M, et al. CO₂ hydrates could provide secondary safety factor in subsurface sequestration of CO₂[J]. Environmental Science & Technology, 2010, 44(4): 1509-1514.
- [27] HOUSE K Z, SCHRAG D P, HARVEY C F, et al. Permanent carbon dioxide storage in deep-sea sediments[J].

Proceedings of the National Academy of Sciences, 2006, 103(33): 12291-12295.

- [28] KOIDE H, SHINDO Y, TAZAKI Y, et al. Deep sub-seabed disposal of CO₂ — The most protective storage[J]. Energy Conversion and Management, 1997, 38: S253-S258.
- [29] ADAMS E E, CALDEIRA K. Ocean storage of CO₂[J]. Elements, 2008, 4(5): 319-324.
- [30] QANBARI F, POOLADI-DARVISH M, TABATABAIE S H, et al. CO₂ disposal as hydrate in ocean sediments[J]. Journal of Natural Gas Science and Engineering, 2012, 8: 139-149.
- [31] GISLASON S R, OELKERS E H. Carbon storage in basalt[J]. Science, 2014, 344(6182): 373-374.
- [32] PRASAD P S R, SRINIVASA SARMA D, NIRMAL CHARAN S. Mineral trapping and sequestration of carbon-dioxide in deccan basalts: SEM, FTIR and raman spectroscopic studies on secondary carbonates[J]. Journal of the Geological Society of India, 2012, 80(4): 546-552.
- [33] SLAGLE A L, GOLDBERG D S. Evaluation of ocean crustal sites 1256 and 504 for long-term CO₂ sequestration[J]. Geophysical Research Letters, 2011, 38(16): L16307.
- [34] ECCLES J K, PRATSON L. Global CO₂ storage potential of self-sealing marine sedimentary strata[J]. Geophysical Research Letters, 2012, 39(19): L19604.
- [35] MATTER J M, STUTE M, SNÆBJÖRNSDOTTIR S Ó, et al. Rapid carbon mineralization for permanent disposal of anthropogenic carbon dioxide emissions[J]. Science, 2016, 352(6291): 1312-1314.
- [36] TENG Y H, ZHANG D X. Long-term viability of carbon sequestration in deep-sea sediments[J]. Science Advances, 2018, 4(7): eaao6588.
- [37] GOEL N. In situ methane hydrate dissociation with carbon dioxide sequestration: Current knowledge and issues[J]. Journal of Petroleum Science and Engineering, 2006, 51(3): 169-184.
- [38] SAHA D, GRAPPE H A, CHAKRABORTY A, et al. Postextraction separation, on-board storage, and catalytic conversion of methane in natural gas: A review[J]. Chemical Reviews, 2016, 116(19): 11436-11499.
- [39] KUMAR K V, PREUSS K, TITIRICI M M, et al. Nanoporous materials for the onboard storage of natural gas[J]. Chemical Reviews, 2017, 117(3): 1796-1825.
- [40] KONNO Y, MASUDA Y, AKAMINE K, et al. Sustainable gas production from methane hydrate reservoirs by the cyclic depressurization method[J]. Energy Conversion and Management, 2016, 108: 439-445.
- [41] EBINUMA T. Method for dumping and disposing of

carbon dioxide gas and apparatus therefor: 5261490[P]. 1993-11-16.

- [42] OHGAKI K, TAKANO K, SANGAWA H, et al. Methane exploitation by carbon dioxide from gas hydrates—phase equilibria for CO₂-CH₄ mixed hydrate system—[J]. Journal of Chemical Engineering of Japan, 1996, 29(3): 478-483.
- [43] YEZDIMER E M, CUMMINGS P T, CHIALVO A A. Determination of the gibbs free energy of gas replacement in Si clathrate hydrates by molecular simulation[J]. The Journal of Physical Chemistry A, 2002, 106(34): 7982-7987.
- [44] 张学民,李金平,吴青柏,等. CO₂ 置换开采冻土区 天然气水合物中 CH₄ 的可行性研究[J]. 化工进展, 2014, 33(S1): 133-140.
 ZHANG Xuemin, LI Jinping, WU Qingbai, et al. Feasibility study on replacement of CH₄ gas from methane hydrate with CO₂ in frigid permafrost region[J]. Chemical Industry and Engineering Progress, 2014, 33(S1): 133-140.
 [45] 副合带 陈颖 封約的 地质封友泪压条件下 CO 滚
- [45] 郭会荣,陈颖,赵锐锐.地质封存温压条件下 CO₂ 溶 解、扩散及水岩反应实验研究[M]. 武汉:中国地质大 学出版社, 2014.
 GUO Huirong, CHEN Ying, ZHAO Ruirui. Experimental simulation on the dissolution, diffusion, and reaction of CO₂ sequestrated into saline aquifer[M]. Wuhan: China University of Geosciences Press, 2014.
- [46] HERZOG H, CALDEIRA K, ADAMS E. Carbon sequestration via direct injection[M]//STEELE J H. Encyclopedia of ocean sciences. Oxford: Academic Press, 2001: 408-414.
- [47] MARCHETTI C. On geoengineering and the CO₂ problem[J]. Climatic Change, 1977, 1(1): 59-68.
- [48] HIRAI S, OKAZAKI K, TABE Y, et al. Numerical simulation for dissolution of liquid CO₂ droplets covered with clathrate film in intermediate depth of ocean[J]. Energy Conversion and Management, 1997, 38: S313-S318.
- [49] HIRAI S, OKAZAKI K, ARAKI N, et al. Transport phenomena of liquid CO₂ in pressurized water flow with clathrate-hydrate at the interface[J]. Energy Conversion and Management, 1996, 37(6): 1073-1078.
- [50] AMETISTOVA L, TWIDELL J, BRIDEN J. The sequestration switch: removing industrial CO₂ by direct ocean absorption[J]. Science of The Total Environment, 2002, 289(1): 213-223.
- [51] SHINDO Y, FUJIOKA Y, YANAGISHITA Y, et al. Formation and stability of CO₂ hydrate[C]//Direct ocean disposal of carbon dioxide. Tokyo: Terra Publishing Company, 1993: 217-231.
- [52] SHINDO Y, LUND P C, FUJIOKA Y, et al. Kinetics of

formation of CO₂ hydrate[J]. Energy Conversion and Management, 1993, 34(9): 1073-1079.

- [53] SHINDO Y, FUJIOKA Y, TAKEUCHI K, et al. Kinetics on the dissolution of CO₂ into water from the surface of CO₂ hydrate at high pressure[J]. International Journal of Chemical Kinetics, 1995, 27(6): 569-575.
- [54] SHINDO Y, SAKAKI K, FUJIOKA Y, et al. Kinetics of the formation of CO₂ hydrate on the surface of liquid CO₂ droplet in water[J]. Energy Conversion and Management, 1996, 37(4): 485-489.
- [55] GOLDTHORPE S. Potential for very deep ocean storage of CO₂ without ocean acidification: A discussion paper[J]. Energy Procedia, 2017, 114: 5417-5429.
- [56] 全球碳捕集与封存研究院. 全球碳捕集与封存现状 2020[R]. 全球碳捕集与封存研究院, 2020.
 Global CCS Institute. Global Status of CCS Report: 2020[R]. Global CCS Institute, 2020.
- [57] FURRE A K, EIKEN O, ALNES H, et al. 20 years of monitoring CO₂-injection at Sleipner[J]. Energy Procedia, 2017, 114: 3916-3926.
- [58] BAKLID A, KORBOL R, OWREN G. Sleipner vest CO₂ disposal, CO₂ injection into A shallow underground aquifer[C]//SPE Annual Technical Conference and Exhibition. OnePetro, 1996.
- [59] HANSEN H, EIKEN O, AASUM T O. Tracing the path of carbon dioxide from a gas/condensate reservoir, through an amine plant and back into a subsurface aquifer – case study: The Sleipner Area, Norwegian North Sea[C]//SPE Offshore Europe Oil and Gas Exhibition and Conference. OnePetro, 2005.
- [60] SINGH V, CAVANAGH A, HANSEN H, et al. Reservoir modeling of CO₂ plume behavior calibrated against monitoring data from Sleipner, Norway[C]//SPE Annual Technical Conference and Exhibition. OnePetro, 2010.
- [61] HANSEN O, GILDING D, NAZARIAN B, et al. Snøhvit: the history of injecting and storing 1 Mt CO₂ in the fluvial Tubåen Fm[J]. Energy Procedia, 2013, 37: 3565-3573.
- [62] SHI J Q, IMRIE C, SINAYUC C, et al. Snøhvit CO₂ Storage Project: Assessment of CO₂ injection performance through history matching of the injection well pressure over a 32-months period[J]. Energy Procedia, 2013, 37: 3267-3274.
- [63] EXXONMOBIL. Charting a bold concept for a lower-carbon future[EB/OL]. (2021-04-21)[2023-05-01]. https://energyfactor.exxonmobil.com/reducing-emissions/ carbon-capture-and-storage/lcs-houston-ccs-concept/.
- [64] KLINGE N. Proposed Houston CCS hub gains supermajor support[EB/OL]. (2022-01-20)[2023-05-02]. https://www. upstreamonline.com/energy-transition/proposed-houston-

ccs-hub-gains-supermajor-support/2-1-1149392.

- [65] JACOBS T. Shell signs on with ExxonMobil-Led effort to build world's largest CCS project[EB/OL]. (2022-01-20)[2023-05-01]. https://jpt.spe.org/shell-signs-on-withexxonmobil-led-effort-to-build-worlds-largest-ccs-project.
- [66] ENERGYFACTOR EUROPE. The promise of carbon capture and storage, and a Texas-sized call to action [EB/OL]. (2021-04-30)[2023-05-01]. https://energyfactor.exxonmobil. eu/perspectives/houston-ccs-hub/.
- [67] TANASE DAIJI et al. Tomakomai CCS demonstration project[EB/OL]. [2023-04-19]. https://www.japanccs. com/en/business/demonstration/index.php.
- [68] IEA. Tomakomai CCS demonstration project—CCUS around the world[EB/OL]. (2021)[2023-05-03]. https:// www.iea.org/reports/ccus-around-the-world/tomakomaiccs-demonstration-project.
- [69] SAWADA Y, TANAKA J, SUZUKI C, et al. Tomakomai CCS demonstration project of Japan, CO₂ injection in progress[J]. Energy Procedia, 2018, 154: 3-8.
- [70] WALTERS N. Petrobras hits carbon capture milestone
 [EB/OL]. (2021)[2023-04-19]. https://www.argusmedia.
 com/metals-platform/newsandanalysis/article/2287533 Petrobras-hits-carbon-capture-milestone.
- [71] JUNIOR A N, QUEIROZ G N, GODOY M G, et al. Assessing EOR strategies for application in Brazilian pre-salt reservoirs[J]. Geoenergy Science and Engineering, 2023, 223: 211508.
- [72] STEYN M, OGLESBY J, TURAN G, et al. Global Status of CCS 2022[R]. Global CCS Institute, 2022.
- [73] BATTERSBY A. Santos progresses at Barossa, development drilling still suspended[EB/OL]. (2023-07-20) [2023-07-25]. https://www.upstreamonline.com/field-development/santosprogresses-at-barossa-development-drilling-still-suspended/2-1-1489305.
- [74] SANTOS. Globally significant carbon capture and storage project a step closer[EB/OL]. (2022-03-08) [2023-06-01]. https://www.santos.com/news/globally-significantcarbon-capture-and-storage-project-a-step- closer/.
- [75] 冯丽妃. 中国海域二氧化碳地质封存潜力达 2.58 万亿吨[N]. 中国科学报, 2023-01-13(1).
 Feng Lifei. The potential for geological storage of carbon dioxide in China's sea areas is 2.58 trillion tonnes[N]. China Science Daily, 2023-01-13(1).
- [76] XU Y H. Offshore China harbours huge carbon capture potential[EB/OL]. (2023-01-19)[2023-03-10]. https://www. upstreamonline.com/energy-transition/offshore-china-harbours-huge-carbon-capture-potential/2-1-1390955.
- [77] 高慧. 中国成为第四个开展二氧化碳海底封存的国家
 [EB/OL]. (2021-09-10)[2023-04-19]. https://mp.weixin.
 qq.com/s/BGF2yE3pd8VKDds8SsPDXA.
 GAO Hui. China becomes the fourth country to carry

out subsea carbon dioxide storage[EB/OL]. (2021-09-10)[2023-04-19]. https://mp.weixin.qq.com/s/BGF2yE3 pd8VKDds8SsPDXA.

- [78] 王瑛,何艳芬.中国省域二氧化碳排放的时空格局及 影响因素[J].世界地理研究,2020,29(3):512-522.
 WANG Ying, HE Yanfen. Spatiotemporal dynamics and influencing factors of provincial carbon emissions in China. World Regional Studies, 2020, 29(3): 512-522.
- [79] CNOOC. Annual Report 2021[R]. CNOOC, 2021.
- [80] 衣华磊, 郭欣, 贾津耀, 等. 恩平 15-1 油田开发 CO₂ 回注封存工程方案研究[J]. 中国海上油气, 2023, 35(1): 163-169.
 YI Hualei, GUO Xin, JIA Jinyao, et al. Research on CO₂ re-injection and storage engineering scenario of EP15-1 oil field development[J]. China Offshore Oil and Gas, 2023, 35(1): 163-169.
- [81] GLOBAL TIMES. China's first offshore CO₂ storage facility starts operation in South China Sea[EB/OL]. (2023-06-01)[2023-06-21]. https://www.globaltimes.cn/ page/202306/1291785.shtml.
- [82] 杨漾. 我国首个海上规模化二氧化碳捕集利用及封存 集群研究项目启动[EB/OL]. (2022-06-28)[2022-07-03]. https://www.thepaper.cn/newsDetail_forward_18773291.
 YANG Yang. China launches the first offshore large-scale CCUS cluster research project. [EB/OL]. (2022-06-28) [2022-07-03]. https://www.thepaper.cn/newsDetail_forward_ 18773291.
- [83] SHELL (CHINA) LIMITED. Shell partners with CNOOC, Guangdong Government, ExxonMobil on offshore carbon capture and storage hub in China[EB/OL]. (2022-06-28) [2022-07-04]. https://www.shell.com.cn/en_cn/media/media-releases/2022-media-releases/shell-partners-with-cnoocguangdong-government-exxonmobil-on-offshore-carboncapture-and-storage-hub-in-china.html.
- [84] JI J. China's first million-ton offshore carbon capture and storage project goes into operation[EB/OL]. (2023- 06-13) [2023-07-01]. https://www.bjreview.com/China/202306/ t20230613 800334120.html.
- [85] XINHUA. China Focus: China achieves breakthrough as million-tonne offshore carbon storage project begins operations[EB/OL]. (2023-06-02)[2023-06-11]. http:// www.china.org.cn/china/Off_the_Wire/2023-06/02/cont ent_86150078.htm.
- [86] DAMEN K, FAAIJ A, TURKENBURG W. Health, safety and environmental risks of underground CO₂ storage – overview of mechanisms and current knowledge[J]. Climatic Change, 2006, 74(1): 289-318.
- [87] JONES D G, BEAUBIEN S E, BLACKFORD J C, et al. Developments since 2005 in understanding potential environmental impacts of CO₂ leakage from geological storage[J]. International Journal of Greenhouse Gas

Control, 2015, 40: 350-377.

- [88] AMARO T, BERTOCCI I, QUEIROS A M, et al. Effects of sub-seabed CO₂ leakage: Short- and medium-term responses of benthic macrofaunal assemblages[J]. Marine Pollution Bulletin, 2018, 128: 519-526.
- [89] MOLARI M, GUILINI K, LINS L, et al. CO₂ leakage can cause loss of benthic biodiversity in submarine sands[J]. Marine Environmental Research, 2019, 144: 213-229.
- [90] SOKOŁOWSKI A, BRULIŃSKA D, SOKOŁOWSKA E. Multimarker response of the ragworm Hediste diversicolor (Polychaeta) to seawater acidification derived from potential CO₂ leakage from the CCS subseabed storage site in the Baltic Sea[J]. Journal of Experimental Marine Biology and Ecology, 2020, 530-531: 151433.
- [91] ARDELAN M V, STEINNES E, LIERHAGEN S, et al. Effects of experimental CO₂ leakage on solubility and transport of seven trace metals in seawater and sediment[J]. Science of The Total Environment, 2009, 407(24): 6255-6266.
- [92] BLACKFORD J, STAHL H, BULL J M, et al. Detection and impacts of leakage from sub-seafloor deep geological carbon dioxide storage[J]. Nature Climate Change, 2014, 4(11): 1011-1016.
- [93] BLACKFORD J C, JONES N, PROCTOR R, et al. Regional scale impacts of distinct CO₂ additions in the North Sea[J]. Marine Pollution Bulletin, 2008, 56(8): 1461-1468.
- [94] BLACKFORD J, JONES N, PROCTOR R, et al. An initial assessment of the potential environmental impact of CO₂ escape from marine carbon capture and storage systems[J]. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 2009, 223(3): 269-280.
- [95] ZEEBE R E, WOLF-GLADROW D A. CO₂ in seawater: Equilibrium, kinetics, isotopes[M]. Amsterdam; New York: Elsevier, 2001.
- [96] DICKSON A G, SABINE C L, CHRISTIAN J R. Guide to best practices for ocean CO₂ measurements: IOCCP report; 8[R]. Sidney, British Columbia: North Pacific Marine Science Organization, 2007: 191.
- [97] MARTÍNEZ-CABANAS M, ESPOSITO M, GROS J, et al. Deviations from environmental baseline: Detection of subsea CO₂ release in the water column from real-time measurements at a potential offshore carbon dioxide storage site[J]. International Journal of Greenhouse Gas Control, 2021, 109: 103369.
- [98] RIES J B, COHEN A L, MCCORKLE D C. Marine calcifiers exhibit mixed responses to CO₂-induced ocean acidification[J]. Geology, 2009, 37(12): 1131-1134.

- [99] SOKOŁOWSKI A, BRULIŃSKA D, MIRNY Z, et al. Differing responses of the estuarine bivalve *Limecola balthica* to lowered water pH caused by potential CO₂ leaks from a sub-seabed storage site in the Baltic Sea: An experimental study[J]. Marine Pollution Bulletin, 2018, 127: 761-773.
- [100]HALL-SPENCER J M, RODOLFO-METALPA R, MARTIN S, et al. Volcanic carbon dioxide vents show ecosystem effects of ocean acidification[J]. Nature, 2008, 454(7200): 96-99.
- [101]DONEY S C, FABRY V J, FEELY R A, et al. Ocean acidification: The other CO₂ problem[J]. Annual Review of Marine Science, 2009, 1(1): 169-192.
- [102]FEELY R A, SABINE C L, BYRNE R H, et al. Decadal changes in the aragonite and calcite saturation state of the Pacific Ocean[J]. Global Biogeochemical Cycles, 2012, 26(3): GB3001.
- [103] HILDEBRANDT N, NIEHOFF B, SARTORIS F J. Longterm effects of elevated CO₂ and temperature on the Arctic calanoid copepods *Calanus glacialis* and *C. hyperboreus*[J]. Marine Pollution Bulletin, 2014, 80(1): 59-70.
- [104]MURRAY F, WIDDICOMBE S, MCNEILL C L, et al. Consequences of a simulated rapid ocean acidification event for benthic ecosystem processes and functions[J]. Marine Pollution Bulletin, 2013, 73(2): 435-442.

- [105]WIDDICOMBE S, BEESLEY A, BERGE J A, et al. Impact of elevated levels of CO₂ on animal mediated ecosystem function: The modification of sediment nutrient fluxes by burrowing urchins[J]. Marine Pollution Bulletin, 2013, 73(2): 416-427.
- [106] BIBBY R, WIDDICOMBE S, PARRY H, et al. Effects of ocean acidification on the immune response of the blue mussel *Mytilus edulis*[J]. Aquatic Biology, 2008, 2(1): 67-74.
- [107]SOKOŁOWSKI A, ŚWIEŻAK J, HALLMANN A, et al. Cellular level response of the bivalve *Limecola balthica* to seawater acidification due to potential CO₂ leakage from a sub-seabed storage site in the southern Baltic Sea: TiTank experiment at representative hydrostatic pressure[J]. Science of The Total Environment, 2021, 794: 148593.
- [108]BASALLOTE M D, DE ORTE M R, DELVALLS T Á, et al. Studying the effect of CO₂-induced acidification on sediment toxicity using acute amphipod toxicity test[J]. Environmental Science & Technology, 2014, 48(15): 8864-8872.
- [109] ŁUKAWSKA-MATUSZEWSKA K, GRACA B, SOKO-ŁOWSKI A, et al. The impact of potential leakage from the sub-seabed CO₂ storage site on the phosphorus transformation in marine sediments – An experimental study[J]. Science of The Total Environment, 2023, 886: 163879.

Technology and research progress with regard to CO₂ ocean storage

ZHANG Haibin¹, LU Di¹, WANG Yongchang¹, TIAN Wenshuang¹, SHEN Guofei², SONG Xuehang², WEI Wei²

(1. CNOOC Energy Conservation and Emission Reduction Center, Tianjin 300452, China; 2. Shanghai Advanced Research Institute, Chinese Academy of Sciences, CAS Key Laboratory of Low-Carbon Conversion Science & Engineering, Shanghai 201210, China)

Received: Aug. 1, 2023

Key words: carbon capture; utilization and storage (CCUS); ocean storage; research progress; marine environment; ocean acidification

Abstract: The world is now facing a critical challenge: global warming. Addressing this issue requires a collective effort to reduce carbon emissions and achieve carbon neutrality, a goal that has gained international consensus. In recent years, carbon capture, utilization, and storage (CCUS) has emerged as a critical tool in the fight against carbon emissions, and it is presently in a rapid phase of development. Among the various methods incorporated within CCUS technology, CO_2 ocean storage shows the most potential. Therefore, understanding its current developmental status is crucial for further advancements in CO_2 storage research. This paper provides an overview of the methods and mechanisms of CO_2 ocean storage and summarizes the progress made in CO_2 marine storage technology at home and abroad. It also outlines the enormous potential for CO_2 ocean storage and the benefits of source–sink matching in China. However, it also considers the potential environmental implications for CO_2 ocean storage, which could be far from negligible. Finally, the paper points out that it is necessary to promote research on ocean storage technologies, explore the extent of ocean storage capacity, and accelerate carbon emission reduction to achieve carbon neutrality as soon as possible.

(本文编辑: 赵卫红)