几种江蓠属海藻3个分子序列的系统学分析

赵小波^{1,2}, 逄少军¹, 刘 峰¹

(1. 中国科学院 海洋研究所, 山东 青岛 266071; 2. 中国科学院大学, 北京 100049)

摘要:分析了我国沿海几种常见的江蓠属(Gracilaria)海藻的 18S rRNA 基因、cox2-3 间隔区以及 RUBISCO间隔区的分子序列,并结合GenBank现有的相关数据进行了分子系统学关系分析,为江蓠属 的系统进化和分类地位提供了新的佐证。结果表明,基于 cox2-3 间隔区、以及 RUBISCO 间隔区序列 构建的 MP (Maximum parsimony)进化树较为相似,而与基于 18S rRNA 构建的进化树略有不同。这主 要是由于 18S rRNA 更为保守的原因; 扁江蓠与脆江蓠在 3 个系统树中均聚合成支,显示了它们之间具 有较近的亲缘关系; 龙须菜与江蓠属海藻具有较远的遗传距离,在 3 个进化树中,龙须菜也均位于进 化树的基部,单独成支,证实龙须菜并不隶属于江蓠属,且分化相对较早。

关键词: 江蓠属(*Gracilaria*); 18S rRNA; cox2-3 间隔区; RUBISCO 间隔区 中图分类号: Q347 文献标识码: A 文章编号: 1000-3096(2013)06-0008-08

江蓠属(Gracilaria)海藻在自然分类上隶属于红 藻门(Rhodophyta), 江蓠目(Gracilariales), 江蓠科 (Gracilariaceae), 广泛分布于热带、亚热带和温带海 域,是世界范围内十分重要的经济海藻[1]。江蓠属中 栽培的物种主要是龙须菜、细基江蓠、脆江蓠,还有 智利的智利江蓠。龙须菜栽培主要在我国广东、福 建、山东沿海、其主要用途是提取琼胶、鲍鱼饵料、 食用等。江蓠属内其他物种也是重要的食品以及工 业原料。因此、江蓠属海藻产业市场发展潜力大。目 前,江蓠属海藻的研究还存在一些问题:由于缺乏 足够的证据、这些海藻之间复杂的分类关系尚未完 全厘清^[2],例如传统分类学家将龙须菜归入江蓠属^[3], 但是许多分子生物学证据认为龙须菜并不隶属于江 蓠属^[2, 4-5];虽然分子生物学手段越来越多的被应用 于江蓠属系统分类研究之中,但大多数研究局限于 ITS以及*rbc*L序列、且研究结果存在差异^[4-9];此外、 虽然分子系统学研究进展迅速,但是一个可信度较 高的系统分类结果对于系统分类学家来说仍然是困 难的。单纯凭借一个DNA序列进行分析、往往会由于 进化速率不同等因素导致在不同的研究中得出完全 不同甚至是错误的结论。为了更清楚的了解中国科 学院海藻种质库活体保存的不同江蓠属海藻物种在 分类进化上的关系,作者利用核基因编码的18S rRNA基因、位于线粒体的cox2-3间隔区、以及位于 叶绿体的RUBISCO间隔区研究了来自不同地区的5 个物种、并与GenBank中已知相关序列进行比对分 析,力图从分子水平上阐明江蓠属系统进化关系,

为江蓠属的系统进化、种质鉴定等提供新的佐证。

- 1 材料与方法
- 1.1 实验材料

本实验所用江蓠属、*Gracilariopsis*属样品采集自我 国不同海区(表1)。所有样品首先依照形态学特征进行分 类鉴定^[3, 10-11],在提取DNA之前,将藻体用消毒海水清 洗、活体保存于中国科学院海洋研究所海藻种质库。

1.2 总 DNA 提取与 PCR 扩增

总DNA提取参考Goff^[12]的方法,并对部分细节 进行了改动。将藻体用消毒海水清洗干净之后,取 0.1g于液氮中充分研磨后,加入大约2mL提取缓冲 液[4% SDS,0.05 mol/LTris.HCl,0.1 mol/LEDTA, 0.2 mol/LNaCl],加蛋白酶K至终质量浓度为100 μg/mL, 然后震荡3~4h (50℃),12000 r/min离心10 min,取上 清后加等体积的酚抽提,12000r/min离心10min取上 清,再以酚/氯仿/异戊醇(25:24:1)及氯仿抽提, 12000r/min离心10min取上清。上清液加入2倍的无水 乙醇和1/10体积的醋酸钾离心,70%乙醇洗涤2次,干 燥后,溶解在50μL无菌三蒸水储存备用。采所提

海洋科学 / 2013 年 / 第 37 卷 / 第 6 期

收稿日期: 2012-11-08; 修回日期: 2013-01-05

基金项目: 国家自然科学基金项目(41176135); 国家自然科学基金青 年基金项目(41206146)

作者简介:赵小波(1984-),男,山东青岛人,博士研究生,研究方向 为海洋生物学,电话: 0532-82898567, E-mail: zhaoxiaobo@qdio.ac.cn; 通信作者: 逢少军,研究员, E-mail: sjpang@qdio.ac.cn

表1 样品采集信息

Tab.1 Information of algal samples

物种夕称	材料编号	平 年十十月	采集时间	GenBank 序列号					
1/2117 12110	1/] 个千 5/冊 1-5	不来也示	(年-月)	18S rRNA	cox2-3spacer	RUBISCO spacer			
真江蓠	mbccc02	青岛团岛湾	2011-04	KC577226	KC597833	KC597842			
Gracilaria vermiculophylla ohmi	111000002		2011 01	110077220	1100770000	1100071012			
真江蓠	mbccc24	广东南澳岛	2011-05	KC577227	KC597834	KC597843			
<i>G.vermiculophylla</i> ohmi									
扁江蓠	mbccc01	青岛汇泉湾	2011-03	KC577228	KC597831	KC597838			
G. textorii (Suringar)									
扁江蓠	mbccc62	青岛湛山湾	2012-05	KC577229	KC597832	KC597839			
<i>G. textorii</i> (Suringar)									
	mbccc26	广东南澳岛	2011-05	KC577230	KC596121	KC597840			
G. chouae Zhang et X1a									
细基江离繁枝受种	mbccc39	海南临高	2011-07	KC577231	KC596122	KC597841			
<i>G. tenuistipitata</i> var. <i>liui</i>									
龙 须菜	mbccc23	青岛湛山湾	2011-05	KC577232	KC597835	KC596118			
Gracilariopsis lemaneiformis									
龙须菜	mbccc27	青岛湛山湾	2011-05	KC577233	KC597836	KC596119			
G. lemaneiformis									
龙须菜	mbccc81	广东南澳岛	2011-05	KC577234	KC597837	KC596120			
G. lemaneiformis			2011 00	1100 / / 20 !	11009,000,	1100/0120			
G. debilis	GenBank			EU937745	EU937764	EU937773			
G. dura	GenBank			DQ399795	EU937761	EU937766			
G. fergusonii	GenBank			EU937740	EU937760	EU937769			
G. foliifera	GenBank			EU937741	EU937761	EU937770			
G. gracilis	GenBank			EU937742	EU937762	EU937771			
G. salicornia	GenBank			EU937743	EU937763	EU937772			

取DNA用1%琼脂糖凝胶进行电泳检测。使用PCR技 术^[13]扩增18S rRNA、cox2-3间隔区、RUBISCO间隔 区序列。用于18S rRNA序列扩增的引物为: 18SF 5-CAACCTG GTTGATCCTGCCAGT-3; 18SR 5-TGAT-CCTTCTGCAGGTTCACCTAC-3。扩增程序为:94℃ 预处理5 min后, 94 ℃变性1min, 60℃复性2min, 72℃ 延伸4min, 总35个循环, 最后在72℃延伸7min, 4℃ 保存^[2]。 cox2-3 间隔区扩增引物为: coxF 5-GTACCWTCTTTDRGRRK DAAAT GTGATGC-3; coxR 5-GGATCTACWAGATGRAAWGGATGTC-3。 扩增程序为: 94℃预处理4 min后, 93 ℃变性1min, 45℃复性1min, 72℃延伸1min, 总5个循环, 然后 93℃变性30s、55℃复性30s、72℃延伸30s、总30个循 环。最后在72℃延伸5min,4℃保存^[14]。RUBISCO间 隔区序列扩增引物为: rbcF 5-TATACTTCTACAGA-CACAGCTGA-3; rbcR 5-ATGTCAAATAATGGTAGT CCCCA-3。扩增程序为: 94℃预处理4 min后, 93 ℃变性 1min, 45℃复性1min, 72℃延伸1min, 总5个循环, 然后93℃ 变性1min、55℃复性1min、72℃延伸1min、总30个循环。 最后在72℃延伸5min,4℃保存^[15]。

PCR反应体系20µL包括: 10×PCR反应缓冲液,

MgCl₂ (25mmolL⁻¹) 1.5μL, dNTPs (2.5 mmolL⁻¹) 2μL, Taq (5UμL⁻¹) 0.2μL, 引物 (10 mmolL⁻¹) 0.5μL, ddH₂O 12.3μL。所有PCR试剂均购自大连宝生物工程 有限公司(Takara, Dalian)。

PCR产物用UNIQ-10 PCR Purification Kit试剂盒(上 海生工) 胶回收纯化。纯化产品与pMD19-T载体(大连宝 生物工程有限公司) 连接后转化至感受态*E. coli* TOP 10 (北京全是金生化科技有限公司)中, 经氨苄青霉素 (AMP)抗性筛选后,随机挑取5个阳性克隆进行扩大培 养,菌液PCR扩增预检测插入片段大小,委托上海生工 进行双向测序。所得PCR产品序列上传至GenBank。

1.3 数据分析

序列数据首先利用BLAST与GenBank中已有序 列信息进行比对。然后利用ClustalW软件对测序数据 进行人工对齐排序。用MEGA 5.0计算其碱基含量和 变异位点,并选择Kimura 2-parameter公式^[16]计算遗 传距离。并在MEGA5.0中采用最大简约法(Maximum parsimony, MP)构建系统树,自举值Bootstrap为1000 次重复。保留大于60的Bootstrap数值。选择线形紫菜 (Porphyra linearis Greville)作为外群。

2 结果

2.1 18S rRNA 序列分析结果

所有样品扩增条带去除引物后,序列长度一致, 均为1722bp。江蓠属海藻不同样品碱基频率一致,均 为A:25.1%;T:25.9%;G:28.3%;C:20.7%。龙须菜碱 基频率与江蓠属略有不同A:25.1%;T:25.5%;G: 28.5%;C:20.9%。江蓠属样品转换/颠换比例(*R*)为 1.42。江蓠属种间遗传距离为0.005~0.017,共计61个

表 2 基于 18S rRNA 序列的样品间遗传距离

变异位点; 江蓠属与龙须菜物种间的遗传距离在 0.019~0.028 (表2), 共计90个变异位点。采自不同地 区的龙须菜种内遗传距离为0.000, 变异位点为0个。 与GenBank下载的数据人工比对之后序列长度为 1699bp, 可分为2大分支, 包括龙须菜分支, 江蓠属 分支。其中, 脆江蓠Gracilaria chouae与扁江蓠G. textorii聚合, 形成分支 I; 真江蓠Gracilaria vermiculophylla形成分支 II; G. debilis, G. fergusonii, G. salicornia与G. foliifera聚合组成分支III(图1)。

No.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
1	—														
2	0.000	—													
3	0.010	0.010	—												
4	0.010	0.010	0.000												
5	0.005	0.005	0.010	0.010	—										
6	0.012	0.012	0.013	0.013	0.012	—									
7	0.007	0.007	0.010	0.010	0.007	0.012	_								
8	0.011	0.011	0.012	0.012	0.011	0.014	0.010	—							
9	0.010	0.010	0.013	0.013	0.008	0.014	0.011	0.007	—						
10	0.009	0.009	0.014	0.014	0.009	0.015	0.011	0.008	0.005	—					
11	0.013	0.013	0.015	0.015	0.015	0.016	0.015	0.017	0.016	0.017	—				
12	0.007	0.007	0.009	0.009	0.008	0.011	0.008	0.005	0.005	0.006	0.013	—			
13	0.025	0.025	0.025	0.025	0.025	0.025	0.025	0.026	0.028	0.028	0.019	0.025	—		
14	0.025	0.025	0.025	0.025	0.025	0.025	0.025	0.026	0.028	0.028	0.019	0.025	0.000	—	
15	0.025	0.025	0.025	0.025	0.025	0.025	0.025	0.026	0.028	0.028	0.019	0.025	0.000	0.000	_

G.chouae mbccc26; 6.*G.tenuistipitata var.liui* mbccc39; 7. *G.dura*; 8. *G.foliifera*; 9. *G.fergusonii*; 10. *G.salicornia*; 11. *G.gracilis*; 12. *G.debilis*; 13. *Gracilariopsi lemaneiformis* mbccc23; 14. *G.lemaneiformis* mbccc27; 15. *G.lemaneiformis* mbccc81.

2.2 COX2-3 序列分析结果

目的片断去除扩增引物之后,江蓠属海藻大小为 343bp,片段碱基频率略有不一,平均 GC 含量为 24.43%。龙须菜片段大小略长,为 347bp,GC 含量为 22.2%。江蓠属样品转换/颠换比例(*R*)为 1.32。江蓠 属海藻种间遗传距离为 0.105~0.221,共计 102 个变 异 位 点, 江 蓠 属 与 龙 须 菜 属 间 的 遗 传 距 离 为 0.196~0.244, 变异位点共计112个, 龙须菜群体内遗 传距离为 0.000(表 3), 变异位点 0 个。与 GenBank 下载的数据人工比对之后长度为 310bp。江蓠属与龙 须菜在系统树上分为两大分支, 龙须菜位于系统树 的最基部。江蓠属中, 扁江蓠与脆江蓠聚成分支 I; 真江蓠与细基江蓠繁殖变种, G. foliifera 聚成分支 II; G. dura 与 G. debilis 分别聚成分支III(图 2)。

表 3 基于 cox2-3 间隔区序列的样品间遗传距离

Tab.3	Genetic distance cal	culated using Kimura	2-parameter model for cox2	3 intergenic spacer see	quences of samples

No.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
1	—														
2	0.000	—													
3	0.162	0.162	—												
4	0.162	0.162	0.000	—											
5	0.105	0.105	0.152	0.142	—										
6	0.187	0.187	0.150	0.150	0.191	—									
7	0.158	0.158	0.134	0.134	0.146	0.198	—								
8	0.195	0.195	0.166	0.166	0.187	0.155	0.165	—							
9	0.147	0.147	0.138	0.138	0.131	0.182	0.139	0.187	—						
10	0.139	0.139	0.142	0.142	0.127	0.174	0.151	0.154	0.123	_					
11	0.158	0.158	0.170	0.170	0.122	0.199	0.127	0.191	0.146	0.143	—				
12	0.146	0.146	0.192	0.192	0.159	0.221	0.112	0207	0.155	0.182	0.135	—			
13	0.256	0.256	0.212	0.212	0.261	0.243	0.220	0221	0.208	0.244	0.196	0.234	—		
14	0.256	0.256	0.212	0.212	0.261	0.243	0.220	0.221	0.208	0.244	0.196	0.234	0.000	—	
15	0.256	0.256	0.212	0.212	0.261	0.243	0.220	0.221	0.208	0.244	0.196	0.234	0.000	0.000	—

Numbers near each clade refer to MP bootstrap value, and displayed when bootstrap value>60

Marine Sciences / Vol. 37, No. 6 / 2013

2.3 RUBISCO spacer 序列分析结果

目的片段去除扩增引物后,江蓠属海藻大小不 一为 246~289bp,平均 GC 含量为 49.7%;龙须菜 RUBISCO spacer 序列长度为 289bp,GC 含量为 47.4%。江蓠属样品转换/颠换比例(*R*)为 1.41。江蓠 属海藻种间遗传距离为 0.048~0.215,共有 78 个变异 位 点; 江 蓠 属 与 龙 须 菜 之 间 的 遗 传 距 离 为 0.190~0.259,共计 86 个变异位点。龙须菜群体遗传 距离为 0.000(表 4), 变异位点 0 个。样品与 GenBank 下载的数据人工比对后长度为 237bp, 系统进化树有 2 大分支, 江蓠属与龙须菜。江蓠属分支由 4 个小分 支组成。其中, 扁江蓠与脆江蓠聚成分支 I, G. salicornia 与 G. fergusonii 分支 II、G. dura 与 G. debilis 聚成分支III, 真江蓠与细基江蓠繁殖变种聚成分支 IV。 G. gracilis 处于江蓠属分支的基部。龙须菜处于 整个进化树的基部(图 3)。

表 4 基于 RUBISCO 间隔区序列的样品间遗传距离

Tab.4	Genetic distance calculated using	g Kimura 2-	parameter model for	RUBISCO s	pacer seq	uences of sam	oles
		7					

					0	•					•	•		•	
No.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
1	—														
2	0.000	—													
3	0.145	0.145	—												
4	0.145	0.145	0.000	—											
5	0.048	0.048	0.129	0.129											
6	0.145	0.145	0.106	0.106	0.129	—									
7	0.140	0.140	0.157	0.157	0.145	0.130	—								
8	0.155	0.155	0.188	0.188	0.176	0.165	0.165	—							
9	0.114	0.114	0.156	0.156	0.140	0.140	0.129	0.187	—						
10	0.135	0.135	0.136	0.136	0.150	0.115	0.099	0.170	0.048	—					
11	0.204	0.204	0.204	0.204	0.215	0.193	0.217	0.187	0.188	0.177	—				
12	0.151	0.151	0.130	0.130	0.145	0.135	0.086	0.165	0.156	0.130	0.216	—			
13	0.239	0.239	0.254	0.254	0.258	0.222	0.190	0.237	0.259	0.223	0.224	0.206	—		
14	0.239	0.239	0.254	0.254	0.258	0.222	0.190	0.237	0.259	0.223	0.224	0.206	0.000	—	
15	0.239	0.239	0.254	0.254	0.258	0.222	0.190	0.237	0.259	0.223	0.224	0.206	0.000	0.000	—

图 3 样品 RUBISCO 间隔区序列系统进化树

Fig.3 Maximum-parsimony (MP) phylogeny estimated using RUBISCO spacer sequence

bootstrap value大于60的数值显示

Numbers near each clade refer to MP bootstrap value, and displayed when bootstrap value>60

海洋科学 / 2013 年 / 第 37 卷 / 第 6 期

3 讨论

历史上,关于龙须菜的分类地位一直存有争议[17]。 Papenfuss^[18]认为龙须菜隶属江蓠属,我国2007年出 版的《中国黄渤海海藻》一书仍然将龙须菜归于江 蓠属^[11]。但近10年来, 越来越多的分子生物学研究结 果表明龙须菜并不隶属于江蓠属。在本研究中、位于 基因组不同位点的18S rRNA、cox2-3间隔区、 RUBISCO间隔区3个序列进行系统进化分析的结果 表明: 龙须菜位于进化树的基部、单独成支、说明其 与江蓠属相比,其分化较早,相对原始;并且龙须菜 与江蓠属海藻具有较远的遗传距离。这些结果进一 步印证了Gurgel等人基于rbcL序列的研究结果^[19]。他 们认为、江蓠科的物种在进化上是多起源的、而龙 须菜所在Gracilariopsis属较早出现了分化,逐步进 化成独立于另外2个江蓠属的单独一支,因此龙须菜 不应隶属于江蓠属。在本研究中, 扁江蓠与脆江蓠, G. dura 与G. debilis在三个系统树中均聚合成支,显示 了它们之间具有较近的亲缘关系。Pareek等^[20]研究了 印度沿海地区江蓠属海藻系统进化关系,他们发现G. foliifera 与 G. corticata 的两个变种(var. corticata 和 cylindrica)具有很近的亲缘关系; G. salicornia和G. fergusonii可能是由共同祖先进化而来; 而G. gracilis 与其他江蓠属海藻的亲缘关系较远。这一点,在作者 的结果中得到了证实, G. gracilis与其他样品之间也 具有明显较远的亲缘关系。G. gracilis处于江蓠属分 支的最底部, 说明其分化较早, 属于江蓠属内较为 原始的物种。

本研究结果显示基于cox2-3间隔区、RUBISCO 间隔区的进化树有相似的关系,但是与基于18S rRNA的进化树又略有不同。原因在于相对于cox2-3 间隔区、RUBISCO间隔区序列,18S rRNA序列则更 加保守。早在上世纪90年代,Bird^[21-22]就发现18S rRNA序列不能在种水平区分江蓠科海藻,Bellorin^[2] 以及Iyer^[4]均取得了类似结论。Medlin指出使用18S rRNA序列研究系统进化具有一些缺陷:对于亲缘关 系较近的物种的分辨度不足^[23]。在作者的研究中也 发现cox2-3间隔区、RUBISCO间隔区的保守性要弱 于18S rRNA序列,能更好的反应江蓠属海藻的系统 进化关系。

本实验使用了18S rRNA、cox2-3间隔区、 RUBISCO间隔区这3个序列,而没有采用ITS序列。 原因在于:第一,之前已经有相当多的工作使用ITS 序列研究江蓠科的海藻^[5, 9]; 第二, Saunders发现ITS 序列在红藻中具有一定的多态性问题^[24]。虽然李敏 等^[9]认为来自同一居群龙须菜个体的ITS序列相同, 但是在作者之前的研究中扩增江蓠属真江蓠的ITS 序列时确实遇到了这一问题^[25],因此如果使用ITS序 列研究整个江蓠属海藻,有可能会对后续的工作造 成不同程度的干扰。同时,18S rRNA、cox2-3间隔区、 RUBISCO间隔区这3个序列尚未发现多态性问题, 这也是作者选择这三个序列的原因之一。

随着分子生物学的不断发展,相关生物学数据 的不断积累、利用DNA序列研究物种系统进化、已 经成为生物学研究十分有利的工具。但目前来看,还 存在相当多的问题。例如、不同种群同一DNA序列、 同一种群不同DNA序列的进化速率都有可能存在差 异。因此、利用基因组不同位点的基因系统地研究海 藻的基因进化关系就显得更为重要和迫切、这样得 到的结果相对单纯凭借一个DNA序列进行分析,会 更加客观,全面。在本研究中,作者使用核基因编码 的18S rRNA基因、位于线粒体的cox2-3间隔区、以 及位于叶绿体RUBISCO间隔区这三个序列研究我国 的江蓠属海藻与龙须菜的系统进化、研究结果进一 步证明龙须菜并不隶属于江蓠属,且相对原始。同时 也表明: 扁江蓠与脆江蓠, G. dura 与G. debilis具有较 近的亲缘关系; G. gracilis分化较早, 是江蓠属内较为 原始的物种; cox2-3间隔区、RUBISCO间隔区比起18S rRNA更适用于研究江蓠属海藻的系统进化关系。

致谢:感谢中国科学院海洋研究所夏邦美老师在物种分 类鉴定方面的帮助与指导。本项目得到了中国科学院野生 生物资源库运补费项目的资助。

参考文献:

- Troell M, Halling C, Neori A, et al. Integrated mariculture: asking the right questions [J]. Aquaculture, 2003, 226, 69-90.
- [2] Bellorin A M, Oliveira M C, Oliveira E C. Phylogeny and systematics of themarine algal family Gracilariaceae (Gracilariales, Rhodophyta) based on small subunit rDNA and ITS sequences of Atlantic and Pacific species [J]. J. Phycol, 2002, 38: 551-563.
- [3] 夏邦美,张峻甫.中国海藻志[M].第二卷,红藻门, 第五册.北京:科学出版社,1999:55-58.
- [4] Iyer R, Tronchin E M, Boliton J J, et al. Molecular sysytematics of the Gracilariaceae (Gracilariales) with

emphasis on southern Africa[J]. J Phycol, 2005, 41: 672-684.

- [5] 李婷婷,陈斌,陈省平,等.江蓠属和龙须菜属5种海藻 ITS 序列分子系统学分析[J].中山大学学报,2012, 51(4):97-105.
- [6] Guillemin M L, Akkisa, Givernaud T, et al . Molecular characterisation and development of rapid molecular methods to identify species of Gracilariaceae from the Atlantic coast of Morocco[J]. Aquatic Botany, 2008, 89: 324-330.
- [7] Byrne K, Zuccarello G C, West J, et al. Gracilaria species(Gracilariaceae, Rhodophyta) from southeastern Australia, including a new species, *Gracilaria perplexa* sp. Nov. : Morphology, molecular relationships and agar content[J]. Phycological Research, 2002, 50: 295-311.
- [8] Weinberger F, Guillemin M L, Destombe E C, et al. Defense evolution in the Gracilariaceae (Rhodophyta): substrate-regulated oxidation of agar oligosaccharides is a more ancient than the oligoagar-activated oxidative burst[J]. J Phycol, 2010, 46: 958-968.
- [9] 李敏,隋正红,易恒,等.龙须菜 5.8SrRNA和ITS区
 的克隆与系统学分析[J].中国海洋大学学报,2009, 39(1):77-83.
- [10] Tseng C K. Common Seaweeds of China[M]. Beijing: Science Press, 1983: 102-110.
- [11] 曾呈奎,夏邦美,周显铜.中国黄渤海海藻[M].北京:科学出版社,2009:179-185.
- [12] Goff L J, Coleman A W. The use of plastid DNA restriction endonuclease patterns in delineating red algal species and populations[J]. J Phycol, 1988, 24(3) : 357-368.
- [13] Saiki R K, Gelfand D H, Stoffel S, et al, Primer-directed enzymatic amplification of DNA with a thermo stable DNA polymerase[J]. Science, 1988, 239: 487-491.
- [14] Zuccarello G C, Burger G, West J A, et al. A mitochondrial marker for red algal intraspecific relationships[J]. Mol. Ecol, 1999a, 8: 1443-1447.
- [15] Zuccarello G C, West J A, Kamiya M, et al. A rapid method to score plastid haplotypes in red seaweeds and its use in determining parental inheritance of plastids in

the red alga Bostrychia (Ceramiales) [J]. Hydrobiologia, 1999b, 401: 207-214.

- [16] Kimura M. A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences[J]. J Mol Evol, 1980, 16: 111-120.
- [17] 隋正红,张学成.委内瑞拉产地龙须菜藻红蛋白基因的克隆及其系统学研究[J].青岛海洋大学学报(自然科学版),2003,33(3):384-390.
- [18] Papenfuss G F. Notes on nomenclature V. Various Chlorophyceae and Rhodophyceae [J]. Phykos, 1966, 5: 95-105.
- [19] Gurgel C F D, Liao L M, Fredericq M. Systematics of gracilariopsis (Gracilariales, Rhodophyta) based on *rbcL* sequence analyses and morphological evidence [J]. J Phycol, 2003, 39: 1-19.
- [20] Pareek M, Mishra A, Jha B. Molecular phylogeny of *Gracilaria* species inferred from molecular markers belong to three different genomes [J]. J Phycol, 2010, 46, 1322-1328.
- [21] Bird C J, Rice E L, Murphy C, et al. Phylogenetic relationships in the Gracilariales (Rhodophyta) as determined by 18S rDNA sequences [J]. Phycologia, 1992, 31: 510-522.
- [22] Bird C J, Ragan M A, Critchley A T, et al. Molecular relationships among the Gracilariaceae (Rhodophyta): further observation on some undetermined species [J]. Eur J Phycol, 1994, 29: 195-202.
- [23] Medlin L K, Metfies K, John U. Algal molecular systematics: a review of the past and prospects for the future. [C]// Brodie J, Lewis J. Unravelling the Algae: The Past, Present, and Future of Algal Systematics. Systematic Association Special Volume. London: CRC Press, 2007: 341-353.
- [24] Saunders G W. Applying DNA barcoding to red macroalgae: a preliminary appraisal holds promise for future applications. Philos[J]. Trans R Soc B Biol Sci, 2005, 360: 1879-1888.
- [25] Zhao X B, Pang S J, Shan T F, et al. Applications of Three DNA barcodes in assorting intertidal red macroalgal flora in Qingdao, China[J]. J Ocean Univ China, 2013, 12(1): 139-145.

海洋科学 / 2013 年 / 第 37 卷 / 第 6 期

Molecular phylogeny of several common *Gracilaria* species inferred from 18S rRNA, cox2-3 intergenic spacer and RUBISCO spacer sequence comparisons

ZHAO Xiao-bo^{1, 2}, PANG Shao-jun¹, LIU Feng¹

(1.Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; 2. University of Chinese Academy of Sciences, Beijing 100049, China)

Received: Nov., 8, 2012 Key words: *Gracilaria*; 18SrRNA; cox2-3 intergenic spacer; RUBISCO spacer

Abstract: Sequences of three molecular markers (18S rRNA, cox2-3 intergenic spacer and RUBISCO spacer), in combination with data from GenBank, were used to analyze the phylogentic relations of *Gracilaria* species collected from the coast of China. Phylogenetic trees that were constructed using cox2-3 and RUBISCO spacer sequences exhibited the same pattern but differed slightly from that of the 18S rRNA-based phylogenetic tree due to a higher degree of conservation of the latter. *Gracilaria textorii* was sister to *G. chouae* in all three trees showing the close relationship between the two species. The results further confirm that the *Gracilariopsis lemaneiformis* does not belong to the genus *Gracilaria*. Results also indicate an earlier evolution status of *G.lemaneiformis* based on these three sequence comparisons.

(本文编辑:梁德海)