首页 | 期刊介绍 | 编委会 | 道德声明 | 投稿指南 | 常用下载 | 过刊浏览 | In English
引用本文:
【打印本页】   【HTML】   【下载PDF全文】   查看/发表评论  下载PDF阅读器  关闭
←前一篇|后一篇→ 过刊浏览    高级检索
本文已被:浏览 55次   下载 0  
分享到: 微信 更多
盐度胁迫对香港牡蛎部分生化指标的影响
佘智彩1, 贾真2, 彭业韶3, 喻达辉3
1.北部湾大学;2.北部湾大学食品工程学院;3.北部湾大学海洋学院,广西北部湾海洋生物多样性养护重点实验室
摘要:
为探究盐度胁迫下香港牡蛎 (Crassostrea hongkongensis) 生化指标的变化规律,了解盐度适应过程中牡蛎的代谢机制,本研究以盐度0、8、16、32、40为胁迫盐度,以正常海水(盐度24)为对照,开展香港牡蛎对盐度胁迫的响应研究。结果显示,各实验盐度组糖原含量在盐度胁迫0~8 h内下降,且盐度胁迫幅度越大糖原含量降幅越大,胁迫8 h后则无明显的变化规律。AMPK、SIRT1和Na+/K+-ATP酶活力的变化规律相似:在0~8 h内,各实验组酶活力均急剧下降(SIRT1上升);8~48 h内,酶活力上升;48~120 h内,酶活力逐渐趋于平稳状态,总体表现为盐度越高,酶活力越强,并与胁迫前有明显差异,且盐度胁迫幅度越高,差异越明显。总抗氧化能力(T-AOC)总体表现出高盐胁迫下随时间的增加而升高,低盐胁迫下随时间的增加而降低,且盐度胁迫幅度越大,T-AOC活力的变化幅度越大。实验结果初步表明,香港牡蛎糖原含量与渗透压调节存在一定的关系,AMPK、SIRT1、Na+/K+-ATP酶活力及T-AOC均与渗透压调节密切相关,且在高盐胁迫下随时间的增加而升高,低盐胁迫下随时间的增加而降低。
关键词:  香港牡蛎(Crassostrea hongkongensis)  盐度胁迫  生化指标
DOI:10.11759/hykx20181031001
分类号:
基金项目:本研究由广西自然科学基金(2018JJB130125),广西教育厅项目(KY2016YB490),北部湾大学海洋学院广西北部湾海洋生物多样性养护重点实验室项目(2018ZB07,2018ZC02),青岛海洋科学与技术国家实验室“海洋生物学与生物技术功能实验室”开放课题(OF2015N008),广西高校水产养殖重点学科自主项目(2017C03)资助。
Effects of salinity stress on partial biochemical indicators of Hong Kong oyster, Crassostrea hongkongensis
SHE Zhicai,JIA Zhen,PENG Yeshao,YU Dahui
1.Guangxi Key Laboratory of Beibu Gulf Marine Biodiversity Conservation,Beibu Gulf University;2.College of Food Engineering, Beibu Gulf University
Abstract:
The Hong Kong oyster, Crassostrea hongkongensis, is a commercially important shellfish in southern China. It is distributed in the south of the Yangtze River, mainly in Guangdong and Guangxi provinces. It is characterized by large size, high edible value, and breeding profit. Salinity is closely related with the growth and metabolism of aquatic animals, and changes in salinity have physiological consequences. The change in regulation and characteristics of biochemical indicators of Hong Kong oyster during salinity stress was investigated by setting up experimental groups across five salinity gradients (salinity 0, 8, 16, 32, and 40 ppt) and a control group at a salinity of 24 ppt. Samples of the experimental groups were taken at 8, 24, 48, 72, 96, and 120 h and samples of the control group were taken at 0, 8, 24, 48, 72, 96, and 120 h. Glycogen content in the experimental groups declined during the 0-8 h period, and the larger the difference in salinity between the experimental and control groups, the greater was the decline in glycogen content. There was no obvious pattern of change after 8 h. Changes in AMPK, SIRT1, and Na+/K+-ATP activity were similar; the activity of the enzymes declined rapidly in the experimental groups during the 0-8 h period. SIRT1 activity rose in this period. The activity of all the enzymes increased during the 8-48 h period and became stable after 48 h. The higher the salinity, the greater was the enzyme activity and higher the salinity deviated from the normal value, the more obvious was the difference in enzyme activity from the initial state. T-AOC increased with time under high salt stress and decreased with time under low salt stress, with a higher deviation of salinity from the normal value resulting in a greater range of the change. It could be concluded that there is a certain relationship between glycogen content and osmoregulation in the Hong Kong oyster. AMPK、SIRT1、Na+/K+-ATP activities and T-AOC were closely related to osmoregulation, and they increased with time under high salt stress, decreased with time under low salt stress.
Key words:  Crassostrea hongkongensis  salinity stress  biochemical indicators
版权所有 《海洋科学》编辑部 Copyright©2008 All Rights Reserved
主管单位:中国科学院 主办单位:中国科学院海洋研究所
地址:青岛市南海路七号  邮编:266071  电话:0532-82898755  E-mail:marinesciences@qdio.ac.cn
技术支持:北京勤云科技发展有限公司