石臼大港附近海区推移质运动的研究

侍茂崇 刘安国 王喜瑞 张碧芳

(山东海洋学院) (宁波海洋专科学校)

推移质与海水中悬移质数量之多寡及其随潮流的运动规律,对于研究海岸变迁及港 湾冲淤是非常重要的因素。

正在兴建的石臼大港位于山东省日照县石臼所,将是我国第一个10万吨级以上的大 港和重要的煤炭出口基地。研究港区附近悬移质与推移质运动规律,是保证航道畅通的 重要问题。港区管理部门必须了解航道中每年的可能淤积量,以便决定安全航行时间尺 度、挖泥船的吨位和设备。更为重要的是,大风能否使航道骤淤。

为此,我们在港区周围进行了海流测量,同时在测流区域设置了不同型式的捕砂器, 由潜水员安置于海底,在不同天气、海况及不同流速条件下,捕集海底的推移质。通过大 量实测结果和分析,认为开挖航道后,最高淤积量不会超过 46.7768 g/cm² · a,没有骤淤的 可能。

一、捕砂器的设计和海流的观测

为研究推移质量的多寡,我们试制了不同型式的捕砂器,分别命名为捕砂器 I 型、Ⅱ型和 Ⅲ型。 I 型是长方体,长 30cm,宽 7cm,高 14cm,上面有两个可以自动关闭的盖子。 (见图 1)

捕沙器立体意图 捕沙器

单位mm

捕砂之前,潜水员将捕砂器埋置于海底,尽量使正面与底床平齐,然后将盖子掀起,经

图1 捕砂器1型示意图

图 2 捕砂器 III 型示意图

收稿日期: 1982 年 9 月 4 日。

一定时间后,可以用使锤从船上将捕砂器关闭,再把捕砂器从海底曳起。其优点是: 潜水员只需下海一次,劳动量较低。另外,在取出捕砂器之前,盖面先行关闭,可以防止一些多余的泥沙进入。但在实践中发现,尽管潜水员埋捕砂器时小心翼翼,在浪、流作用下,边上仍有"塌方"的现象,捕得的沙量变化很大。因此才把Ⅰ型改成Ⅱ型: 即在Ⅰ型边上加上2cm 宽的薄铁板,以防止捕砂器下沉和塌方。 经此改变,采得的砂样重量就出现有规律的变化。

后来,为了进一步研究推移质运动的方向性,将上盖基本封起,只留 30cm 长、1cm 宽的狭缝,这就是捕砂器 III 型(见图 2)。

使用 II,III 型捕砂器,潜水员需要下水两次:第一次埋捕砂器,第二次取捕砂器,埋、 取时都要非常仔细,先将缝口用泡沫塑料堵起,小心去掉盖上的浮泥沉砂,以免落进捕砂

器中。

在捕砂的同时,我们还对捕砂区进行流的观测。图 3 给出了测流站位与捕砂的断面。

图 3 中"○"示一次昼夜连续站位;"★"示长 期定点连续观测站位:在这个点上放置海底测流 架,架高 3.5m,悬挂印刷海流计三个,分别距底 20cm,95cm,205cm。从 1979 年 11 月 29 日到 1980 年 3 月底,对底层流速、流向进行长达四个 月的连续观测。

二、潮流对海底泥沙的推移作用

研究潮流速度与推移质之间的关系,最好的

图 3 大港港区附近测流站位与捕砂断面

方法是在每台捕砂器旁边都放上海流计同时进行流速观测,但这实际上是不可能的。我 们只能在大面积普测一次流速外,然后集中在一个点上(A₀站)进行长期连续观测,并用 这个点上的资料来说明周围海区的情况。

1. 流速与捕砂量

根据实际结果比较,长期连续站资料是可以近似代表石臼嘴外 -8m 至 -13m 这段 海区流况的(表 1)。

流速 站号	1	2	A٥	3	4	5	6	7	. 8
涨潮流速	80	78	76	74	76	74	74	74	74
著潮流速	70	70	68	66	64	66	60	60	60

表1 长期连续站与其他9个定点离海底2m 层上流速值(cm/s)比较

根据A₀站长期连续观测资料,求得离地 20cm 高度处大潮期间流速平均值为39.4cm/s, 小潮期间流速平均值为 28.6 cm/s, 大潮流速为小潮流 1.3776 倍(见表 2)。

当 A。站测流时,在此站位的两边垂直于海岸的三条断面上(图 3 中虚线所示)进行捕砂,对 72 个样品分析结果,求得大潮期间捕砂量平均值为 0.1359 g/cm² · day,小潮期间

表 2 离底 20 cm 高处大小潮流速值 (cm / s)

次序	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22
大潮	56	34	46	32	51	29	38	33	54	38	53	29	39	30	33	24	44	34	37	32	40	34
小潮	31	24	23	37	33	30	26	37	28	32	32	35	38	36	28	32	27	32	27	29	31	30
次序	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40				
 大潮	36	52	42	25	39	61	50	32	30	54	41	41	37	44	35	37	35	46	39.4			
小潮	28	24	22	33	27	30	22	33	27	30	27	30	26	26	25	24	39	27	28.6			

捕砂量平均值为 0.09 g/cm² · day, 两者相比,大潮捕砂量为小潮捕砂量的 1.5 倍 (见表 3)。

大潮捕砂量	0.09	0.193	0.370	0.090	0.070	0.037	0.080	0.237	0.097	0.05	0.103	0	.140
小潮捕砂量	0.140	0.04	0.043	0.023	0.04	0.04	0.017	0.017	0.023	0.07	0.063	0	.033
大潮捕砂量	0.170	0.163	0.033	0.033	0.107	0.263	0.070	0.04	0.12	0.083	0.173	0	.207
小潮捕砂量	0.03	0.06	0.257	0.22	0.17	0.27	0.183	0.157	0.037	0.033	0.12	0.05	总平均值
大潮捕砂量	0.217	0.067	0.037	0.143	0.54	0.176	0.207	0.217	0.067	0.037	0.083	0.157	0.1359
小潮捕砂量	0.057	0.067	0.117	0.04	0.120	0.11	0.10	0.253	0.37	0.083	0.0157	0.003	0.09

表3 用 II 型捕砂器采得的大潮捕砂量与小潮捕砂量(g/cm²・day)、

我们认为大潮期间捕砂量多于小潮期间捕砂量,基本上是由于流速不同而引起的,因 为表 3 中给出的量值全是在三级风以下、海况平稳时测得的,波浪掀砂作用可以略去不 计。同时在观测期间(11月到翌年三月)没有大型降水,附近海区也没有河流流人,外界 输沙影响也微乎其微。

2. 启动流速、涨落潮历时及其输沙比的计算

(1) 启动流速 ux

潮流可以掀砂,但速度要达到一定值之后才能出现。即当水流的作用力F超过泥沙的启动阻力R之后,沉沙的静止状态才受到破坏而开始运动。静止的泥沙开始从静止状态转变为运动状态,叫做"启动",此时的流速

叫启动流速 u_{Ko}

由于启动流速,是贴近海底的流速,很难 用仪器直接测定,只好以 20 cm 高度处的流 速代替。

我们假定 20cm 高度处流速达到某一临 界值之后,底上泥沙开始启动,作不连续的、 间歇性的跃动、推移前进,捕砂量的多寡和泥 沙启动后延续时间及潮流平均流速有关(见 图 4)。

根据大小潮期间平均流速,以及相应的捕砂量,并认为涨落潮的平均潮时为6.4小

时,则可以求得下列关系式:

$$\int_{1}^{1} t_{1} = \frac{6.4}{\pi} \arcsin \frac{u_{K}}{39.4}$$
(1)

$$t_2 = \frac{6.4}{\pi} \arcsin \frac{u_K}{28.6}$$
(2)

$$\frac{\left(\frac{6.4-2t_2}{6.4-2t_1}-\frac{0.09}{0.1359}\right)}{0.1359}$$
(3)

从(1),(2),(3)式联立求解,可以得到

$$0.54 = \arcsin \frac{u_K}{28.6} - 0.66 \arcsin \frac{u_K}{39.4} \tag{4}$$

随即可以求得 $u_{K} = 23.3 \text{ cm/s}$,即 20cm 高度处潮流速度达到 23.3cm/s时,海底上 泥沙就可启动,以后我们就把这个速度称为启动流速。

(2) 涨落潮历时

在岸边浅海中,由于海底的摩擦作用,涨潮历时与落潮历时不等,我们根据 A。点测流 资料求得石臼嘴外平均的涨潮历时为 5.83 小时,平均落潮历时为 6.70 小时(见表 4)。

						_										
序号	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
涨潮历时	5.5	5.5	6.0	5.5	7.0	5.5	6.5	5.5	6.0	6.5	4.0	6.5	5.5	6.0	6.0	7.0
落潮历时	6.5	7.0	6.0	6.5	6.0	6.5	6.0	6.5	6.5	7.0	7.0	7.0	7.0	7.0	5.5	7.0
序号	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32
涨潮历时	5.0	6.0	5.0	6.5	5.5	7.0	5.0	5.0	5.5	6.0	5.5	5.5	5.5	6.5	5.5	6.5
落潮历时	6.0	7.0	6.5	6.5	6.0	6.0	7.5	7.5	6.0	7.0	6.5	7.0	7.0	5.5	6.0	6.0
序 号	33	34	35	36	37	38	39	40	41	42	43			4	2 ±	 匀
涨潮历时	5.5	7.0	5.5	6.5	5.5	6.0	6:0	6.5	5.0	5.5	5.5					
落潮历时	6.5	6.0	6.5	6.0	6.5	6.0	6.5	6.0	7.0	7.0	.6.5					

表4 涨落潮的历时(小时)

(3) 涨落潮两个方向输沙比

涨落潮两个方向输沙比与海底泥沙启动后到停止运动之间历时有关,由于涨落潮最大流速不一样,因而涨落潮引起的掀砂历时也不一样。根据 A₀ 站资料的统计,大潮时,涨落潮流速分别为 45.0 cm/s 和 33.9 cm/s;小潮时,涨落潮流速分别为 31.8 cm/s 和 27.1 cm/s,考虑到涨落潮时和启动流速 u_K ,我们就可求得大潮期间涨落潮的 泥沙 启动历时分别为 3.81 和 3.47 小时;在小潮期间涨落潮的泥沙启动历时分别为 2.78 和 2.29 小时。

因而,可以求得

大潮输沙比=大潮涨潮泥沙启动历时
大潮落潮泥沙启动历时
$$\frac{3.81}{3.47}$$

= 1.098小潮输沙比=小潮浓潮泥沙启动历时
小潮落潮泥沙启动历时 $\frac{2.78}{2.29}$
= 1.214

从这两个输沙比值可以看出,大潮期间,尽管泥沙启动历时长、输沙多,但是,涨落潮 两个方向输沙差不多,在涨潮方向产生的净位移量小于小潮期间的净位移量,这是值得十 分注意的一种现象。

三、风浪对泥沙的掀起和推移作用

风浪中水质点作椭圆运动,波浪也会和潮流一样,对海底泥沙产生冲压、顶托、曳引和 扭转等复杂的力学作用,从而使泥沙颗粒沿海底运动。

为了求得波浪与泥沙运动关系,我们直接引用石臼嘴外,与测流铁架相距百余米处的 测波浮筒所测得的波浪资料,然后用理论公式估算出水质点运动速度。 举例说明,风向 NNE,波高 2.4m,周期 5.5 秒,在水深 12m 处,波浪中水质点运动的最大瞬时速度为 53 cm/s³⁰。再如,风向 NNE,波高 4.2m,周期 7.2 秒,在水深 12m 处,波浪中水质点 运动的最大瞬时速度为 161 cm/s_o

尽管波浪的平均速度不大,但瞬时速度很大,对泥沙的启动作用要比潮流强得多,因此,捕砂量也要相应多一些,实际测量也是如此(见表 5)。

捕砂量 器号 日期	1	2	3	4	5	6	天气状况	最大波高	观测地点
1979.12.20-12.23	0.11* (-4)	0.227 (-5)	0.163 (-5)	0 .0 50* (-6)	0.237 (-7)	0.227 (-7)	6级 NNE 向大 风(历时 17 小时)	4.2m	宛平口外
1980.1.25-2.1	1.197 (-10)	0.87 * (-10)		1.31 (-10)			6级以上NNE 大风持续五天以上 是这个冬季最强的 寒潮	4.2m	石臼嘴外

表 5 大风天气条件下 III 型捕砂器测得的推移质数量 (g/cm²·day)

注:()内为等深线数字;*为捕砂器狭缝方向与浪传播方向一致;余为捕砂器狭缝方向与浪的传播方向垂直。 波浪掀砂的总平均值为 0.488 g/cm² · day

四、全年最大绝对捕砂量估算和讨论

在开挖的航道中,假定落入的泥沙不再泛起,借以估计最大淤积量,则在每平方厘米 的面积上,一年内由潮流运动所掀起的推移质量,为大小潮捕砂量的日平均值乘以一年的 总天数,即

 $Q_{\rm m} = \frac{0.1359 + 0.09}{2} \times 365 = 0.11295 \times 365 = 41.2268 \, {\rm g/cm^2 \cdot a_o}$

而风浪在一年内可能带来的推移质量,近似的估算为大风天气日平均捕砂量减去潮流作用的部分,再乘以年平均五级以上大风总天数。

由于石臼地区,能够产生大浪的风向为 N-E-S-SW 方向,根据 10 年统计,全年五级 以上大风天数为 14.8 天。可求得波浪所掀起的推移质量

¹⁾ 计算公式见山东海洋学院海洋系,1982。液体波动讲义。

从而可求得总的捕砂量为

 $Q_{\#\&} = Q_{\#} + Q_{\&} = 46.7768 \text{ g/cm}^2 \cdot a_{\circ}$

由于捕得的泥沙中值粒径为 0.015—0.040 mm, 其比重近似为 0.8 g/cm³, 则全年推移质而带来的最大淤积厚度为

 $h = 46.7768/0.8 = 58.471 \text{ cm}_{\circ}$

我们求得全年 58.471 cm 的淤积量,这是一个最大可能数字。由于波浪和潮流作用 使推移质落人开挖航道中,即使全部不再出来,一年内也不过积累这样一个数字。实际上 开挖航道和我们狭缝式捕砂器是大不相同的,落人开挖航道中的泥沙,一定会通过涡动混 合,被流、浪再带走一大部分。同时,泥沙跃移距离大大小于航道宽度,所以航道中间泥沙 量要少于边缘上泥沙量,也就是说,实际累积一定会小于这个数字。由此可以断言,因推 移质作用,决不会造成航道骤淤。

五、讨论

1. 潮流与波浪输沙的方向性

为研究潮流输沙的方向性,我们在同一地点放置了互相垂直的两台 III 型捕砂器,一

图 5 Ⅲ 型捕砂器相互垂直 示意图 台顺流放置,一台截主流放置,其方向用水下罗经确定。截 流长度比为 30:1 (见图 5)。 实测结果,两者砂量相比近似 1:1 (见表 6)。 由表中列出的值求得 横流捕砂量平均值 $\bar{Q}_{\mathbf{x}} = \frac{128.7}{44 \times 30} = 0.0977 \, \text{g/cm}^2 \cdot \text{day}$

顺流捕砂量平均值

 $\bar{Q}_{M} = \frac{109.4}{44 \times 30} = 0.0827 \text{ g/cm}^2 \cdot \text{day}$

按照潮流掀砂的简单设想,横流捕砂器中砂量应该大 大多于顺流捕砂器,但实际结果两者相差仅15%。我们认 为,可以作如下几点解释:

^{小息图} (1)潮流方向并不是一成不变,不管是涨潮还是落潮, 流的方向围绕主流束有 30 度左右的变化,在转流时刻流向要变化 180 度。因此,海底推 移质总会以不同的角度越过两个捕砂器。

(2) 推移质在海底上运动不是直线式。由于潮流的涡动作用,泥沙质向前推移、跃移时,会发生左右摆动。

(3) 跃移的距离超过捕砂器的狭缝宽度时,横流捕砂器落进的物质也会相应减少,顺 流捕砂器中则要相应增多,其结果也减少两者差距。

与潮流输沙相比,波浪输沙的方向性则要明显得多,从上述表 5 中可以看出,在水深 从 -4 至 -7m 范围内,横浪捕砂为顺浪捕砂 2.67 倍。

表6	在无风天气下用	Ш	型捕砂器采集的砂样总量
~~~			ニューリ ゆうちょう ション・クリー

							_									_					_	_
捕砂量 g/day 放置 形式	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22
横流	6.9	1.5	0.2	3.1	0.2	0.8	5.6	0.9	4.4	2.4	1.6	2.3	1.1	1.5	1.9	2.4	1.6	5.6	2.4	6.8	0.4	1.6
顺流	3.9	7.1	2.8	0.7	0.9	0.9	2.3	4.8	4.8	1.0	0.7	3.0	1.0	1.7	3.5	1.2	1.3	2.5	2.2	4.9	2.2	1.4
捕砂量 g/day 放置形式	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40	41	42	43	44
横流	4.2	1.3	1.2	0.5	2.1	0.9	7.7	8.1	3.5	1.7	2.1	7.1	1.5	4.2	4.9	1.0	7.9	1.2	2.5	2.4	1.6	1.6
	1.2	0.7	0.5	0.7	1.7	1.3	6.6	3.1	4.7	2.1	1.1	2.9	3.1	5.1	1.0	3.2	2.1	3.6	5.2	1.2	1.3	1.9

在水深一10m 范围内,横浪捕砂为顺浪捕砂 1.44 倍,这可能是因为,波流的方向性要 比潮流稳定得多所致。

#### 2. 捕得的泥沙粒径

至于捕得的泥沙粒径,我们用一条断面上捕得的砂样来说明,这条捕砂断面从石臼嘴 向东南方水深 -12m 处延伸,以相等间隔放置 10 个捕砂器,其粒径分布如表 7 所示。

捕砂器号	1	2	3	4	5	变化范围
粒径 (mm)	0.020	0.040	0.015	0.0135	0.040	
 器号	6	7	8	9	10	0.015至0.040
粒径 (mm)	0.024	0.037	0.021	0.021	0.017	

表7 捕砂器中泥沙粒径(中值)

根据中值粒径来判断,捕得的物质,应称之为中粉砂。

#### 3. 潮流全年单方向输沙的估算

我们已求得一年内每平方厘米面积上可能捕得的最多砂量为 41.2268 g/cm²·a,这 表明每平方厘米面积上每年有 41.2268 g 推移质经过,其中大部分物质随潮水来回往返, 部分物质则顺着涨潮流方向向前继续移动下去。 下面我们给出这种单方向输沙量的估 计。

前面我们求得大潮输沙比为 1.098,小潮输沙比为 1.214,其平均值为 1.156,由此我们 可以得出涨潮越过每平方厘米面积上的输沙量为 22.10491 g/cm²·a, 落潮时越过每平 方厘米面积上的沙量为 19.12189 g/cm²·a, 从而求得:

 $Q_{\#\#\pi} = 22.10491 - 19.12189 = 2.98302 \text{ g/cm}^2 \cdot \mathbf{a}_0$ 

由此推出,通过垂直于岸边长 1km,宽 1cm 的断面上,泥沙单方向输送量为 298.3kg, 这是一个不大的数字。

因此, 捕砂器中捕得的砂量主要是潮流往复运动引起的, 在不破坏自然底形条件下, 它们处于一种动态平衡, 不会产生淤积。山东海洋学院地质系崔承琦, 在宛平口外从 -5 至 -10m, 用打钢钎实际测量海底淤积, 一年内海底什么变化也没有, 对这个问题已作了 很好的说明。

#### 4. 在开挖的航道中,不同的区段淤积略有不同

我们给出 -8m 至 -12m 区段内航道的最大可能 淤积量为 46.7768 g/cm² · a,从 -12m 水深向外,由于潮流速度降低,波浪对海底揪沙能力减弱,因此年最大淤积量将小 于 46.7768 g/cm² · a。而 -8m 以浅的部分,淤积量则稍大。例如,从潮流来看,5m 处 涨落潮流速大约为 10m 以外流速的 1.08 倍,于是求出大潮时涨落潮泥沙启动历时分别为 3.97 和 3.76 小时,小潮时涨落潮泥沙启动历时分别为 3.05 和 2.78 小时,平均为 -10m 处 的 1.10 倍。因此,潮流所造成的泥沙淤积要为 -10m 以外的 1.10 倍,即年最大淤积量为 51.45 g/cm² · a,至于波浪掀沙在不同深度上的差别,因我们观测样品太少,尚无法作出 这种估算。

#### 参考文献

- [1] 谢帕德 F. P., 1979。海底地质学。科学出版社, 31-32, 70-72页。
- [2] 人江功、天坂三明,1971。 漂砂の連続的な现地观測について一海底地形変动に関する一考察。港湾技术研究 所报告 10(2): 53-96。
- [3] 金子・安雄、蝸江毅、村上和男等,1973。大阪湾の潮流と物質扩散に関する模型実验。港湾技术研究所报告 12(3): 103--201。
- [4] Matsumoto E. and S. Togashi, 1980. Sedimentation Rate in Funka Bay, Hokkaidô. Jour. Oceanogr. Soc. Jap. 35:261-267.

## THE STUDY OF MOVEMENT OF BED-LOAD DISCHARGE NEARSHORE OF SHIJIU HARBOUR

Shi Maochong Liu Anguo Wang Xirui

(Shandong College of Oceanology)

and

#### Zhang Bifang

(Ningbo Specialized School of Oceanology)

#### ABSTRACT

Shijiu harbour is to be constructed at southern Shandong as an important shipping center with a docking capacity of 100 thousand tonnages of a single vessel.

Tides and tidal currents were frequently observed at three different layers from December 1979 to April 1980. Bed-load discharge was sampled and calculated for different weather conditions. Some of the results are as follows:

1. The amount of bed loal discharge is  $0.1359 \text{ g/cm}^2$  day during the spring tide,  $0.09 \text{ g/cm}^2$  day during the neap tide,  $0.488 \text{ g/cm}^2$  day during storm weather, which is four times as high as that during average tides.

2. The maximum amount of the sediments that settle to the waterway is less than  $46.7768 \text{ g/cm}^2$  per year, therefore the waterway will not be blocked by the transported sand and clay even after a storm weather.