热力学理论在痕量物理-化学体系 中出现的反常^{*}

顾宏堪 刘明星 李国基 包万友 张首临 (中国科学院海洋研究所,青岛)

提要 通过特殊设计的海-空交换模型实验表明,海水中 Zn²⁺ 等痕量金属离子,可全浓度随水蒸发循环。 自由能 △G⁰ 不足以直接判断这个痕量浓度物理-化学过程进行的可能性, 热力学出现反常。

顾宏堪等分析表明^[1,2,8],中国天然海水及河水中痕量 Zn²⁺, Cd²⁺, Pb²⁺, Cu²⁺, Sn⁴⁺ 及 Bi³⁺ 离子的浓度是相似的。 从而判断天然水蒸发循环时必然伴随着这些离子;离子与悬 浮体之间在天然水 pH 条件(7-8)下,没有重要的平衡转移;离子随水循环可能是水的携 带,不依于离子本身的蒸发能。 然而,这却意味着热力学在痕量物理-化学体系中出现反 常。自由能 ΔG⁰,不能直接判断这个痕量物理-化学过程进行的可能性。

顾等^[3-7,9]应用他们的防吸附物理涂汞电极反向极谱所测者,仅为自由离子及不稳定 络离子。悬浮体中离子没有可以觉察的影响。

图 1 海水痕量金属离子随水蒸发循环的实验模型

a. 正视图; b. 上视图。

1.海水池; 2.蒸发冷凝水池; 3.冷凝器; 4.风扇; 5.贮水池; 6.空气清洗器: 7.电机。

 ^{*} 中国科学院海洋研究所调查研究报告第1070号。本文英文稿已发表于 «Chinese Journal of Oceanology and Limnology» 2 (2): 125-132, 1984。
收稿日期: 1984年2月21日。

本文用海水痕量金属离子随水蒸发循环的实验,证实了热力学理论在痕量物理-化学 体系中出现的反常。

实 验

实验模型(图 1)由有机玻璃及聚乙烯管制成,为封闭型。实验前,模型中空气经空气 清洗器(6)循环清洗。海水池(1)中的水,由储水池(5)近底部之导管流人,以避免海水表 面膜的影响。

海水由海水池(1)蒸发,经冷凝器(3)流入蒸发冷凝水池(2),然后流入电解池作分析。 蒸发冷凝水流出时,洁净空气则从空气清洗器(6)流入以补充其空间。海水(1)的分析,由 联接储水池(5)的导管中取样后立即分析。

分析方法,用顾等的防吸附物理涂汞电极反向极谱法^[5,9]。

电极防吸附膜系一网状结构的褐藻酸或褐藻酸钙膜,系由1%褐藻酸钠与0.10mol/L HCl 或饱和 CaCl₂ 在电极上反应生成。金属离子可以通过该膜,悬浮体则不能通过,借 以保持电极表面的洁净及灵敏度。物理涂汞电极系先将 Ag 丝在1:1HNO₃ 中处理,然后 以物理方法涂以 Hg 膜。 单池双极示差反向极谱测定用示差极谱仪 (Davis A 1660)进 行。海水样品 25ml, -1 3V 预电解 3-5 分钟。测定海水 Zn²⁺, Cd²⁺, Pb²⁺, Cu²⁺时不加 任何试剂。测定淡水时加一半海水作为极谱底液,混合水样仍保持着海水的 pH 不变。

由上述方法可知,所测定之金属形式,仅为自由离子及不稳定金属络离子。稳定络离子难以在一1.3V的电极上电解还原。水样保持在天然水 pH 范围内,并且不加任何试剂,因而从稳定络离子及悬浮体中释出金属自由离子是无关紧要的。

结果及讨论

现将实验结果列于表 1。

实验结果表明,海水中 Zn²⁺ 等痕量离子,能随水蒸发循环,并且各离子有其一定的 转移限值。 离子随水蒸发循环的转移的平均限值为: Zn²⁺——5.1±0.70ppb, Cd²⁺—— - 0.088±0.012 ppb, Pb²⁺——0.025±0.0030ppb, Cu²⁺——0.61±0.090ppb。偏差主要来自 分析误差及水的性质。

风只影响水的蒸发速度,不影响转移的离子浓度。

热力学理论计算,重金属离子如 Pb²⁺ 及 Cd²⁺ 等的蒸发能是比较大的 (ΔG⁰ > 1.4 eV),它们在常温下的水-气转移是可以忽略的^[10]。 但实验结果表明,在离子随水蒸发循环的转移限值以下,水蒸发时其中痕量 Zn²⁺等可以 100% 浓度转移到蒸发水中,因而自由能 ΔG⁰ 不足以直接判断这个痕量浓度物理-化学过程进行的可能性。 因而热力学理论 在痕量物理-化学体系中出现反常。

表 1 海水及其蒸发水中 Zn²⁺,Cd²⁺,

9

序	号	水样	Zn²+	平均 (SD)	Cd²+	平均 (SD)
		石英重蒸馏水+ +Fe ³⁺ +OH ¹	2.3 2.3 2.5 1.8	2.2(0.30)	0.030 0.030 0.030 0.030	0.030(0)
1		蒸发水	2.2 1.5 2.0 2.2 1.8	1.9(0.30)	0.030 0.030 0.030 0.030	0.030(0)
2	_	海水+ Fe³++OH⁻	2.2 2.2 2.8 2.6 2.3 2.3	2.4(0.25)	0.050 0.060 0.054 0.050 0.050 0.050	0.052(0.0041)
		蒸发水	2.2 2.2 2.4 2.1 2.6 2.3	2.3(0.18)	0.035 0.065 0.048 0.050 0.050 0.050	0.050(0.0095)
		海水(已知浓度)	5.2 5.2 5.2 5.2 5.2 5.2	5.2(0)	0.090 0.090 0.090 0.090 0.090 0.090	0.090(0)
3	-	2 号处理海水 ³⁾ +标准 Zn ²⁺ 等	5.5 4.7 5.2 5.2 5.2 5.2	5.2(0.26)	0.080 0.10 0.090 0.090 0.090 0.090	0.090(0.0063)
		蒸发水	4.8 4.7 5.2 4.7 5.2 4.7	4.9(0.25)	0.080 0.090 0.080 0.10 0.090 0.090	0.088(0.0075)
		海水(已知浓度)	5.2 5.2 5.2 5.2 5.2 5.2 5.2	5.2(0)	0.090 0.090 0.090 0.090 0.090 0.090	0.090(0)
4		3 号加标海水 +标准 Zn ²⁺ 等	7.5 7.6	7.6(0.07)	0.14 0.13	0.14(0.0071)
		蒸发水	4.8 4.8 5.2 4.7 5.7 5.7	5.2(0.46)	0.090 0.090 0.090 0.070 0.080 0.10	0.087(0.010)
		海水(已知浓度)	5.2 5.2 5.2 5.2 5.2 5.2 5.2	5.2(0)	0.090 0.090 0.090 0.090 0.090 0.090	0.090(0)
5		4 号加标海水		7.6		0.14
	5	蒸发水	5.2 5.7 5.0 5.0 4.7 5.2	5.1(0.33)	0.080 0.10 0.080 0.090 0.090 0.090	0.088(0.0075)
		海水(已知浓度)	5.2 5.2 5.2 5.2 5.2 5.2	5.2(0)	0.090 0.090 0.090 0.090 0.090 0.090	0.090(0)
6	5	4 号加标海水 +标准 Zn ²⁺ 等	11 9.9 9.9 10 11	10(0.59)	0.19 0.19 0.19 0.19 0.19 0.19	0.19(0)
		蒸发水	4.7 4.7 4.7 5.2 5.7 5.2	5.0(0.41)	0.090 0.10 0.090 0.10 0.090 0.080	0.092(0.0075)
		海水(已知浓度)	5.2 5.2 5.2 5.2 5.2 5.2 5.2	5.2(0)	0.090 0.090 0.090 0.090 0.090 0.090	0.090(0)
7	,	海水(已知浓度)	5.2 5.2 5.2 5.2 5.2 5.2	5.2(0)	0.090 0.090 0.090 0.090 0.090 0.090	0.090(0)
		蒸发水	4.6 5.2 5.2 5.2 5.2 5.2	5.1(0.25)	0.090 0.090 0.090 0.090 0.090 0.070	0.087(0.0082)
8		海水(已知浓度)	5.2 5.2 5.2 5.2 5.2 5.2	5.2(0)	0.090 0.090 0.090 0.090 0.090 0.090	0.090(0)
		蒸发水	5.2 5.8 5.8 5.2 5.2 5.2	5.4(0.31)	0.090 0.080 0.090 0.090 0.090 0.090	0.088(0.0041)
9	1	蒸发水平均 (3-8)	5.1±0.70		0.088±0.012	
1	0	海水	5.2		0.090	

注: 1) Fe(OH)₃ 共沉淀为在水中加入 FeNH₄(SO₄)₂ · 12H₂O (60mg Fe/1)及 NH₄OH, pH8.0, 取上部清液 指序号 2 中"海水+Fe³⁺ + OH⁻"的处理海水。余类推。

Pb²⁺, Cu²⁺ 离子的浓度(ppb)

pb2+	平均 (SD)	Cu ²⁺	平均 (SD)	凤"	۲°C	ρH
0.010 0.010 0.010 0.010	0.010(0)	0.40 0.37 0.30 0.28	0.34(0.057)	有风	24	8.0
0.010 0.010 0.010 0.010	0.010(0)	0.40 0.29 0.37 0.33	0.35(0.048)			1
0.013 0.013 0.013 0.011 0.010	0.012(0.0014)	0.42 0.40 0.32 0.32 0.28 0.32	0.34(0.054)	有风	25	8.0
0.013 0.010 0.010 0.013 0.011 0.011	0.011(0.0014)	0.34 0.28 0.23 0.32 0.28 0.32	0.30(0.040)			
0.026 0.026 0.026 0.026 0.026 0.026	0.026(0)	0.63 0.63 0.63 0.63 0.63 0.63	0.63(0)			8.2
0.023 0.023 0.027 0.021 0.022 0.023	0.023(0.0020)	0.63 0.63 0.63 0.52 0.63 0.63	0.61(0.045)	有风	25	8.0
0.020 0.022 0.026 0.021 0.022 0.023	0.022(0.0021)	0.52 0.60 0.54 0.63 0.63 0.63	0.59(0.050)			
0.026 0.026 0.026 0.026 0.026 0.026	0.026(0)	0.63 0.63 0.63 0.63 0.63 0.63	0.63(0)			8.2
0.041 0.041	0.041(0)	0.91 0.91	0.91(0)	有风	25	8.0
0.030 0.021 0.026 0.028 0.028 0.028	0.027(0.0031)	0.59 0.69 0.66 0.50 0.63 0.69	0.63(0.073)			
0.026 0.026 0.026 0.026 0.026 0.026	0.026(0)	0.63 0.63 0.63 0.63 0.63 0.63	0.63(0)			8.2
	0.041		0.91	无风	25	8.0
0.023 0.026 0.022 0.026 0.023 0.026	0.024(0.0019)	0.69 0.57 0.61 0.57 [.] 0.63 0.61	0.61(0.045)			
0.026 0.026 0.026 0.026 0.026 0.026	0.026(0)	0.63 0.63 0.63 0.63 0.63 0.63	0.63(0)			8.2
0.047 0.052 0.057 0.057 0.057 0.052	0.054(0.0041)	1.4 1.4 1.4 1.3 1.4 1.3	1.4(0.052)	无风	25	8.0
0.020 0.026 0.026 0.026 0.026 0.020	0.024(0.0031)	0.63 0.60 0.58 0.59 0.60 0.60	0.60(0.017)			
0.026 0.026 0.026 0.026 0.026 0.026	0.026(0)	0.63 0.63 0.63 0.63 0.63 0.63	0.63(0)			8.2
0.026 0.026 0.026 0.026 0.026 0.026	0.026(0)	0.63 0.63 0.63 0.63 0.63 0.63	0.63(0)	无风	25	8.2
0.026 0.026 0.026 0.026 0.026 0.033	0.027(0.0029)	0.56 0.63 0.67 0.56 0.63 0.70	0.64(0.082)	ſ		
0.026 0.027 0.026 0.026 0.026 0.026	0.026(0)	0.63 0.63 0.63 0.63 0.63 0.63	0.63(0)	有风	25	8.2
0.023 0.025 0.026 0.023 0.026 0.026	0.025(0.0015)	0.54 0.63 0.57 0.63 0.57 0.50	0.57(0.051)		•	
0.025±0.0030		0.61±0.096				
0.026		0.63				

作实验; 2)风仅使水表面起微波,无水花。蒸发水为淡水。有风时 10ml/h,无风时 2ml/h; 3) "2号处理海水"系

参考文献

- [1] 顾宏堪、刘明星、包万友等,1978。中国海海水中几种痕量金属离子的分布研究。海洋科学集刊 13:1-7。
- [2] 顾宏堪、刘明星、张星启等,1978。关于海水中微量金属离子的浓度。海洋科学集刊 14:23-27。
- [3] 顾宏堪、刘明星、1973。单池示差反向极谱。分析化学 1(1): 15-22。
- [4] 顾宏堪、刘明星、1974。单池示差反向极谱法在天然海水分析中的应用。分析化学 2(3): 175-182。
- [5] 顾宏堪、刘明星、包万友,1980。电极防吸附膜研究。化学学报 38(4): 381-386。
- [6] 顾宏堪、刘明星,1976。海水的热力学状态。海洋科学集刊 11: 25-31。
- [7] 顾宏堪、刘明星、1981。物理涂汞电极反向极谱测定天然海水中的 Sn 与Bi。海洋与湖沼 12(5): 427-432。
- [8] 顾宏堪、刘明星、李国基等,1983。关于天然水中痕量金属离子的均匀分布。科学通报 17:1047—1049。
- [9] Gu Hongkan, Liu Mingxing & Bao Wanyou, 1982. Anti-adsorption physically coated mercury film electrode for inverse polarography. Chin. J. Ocean. Limn., 1 (1):76-81.
- [10] Savchenko, A., V. Smirnov and P. Svirkunov, 1979. Evaporation of impurity ions from solutions into the air. Water, Air and Soil Pollution 12: 407-415.

THE ANOMALY OF THERMODYNAMICS APPEAR-ED IN TRACE PHYSICO-CHEMICAL SYSTEM*

Gu Hongkan, Liu Mingxing, Li Guoji, Bao Wanyou and Zhang Shoulin (Institute of Oceanology, Academia Sinica, Qingdao)

ABSTRACT

The experimental results show that, when the water is evaporated, the trace metal ions Zn^{2+} etc. contained in this water can transfer in 100% concentration to water vapor under the limiting concentration of transfer. Therefore, the free energy, ΔG^0 , can not be used directly to predict the feasibility of this trace concentration physico-chemical process. The anomaly of thermodynamics in trace concentration physico-chemical system is presented as an experimental fact.

* Contribution No. 1070 from the Institute of Oceanology, Academia Sinica.

17 卷