刺参(Apostichopus japonicus)腐皮综合症 发生相关蛋白的分离与鉴定^{*}

张 鹏¹ 李成华¹ 李 晔¹ 苏秀榕¹ 金春华¹ 李太武²

(1. 宁波大学海洋学院 宁波 315211; 2. 宁波城市职业技术学院 宁波 315100)

提要 采用比较蛋白质组学的方法,对 2011 年 10 月 20 日取自辽宁省普兰店室内养殖厂腐皮综合 症刺参和健康个体肠组织中差异表达蛋白进行了研究。结果表明,在优化的电泳条件(80 µ g 脱盐蛋 白、pH 4—7 [NL,13cm]的 IPG 预制胶条)下,共检测到约 700 个蛋白质点;表达量差异两倍以上的蛋 白点 51 个,最大表达差异比率为 4.32;对其中重复性一致的 30 个差异点进行质谱鉴定,成功鉴定 了 23 个差异蛋白,包括铁蛋白,过氧化氢酶,泛素相关修饰子 3,细胞色素氧化酶和肌动蛋白等;进 一步扫描实验室完成的刺参转录组数据,筛选了过氧化氢酶和泛素相关修饰子 3 的 EST 序列。本研 究是蛋白层面上刺参腐皮综合症发生机制的有效尝试,研究结果为进一步认识该疾病的发生机制提 供了参考。

关键词 刺参;腐皮综合症;双向电泳;转录组 中图分类号 Q346

刺参(Apostichopus japonicus)又称仿刺参,属于 棘皮动物门、海参纲,是一种高蛋白、低脂肪、低糖、 无胆固醇的重要经济养殖水产动物(张玺等,1963;马 悦欣等,2006)。随着刺参养殖业的快速发展、养殖面 积的迅速扩张及集约化养殖方式下的不规范运作, 刺参病害问题日益凸显,成为制约刺参养殖业持续 稳定发展的主要因素(谢建军等,2007)。腐皮综合症 以其发病广(涉及所有的养殖区),发病快(一旦发病 很快蔓延全池)和危害重(可造成90%以上的死亡率) 等特点而备受人们重视(王印庚等,2009)。

目前,针对腐皮综合症细菌病原的研究方面,国 内学者做了大量的研究工作,初步确认了两种主要 潜在病原。黄海水产研究所科研人员证实灿烂弧菌 (*Vibrio splendidus*)是造成该病害发生的主要病原(张 春云等,2006),与作者前期研究结果相同(未发表结 果);Li等(2010)则从北方溃烂病刺参病灶中分离到了 弧菌和假交替单胞菌(*Pseudoalteromonas* sp.)病原, 与马悦欣等(2006)早期的研究结果一致。在宿主免疫 调控基因方面,溶菌酶(Cong *et al*, 2009),补体 C3(Zhou *et al*, 2011)和凝集素(Han *et al*, 2012)等免疫 相关基因的 cDNA 全长序列也相继获得,并分析了其 在病原感染后的时空表达特征。本课题组通过构建刺 参腐皮综合症发生前后血细胞的 microRNA 文库和 Illumina 测序证实 spu-miRNA-31和 spu-miRNA-2008 参与了疾病发生过程,为认识其分子水平上的调控 机理奠定了基础(Li *et al*, 2012)。

双向电泳技术已成功应用于污染物或病原胁迫 下多种海洋生物差异表达蛋白研究之中(Zhou *et al*, 2010; Qiao *et al*, 2011),为认识和掌握机体的应答过 程提供了帮助。然而,基于蛋白组层面上的刺参腐皮 综合症发生的研究还未见报道。本研究建立了刺参腐 皮综合症发生前后差异蛋白表达谱,并借助质谱技

通讯作者: 李成华, 博士, 副研究员, E-mail: lichenghua@nbu.edu.cn 收稿日期: 2012-07-23, 收修改稿日期: 2012-10-09

^{*} 国家自然科学基金项目资助, 31101919 号, 41276120 号; 宁波市科技计划项目, 2011C11001 号; 宁波市农业攻关项目, 201301C1011001 号; 浙江省人事厅 151 人才工程项目, 2011—2013; 宁波大学 2012 年度研究生科研创新基金资助项目, 2012—2013。张鹏, 硕士研究生, E-mail: xintaizhangpeng@163.com

术鉴定了部分差异蛋白,为人们在蛋白水平上认识 和掌握疾病发生机理提供理论依据。

1 材料与方法

1.1 材料

实验所用正常和患病刺参于 2011 年 10 月 20 日 取自辽宁省普兰店市某室内养殖场。随机选取个体相 近的正常和患病刺参各 30 头(3—5g),低温带回大连 海洋大学处理。解剖获取肠组织,用 4℃预冷 PBS 缓 冲液将肠内容物清洗干净,每组 10 个个体混合作为 一个样本,对照组和实验组均为 3 个样本。

1.2 方法

1.2.1 肠组织总蛋白的提取 每个样本分别用液 氮磨碎,快速称取 200mg 加入适量(约 1mL)的裂解液 中(7mol/L 尿素, 2mol/L 硫脲, 40mmol/L DTT, 4% W/V CHAPS, 2% V/V 两性载体),振荡混匀,冰上裂解 2h, 超声破碎(100W, 3min), 4℃、12000g 离心 45min,取 上清置于-80℃冰箱保存或直接用于后续实验。

1.2.2 双向电泳条件的优化 使用 GE 公司 2D Clean-up kit (80-6481-51)去除总蛋白中的盐及核酸、 糖类、脂类等干扰分子。蛋白浓度以上海生工生物工 程公司的蛋白浓度测定试剂盒(SK3071)测定,按照 80µg 每管分装后置于-80℃保存待用。实验方法参 照"应用固相 pH 梯度的双向电泳(2-D)原理与方法" (http://wenku.baidu.com/view/0f915a22af

45b307e87197f9.html)进行,对脱盐处理和不同规格的 IPG 预制胶条等参数进行优化。

1.2.3 双向电泳 采用 1.2.2 优化的电泳条件进行 双向电泳实验。第一向在 EttanTM IPGphorTM (GE Healthcare)等电聚焦系统进行,水化和等电聚焦的温 度均设定在 20℃。上样量为 80µg,水化时间为 12h, 等电聚焦程序如下: 500V, 1h; 1000V, 1h; 8000V, 8h。

等电聚焦后,对 IPG 胶条进行两次各 20min 平衡。第 一次在平衡母液(50mmol/L Tris-HCl, pH 8.8)中加入 DTT 以使变性的非烷基化的蛋白处于还原状态,第 二次加入碘乙酰胺使蛋白质巯基和残留的 DTT 烷基 化,防止它们在电泳过程中重新氧化。使用 SE 600 Ruby 标准垂直电泳系统(GE Healthcare)进行第二向 的 SDS-PAGE 电泳。电泳完成后将 2D 胶银染,扫描, 并使用 GE Healthcare 公司的 Image Master 系统分析 2D 图谱。

1.2.4 质谱分析与蛋白确定 Image Scanner 软件 扫描差异蛋白点灰度值,分析这些差异点在三次重

复实验中的偏离程度。将表达稳定的差异点从制备胶 上手动切取下来并置于干净离心管中,胶内胰蛋白 酶酶解,ABI 5800 MALDI-TOF/TOF 串联质谱仪分析 肽段。获得的肽片段质量数据通过 MASCOT 系统搜 寻蛋白数据库确定蛋白种类,搜索参数如下:酶为 Trypsin;允许最大漏切位点为 1;固定修饰为 Carbamidomethyl (C);可变修饰为:Acetyl (Protein N-term) 和 Oxidation (M); MS tolerance 为 100×10⁻⁶, MS/MS tolerance 为 0.3Da, Protein score C.I.%大于 95 为鉴定 成功。

1.2.5 部分差异肽段 EST 的发掘 将鉴定的不同 肽段与实验室新完成的刺参转录组测序数据进行整 合。具体方法为:首先从转录组文库中筛选与质谱鉴 定结果相同的 EST 序列;其次借助在线蛋白翻译工 具(http://web.expasy.org/translate/)获得相应 EST 的编 码蛋白序列;最后在 EST 的编码蛋白序列匹配鉴定 的质谱肽段,匹配成功的 EST 即为差异蛋白的部分 cDNA 序列。

2 结果

2.1 双向电泳条件的优化

2.1.1 除盐处理对双向电泳的影响 选取相同的 胶条(pH 3—10, NL)和上样量(80μg),对脱盐处理前 后的样品双向电泳分析结果如图 1 所示。未脱盐样品 在等电聚焦过程中最高电压达不到设定的 8000V,且 2D 图谱蛋白点数量少,横条纹很多,尤其在两端形 成了类似于蛋白 marker 的条带状(图 1a)。经 2D Clean-up kit除盐后,等电聚焦升压顺利,二向电泳蛋 白点数量明显增多,点变圆,无拖尾(图 1b)。

图 1 除盐处理前(a)、后(b)刺参蛋白 2D 图谱 Fig.1 The 2-DE gel images of sea cucumber proteins with untreated (a) and desalinization treatment (b) samples

2.1.2 不同 pH 梯度胶条对图谱的影响 采用相同的上样量(80μg)和蛋白处理方法,对 pH 3—10 (NL,

13cm)及 pH 4—7 (NL, 13cm)两种胶条蛋白分离效果 进行了比较,结果见图 2。pH 3—10 NL 胶条中蛋白 主要集中在中间区域,分布范围为 pH 4—8,靠近酸 性端及碱性端的蛋白分离状况不好(图 2a)。相同实验 条件下,使用 pH 4—7 的胶条进行等电聚焦实验,凝 胶中蛋白质点分布较均匀,基本布满整个 pH 范围, 蛋白聚焦状况较好(图 2b)。

2.2 刺参发病前后 2-D 电泳

采用 pH 4—7 NL 胶条, 对 GE Clean-up kit 除盐 的 80μg 蛋白进行 2-D 凝胶电泳。经 Image Master 软 件分析, 共检测到约为 700 个蛋白质点; 其中表达量 差异两倍以上的显著差异蛋白点 51 个(图 3)。生物信 息学分析发现这些差异表达的蛋白在三次重复试验 中均呈现相近的表达模式(图 4)。

2.3 差异蛋白质点质谱鉴定

根据差异点的重复性以及在胶上的位置等因素,

作者选取 30 个差异蛋白点进行 MALDI-TOF/TOF 串 联质谱分析, 共成功鉴定出 23 个差异蛋白, 涵盖铁 蛋白、过氧化氢酶、泛素相关修饰子 3、细胞色素氧 化酶、肌动蛋白等免疫相关蛋白(表 1)。GO 分析发现

- 图 2 不同 IPG 预制胶条 pH 3—10(a)和 pH 4—7(b)的刺参 蛋白 2D 电泳图谱
 - Fig.2 The 2-DE gel images of sea cucumber proteins with pH 3—10 (a) and pH 4—7 (b) IPG strips

图 3 刺参肠组织 2-D 电泳图谱 Fig.3 2-DE reference map of sea cucumber intestines 注: (图中数字参照表 1 所示)

图 4 三块胶中部分差异点重演性分析 Fig.4 Reproducibility analysis of some differential expressed proteins in three gels 注: a、b、c: 对照组; d、e、f: 疾病组

这些蛋白隶属于细胞骨架蛋白(如肌动蛋白、角蛋白、 亲环素)、免疫相关蛋白(铁蛋白)、能量代谢相关蛋白 (ATP 合酶、精氨酸激酶、细胞色素氧化酶)、抗氧化 剂(过氧化氢酶)以及一些参与蛋白合成、加工以及降 解的酶类(泛素相关修饰子 3、核糖体蛋白等)(表 1)。 2.4 部分差异蛋白的全长克隆

质谱数据与转录组数据整合后,获得了过氧化 氢酶和泛素相关修饰子 3 的部分 cDNA 序列。其中过 氧化氢酶 cDNA 长度为 1292bp,编码 423 个氨基酸残 基; Blast 分析显示该序列与报道的刺参过氧化氢酶 (JQ776634)高度同源,核苷酸相似性为 99% (1284/ 1291),编码蛋白完全一致。泛素相关修饰子 3 基因 (SUMO-3)cDNA 长度为 3373bp,编码 90 氨基酸。

3 讨论

双向电泳技术是目前比较蛋白质组学研究的核 心技术, 广泛应用于生命科学的各个领域。样品的制 备是制约 2-DE 实验成败的首要环节, 通常在蛋白样 品中都含有盐、核酸、多糖、去污剂和代谢物等非蛋 白质杂质需要去除。本研究证实 GE 公司 clean-up kit 除盐效果较佳,除盐后等电聚焦电压上升正常,且 2-D 图谱蛋白点数目增多,适合于海洋生物蛋白组学 研究。胶条的选择对双向电泳图谱也有重要的影响。 宽 pH 梯度胶条用于分析样品蛋白的整体分布情况, 但分辨率低,易出现蛋白质点的重叠,不利于低丰度 蛋白的检测;窄梯度胶条一定范围内可以提高分辨 率和增加低丰度蛋白的检出率,但丧失了在此酸碱 范围之外的重要蛋白信息(莫海波等, 2012)。基于先 宽后窄的胶条 pH 选择原则, 本实验对常用的 pH 3---10 (NL)及 pH 4-7 (NL)进行了分离效果比较,从图 谱结果来看, pH 3-10 (NL)胶条中蛋白主要集中在 中间区域,靠近酸性端及碱性端的蛋白分离状况不 好, 而相同实验条件下, 使用 pH 4-7 的胶条分离得 到的凝胶中蛋白质点分布较均匀,基本布满整个 pH 范围,蛋白聚焦状况较好,这与陆彩玲等(2012)、周 长青等(2010)的结果一致。

腐皮综合症是刺参幼参和成参时期危害最为严 重的疾病,发病急,病程短,死亡率高,每年造成的 经济损失均在 20 亿元以上(葛辉等, 2012)。本研究首 次在蛋白层面识别了刺参腐皮综合症差异表达蛋白

差异点编号	蛋白名称	蛋白序列号	得分阈值 (P<0.05)	得分	匹配物种名称
42	二磷酸核糖激酶(Nucleoside diphosphate kinase)	gi 109975305	32	345	Apostichopus japonicus
203	磷酸丙糖异构酶(Triosephosphate isomerase)	gi 240848094	31	188	Apostichopus japonicus
237	细胞骨架亚型(Cytoskeletal 6C-like isoform)	gi 297691917	48	142	Pongo abelii
251	前蛋白(Proprotein convertase subtilisin/kexin type 9 preproprotein)	gi 240848413	31	160	Apostichopus japonicus
271	亲环素(Cyclophilin-type peptidyl-prolyl cis-trans isomerase-15,	gi 170582740	46	47	Brugia malayi
308	Bmcyp-5) 细胞色素氧化酶(Cytochrome oxidase)	gi 231473835	32	294	Apostichopus japonicus
310	角蛋白(Keratin subunit protein)	gi 386854	48	76	Homo sapiens
328	前蛋白(Proprotein convertase subtilisin/kexin type 9)	gi 297382883	53	311	Apostichopus japonicus
372	ATP 合酶(ATP synthase beta subunit)	gi 287945	48	60	Drosophila melanogaster
539	铁蛋白(Ferritin)	gi 68303301	48	147	Apostichopus japonicus
595	核糖体蛋白(Ribosomal protein S15)	gi 231473043	33	230	Apostichopus japonicus
676	过氧化氢酶(Catalase)	gi 139293240	46	70	Paracentrotus lividus
692	S6 激酶(S6 kinase)	gi 206840	47	57	Rattus norvegicus
717	精氨酸激酶(Arginine kinase)	gi 231472980	31	88	Apostichopus japonicus
802	泛素相关修饰子 3(Small ubiquitin-related modifier 3)	gi 338720747	86	108	Apostichopus japonicus
1054	精氨酸激酶(Arginine kinase)	gi 231472980	32	154	Apostichopus japonicus
54	肌动蛋白(Actin)	gi 231473286	31	234	Apostichopus japonicus
76		gi 231473286	31	233	Apostichopus japonicus
187		gi 231473286	31	270	Apostichopus japonicus
386		gi 241988732	48	106	Apostichopus japonicus
680		gi 231473294	27	31	Apostichopus japonicus
691		gi 5751	48	92	Bombyx mori
700		gi 1703103	49	118	Lytechinus pictus
110, 124, 165,	未知蛋白				
167, 276, 643,					
840					

表 1 刺参腐皮综合症发生相关肠组织差异蛋白质谱鉴定结果 Tab.1 The altered proteins between diseased and healthy sea cucumber identified by MS

23 个,其中涵盖铁蛋白、过氧化氢酶、泛素相关修饰 子 3、细胞色素氧化酶和肌动蛋白等,与细菌或病毒 病原感染中国明对虾(Fenneropenaeus chinensis)的结 果相符。Zhang 等(2010)用鳗弧菌(Vibrio anguillarum) 刺激中国明对虾,其血淋巴差异蛋白质组学研究表 明 ATP 合酶、精氨酸激酶、Actin 等表达显著变化。 白斑综合症病毒感染后则发现过氧化氢酶、精氨酸激 酶、铁蛋白、泛素、Actin、ATP 合酶等表达量显著 变化(Chai et al, 2010; Wang et al, 2007)。

疾病发生过程与氧自由基的产生息息相关,随 之诱导或抑制抗氧化酶系统的表达(Levine *et al*, 1994)。抑制抗氧化酶表达反映了污染物或病原感染 机体的细胞损伤,而诱导表达则体现生物体对不良 条件波动的适应(Amiard-triquet *et al*, 2013)。过氧化 氢酶作为一类广泛存在于动物、植物和微生物体内的 末端氧化酶,可以催化过氧化氢将其分解为水和氧 气,清除体内的过氧化氢,从而使细胞免于遭受 H₂O₂的毒害(刘灵芝等, 2009)。宋林生等(2002)在分析 患病中华绒螯蟹(*Eriocheir sinensis*)幼蟹抗氧化酶活 性表达变化时发现患病个体自由基的代谢出现紊乱, 清除自由基的能力较正常幼蟹显著下降,其中超氧 化物歧化酶及过氧化氢酶的活性极显著低于正常幼 蟹(*P*<0.01)。与本研究过氧化氢酶表达模式一致,表 明自由基代谢紊乱是造成生物体发病的可能调控途径。

参考文献

- 马悦欣,徐高蓉,常亚青等,2006.大连地区刺参幼参溃烂病 细菌性病原的初步研究.大连水产学院学报,21(1):13—18
- 王印庚, 张凤萍, 李胜忠等, 2009. 刺参腐皮综合症病原灿烂 弧菌检测探针的制备及应用. 水产学报, 33(1): 119—125
- 刘灵芝, 钟广蓉, 熊 莲等, 2009. 过氧化氢酶的研究与应用 新进展. 化学与生物工程, 26(3): 15—18
- 宋林生,苏建国,崔朝霞等,2002. 中华绒螯蟹(Eriocheir sinensis)幼蟹上岸病的免疫学研究. 海洋与湖沼,33(6): 657—662
- 张 玺, 张凤瀛, 吴宝铃等, 1963. 中国经济动物志·环节(多毛

纲)、棘皮、原索动物.北京:科学出版社,79-81

- 张春云,王印庚,荣小军,2006.养殖刺参腐皮综合征病原菌 的分离与鉴定.水产学报,30(1):118—123
- 陆彩玲,王金子,唐 深等,2012.海马组织蛋白质双向电泳 条件实验研究.中国职业医学,39(3):186—189
- 周长青,龙汉春,陈 莹等,2010. 小鼠黑质双向凝胶电泳技 术的优化. 生物技术通报,2:178—181
- 莫海波,田 燚,湛垚垚等,2012. 口虾蛄性腺组织蛋白质双 向电泳体系的建立及优化. 生物技术通报,4:152—157
- 葛 辉,何立斌,林 琪等,2012. 福建海区网箱养殖刺参"腐 皮综合症"病原分析与鉴定. 福建水产,34(2):105—110
- 谢建军, 王印庚, 张 正等, 2007. 养殖刺参腐皮综合征两种 致病菌 Dot-ELISA 快速检测. 海洋科学, 31(8): 59—64
- Amiard-Triquet C, Amiard J, Rainbow P S et al, 2013. Ecological Biomarkers: Indicators of Ecotoxicological Effects. CRC Press, 24—24
- Chai Y, Yu S, Zhao X et al, 2010. Comparative proteomic profiles of the hepatopancreas in *Fenneropenaeus chinensis* response to white spot syndrome virus. Fish Shellfish Immunol, 29: 480—486
- Cong L, Yang X, Wang X *et al*, 2009. Characterization of an i-type lysozyme gene from the sea cucumber *Stichopus japonicus*, and enzymatic and nonenzymatic antimicrobial activities of its recombinant protein. J Biosci Bioeng, 107(6): 583–588
- Han L, Yuan Z, Dahms H et al, 2012. Molecular cloning, characterization and expression analysis of a C-type lectin (AJCTL) from the sea cucumber Apostichopus japonicus. Immunol Lett, 143: 137—145

Levine A, Tenhaken R, Dixon R et al, 1994. H₂O₂ from the oxi-

dative burst orchestrates the plant hypersensitive disease resistance response. Cell, 79: 583—593

- Li C, Feng W, Qiu L et al, 2012. Characterization of skin ulceration syndrome associated microRNAs in sea cucumber Apostichopus japonicus by deep sequencing. Fish Shellfish Immunol, 33: 436—441
- Li H, Qiao G, Gu J *et al*, 2010. Phenotypic and genetic characterization of bacteria isolated from diseased cultured sea cucumber *Apostichopus japonicus* in northeastern China. Dis Aquat Organ, 91(3): 223–235
- Qiao J, Du Z, Zhang Y et al, 2011. Proteomic identification of the related immune-enhancing proteins in shrimp *Litopenaeus* vannamei stimulated with vitamin C and Chinese herbs. Fish Shellfish Imunol, 31: 736–745
- Wang H, Wang H, Leu J *et al*, 2007. Protein expression profiling of the shrimp cellular response to white spot syndrome virus infection. Dev Comp Immunol, 31: 672—686
- Zhang J, Li F, Jiang H, Y et al, 2010. Proteomic analysis of differentially expressed proteins in lymphoid organ of Fenneropenaeus chinensis response to Vibrio anguillarum stimulation. Fish Shellfish Immunol, 29: 186—194
- Zhou J, Cai Z, Zhu X et al, 2010. Innate immune parameters and haemolymph protein expression profile to evaluate the immunotoxicity of tributyltin on abalone (*Haliotis diversicolor* supertexta). Dev Comp Immunol, 34: 1059–1067
- Zhou Z, Sun D, Yang A et al, 2011. Molecular characterization and expression analysis of a complement component 3 in the sea cucumber (*Apostichopus japonicus*). Fish Shellfish Immunol, 31: 540—547

ISOLATION AND CHARACTERIZATION OF DIFFERENTIAL EXPRESSED PROTEINS FROM SKIN ULCERATION SYNDROME APOSTICHOPUS JAPONICUS

ZHANG Peng¹, LI Cheng-Hua¹, LI Ye¹, SU Xiu-Rong¹, JIN Chun-Hua¹, LI Tai-Wu² (1. School of Marine Sciences, Ningbo University, Ningbo, 315211; 2. Ningbo City College of Vocational Technology, Ningbo, 315100)

Abstract The differential expressed proteins between healthy and skin ulceration syndrome *Apostichopus japonicus* collected from indoor ponds of Pulandian Hatchery in Dalian, China in October 20, 2011 were investigated by comparative proteomics in the present study. All the results showed: (1) total of 700 spots were successfully identified under optimal conditions (80µg desalted protein and pH 4—7 IPG strip [NL, 13cm]); (2) 51 spots showed significant differences in abundance with the maximum difference ratio of 4.32; (3) 30 spots with the higher reproducibility were characterized by MS, among which 23 spots including ferritin, catalase, ubiquitin-related modifier 3, cytochrome oxidase, and actin were identified from protein database; (4) the partial cDNA sequences of catalase and ubiquitin-related modifier 3 were obtained by screening our transcriptome library. This study is the first analysis of differentially expressed proteins in the diseased sea cucumber at the protein level and provides a new insight for further study in skin ulceration syndrome outbreak in the species. **Key words** *Apostichopus japonicus*; skin ulceration syndrome; 2-Dimensional electrophoresis; transcriptome