香鱼(*Plecoglossus altivelis*)肿瘤坏死因子-α(TNF-α) 基因的分子克隆、鉴定及免疫相关性表达^{*}

杨智景 李长红 张 浩 苗 亮 陈 炯

(宁波大学海洋学院 生物化学与分子生物学实验室 宁波 315211)

摘要 肿瘤坏死因子- α (tumor necrosis factor-alpha, TNF- α)是 TNF 超家族成员之一, 在动物机体抵 抗细菌和病毒入侵时发挥重要作用。本研究基于香鱼(*Plecoglossus altivelis*)单核/巨噬细胞转录组数 据库,获得了香鱼 TNF- α 基因(PaTNF- α)全长 cDNA 序列。PaTNF- α 由 1932 个核苷酸组成, 包含一 个大的开放阅读框, 编码 235 个氨基酸, 预测分子量为 26.4 kDa。氨基酸序列多重比对分析表明, PaTNF- α 具有 TNF 超家族的特征序列、1 个 TACE 酶切位点和 1 个保守的二硫键, 与虹鳟 (*Oncorhynchus mykiss*)TNF- α 同源性最高, 为 53.4%; 系统进化树分析表明, 鱼类 TNF- α 形成一个大 簇, PaTNF- α 与虹鳟 TNF- α 进化相关性最高。实时荧光定量 PCR (quantitative real-time PCR, qRT-PCR) 结果显示, PaTNF- α mRNA 在头肾中表达量最高; 鳗弧菌(*Vibrio anguillarum*)感染后香鱼肝、脾、头 肾和外周血细胞中 PaTNF- α mRNA 表达量显著上调; 香鱼单核/巨噬细胞经鳗弧菌、LPS 和 poly(I: C) 处理后, PaTNF- α mRNA 表达量显著上调。原核表达了 PaTNF- α 成熟肽, 并制备了抗血清。Western blot 分析表明, 鳗弧菌感染后香鱼血清和单核/巨噬细胞上清中的 PaTNF- α 表达量含量也显著增加。 综上, 香鱼 TNF- α mRNA 及蛋白的表达与病原体感染密切相关, 为深入研究鱼类 TNF- α 的生物学功 能及其在病原体感染中的作用机制提供理论基础。

关键词 TNF-α; 香鱼; 鳗弧菌; 单核/巨噬细胞; 表达中图分类号 Q786; S917 doi: 10.11693/hyhz20150600166

肿瘤坏死因子 -α(tumor necrosis factor-alpha, TNF-α)是机体在病原体入侵时,由激活的巨噬细胞、 淋巴细胞以及其它免疫细胞产生的促炎细胞因子 (Horiuchi *et al*, 2010)。在哺乳动物中, TNF-α 可以抑 制肿瘤细胞增殖,诱导肿瘤细胞凋亡,并且参与机体 的免疫调节,诱导相关的细胞因子及其受体基因的 表达(Horiuchi *et al*, 2010; Rajmani *et al*, 2015);在抵 抗细菌、病毒和寄生虫感染的过程中, TNF-α 还起着 重要介质的作用,与白介素-1 (interleukin-1, IL-1)和 白介素-6 (interleukin-1, IL-6)等细胞因子被归为正急 性期蛋白(Gruys *et al*, 2005; Horiuchi *et al*, 2010)。目 前,已有应用 TNF-α 治疗肿瘤、牛皮癣、白塞病、风 湿性关节炎、炎性肠病等的研究报道(Van Horssen *et al*, 2006; Horiuchi *et al*, 2010; Willrich *et al*, 2015)。

目前,已经有数十种硬骨鱼类的 TNF-a 基因得 到了克隆,比如虹鳟(Oncorhynchus mykiss) (Laing et al, 2001; Hong et al, 2013)、鲤鱼(Cyprinus carpio) (Savan et al, 2004)、大菱鲆(Psetta maxima) (Ordás et al, 2007)、鳜鱼(Siniperca chuatsi) (Xiao et al, 2007)和 草鱼(Ctenopharyngodon idella) (Zhang et al, 2012)等。 在克隆 TNF-a 基因的同时,部分研究对其转录水平及 免疫功能进行了测定。例如,在海弧菌(Vibrio pelagius) 和病毒性出血败血症病毒(Viral haemorrhagic septicemia virus, VHSV)感染后,大菱鲆肝和肾组织

通讯作者: 陈炯, 博士生导师, 研究员, E-mail: jchen1975@163.com 收稿日期: 2015-06-15, 收修改稿日期: 2015-07-09

^{*} 国家自然科学基金项目, 31372555 号; 浙江省自然科学基金项目, LZ13C190001 号; 高等学校博士学科点专项科研基金, 20133305120008 号。杨智景, 硕士研究生, E-mail: 744732108@163.com

中 TNF- α mRNA 表达量明显增加,且不同个体表达 量差异明显(Ordás *et al*, 2007);在传染性脾肾坏死病 毒(infectious spleen and kidney necrosis virus, ISKNV) 感染后,鳜鱼血液和脾组织中 TNF- α mRNA 表达量 明显增加(Xiao *et al*, 2007);经草鱼呼肠孤病毒(grass carp reovirus, GCRV)感染后,草鱼脾中 TNF- α mRNA 表达量显著升高,而且 GCRV 感染的草鱼肾细胞 TNF- α mRNA 表达量也增加显著(Wang *et al*, 2013); 在体外实验中,重组的虹鳟 TNF- α 能促进虹鳟头肾 来源巨噬细胞的趋化和吞噬活性(Zou *et al*, 2003),并 且重组的金鱼(*Carassius auratus*)TNF- α 不仅能促进 金鱼头肾来源的巨噬细胞的趋化和吞噬活性,还能 促进其呼吸爆发功能等(Grayfer *et al*, 2008)。上述研 究结果表明,鱼类 TNF- α 在细菌和病毒感染引起的 炎症免疫防御反应发挥着重要作用。

香鱼(Plecoglossus altivelis),又名年鱼、仙胎鱼、 隶属胡瓜鱼目、香鱼科、是一种一年生小型洄游性经 济鱼类、为东亚地区中国、朝鲜和日本等国所特有。 由于其体形优美、肉质鲜美,人工养殖规模逐年增 加。然而、集约化、高密度养殖以及不当的病害防治 技术导致香鱼病害频发, 主要为细菌性病害, 其中鳗 弧菌是危害最严重的病原之一(李长红等, 2009)。因 此, 香鱼以绿色健康养殖为要, 应限制使用抗生素等 药物、有必要从免疫学角度入手加强对香鱼免疫机 制的研究、为香鱼病害防治及抗病品种选育提供指 导。鉴于 TNF-α 在动物免疫反应中的作用、本实验拟 对香鱼 TNF- α (PaTNF- α)进行初步研究。测定基因 cDNA 序列, 明确其序列结构特征、系统进化关系及 表达特征,解明鳗弧菌感染后香鱼免疫组织及细胞 中 PaTNF- α mRNA 的表达变化以及鳗弧菌、脂多糖 (lipopolysaccharide, LPS)和聚肌胞苷酸胞嘧啶核苷酸 poly(I: C)分别处理后香鱼单核/巨噬细胞中 PaTNF-α mRNA 的表达变化; 原核表达 PaTNF-α 重组蛋白并 制备抗血清、分析鳗弧菌感染的香鱼血清及单核/巨 噬细胞上清中 PaTNF-α 的表达变化。研究结果将为 进一步探讨 PaTNF-α 在香鱼炎症免疫反应中的作用 机制及机理提供基础。

1 材料与方法

1.1 实验材料与试剂

健康香鱼(20—30g)购自浙江省宁波市宁海县凫 溪香鱼养殖基地,规格均一、健康无伤。运回实验室 后暂养于充分曝气的自来水中,水温(20±1)°C。暂养 期间连续充气,每天换水2次,早晚各一次。

ICR 小鼠购自浙江医学科学院实验动物中心。大 肠杆菌 BL21 pLys E 菌株、TG1 菌株、鳗弧菌 ayu-H080701 (李长红等, 2009)、pGEX-4T-3 载体等由 实验室保存。LPS (Escherichia coli 055: B5)和 poly(I: C)购自 Sigma 公司(美国)。pMD19-T Simple Vector、 RNAiso 试剂、T₄ DNA 连接酶、AMV 逆转录酶、Ex Taq DNA 聚合酶、BamH I、EcoR I、和 SYBR Premix Ex Taq 试剂盒等购自 TaKaRa 公司(日本)。压片暗盒、 显影定影试剂盒、ECL 化学发光试剂盒、和柯达 X-OMAT BT 胶片等购自碧云天生物技术研究所(北 京)。SDS-PAGE 低分子量标准蛋白试剂盒购自中国 科学院上海生物化学研究所(上海)。预染蛋白分子量 蛋白标准购自 Fermentas 公司(加拿大)。琼脂糖凝胶 回收试剂盒购自 Omega 公司(美国)。二抗(辣根酶标 记山羊抗小鼠 IgG)购自北京中杉金桥生物技术有限 公司(北京)。序列测序和引物合成工作由英维捷基贸 易有限公司(上海)完成。

1.2 PaTNF-α cDNA 序列获得及序列分析

采用 Illumina HiSeq 2000 测序平台对健康香鱼单 核/巨噬细胞进行转录组测序,从中获得 PaTNF-α cDNA 序列,并采用常规 PCR 方法进行扩增和测序验 证。采用 SignalP 4.1 在线程序(http: //www.cbs.dtu.dk/ services/SignalP/)预测信号肽序列;采用 TMHMM Server v. 2.0 (http: //www.cbs.dtu.dk/services/TMHMM/) 预测跨膜结构域;采用 ClustalW 在线程序 (http: // clustalw.ddbj.nig.ac.jp/)进行多重序列比对;采用 MEGA 6.0 软件构建系统进化树(Tamura *et al*, 2013)。多重序 列比对及进化树构建所用序列详见表 1。

1.3 香鱼头肾来源的单核/巨噬细胞分离培养

用 0.03% (*V*/*V*)的乙二醇苯醚麻醉香鱼,无菌条 件下迅速取出头肾,剪刀剪碎头肾置 140 目筛网中, 加入适量 RPMI1640 培养基,无菌注射器活塞轻轻研 磨,获得分散单细胞;采用 Ficoll 密度梯度离心法分 离细胞(2000 r/min, 25 min),取含单核/巨噬细胞的白 膜层细胞,用含 2%胎牛血清的 RPMI1640 培养基洗 涤 2 次,最后重悬于含 2%胎牛血清的 RPMI1640 培养基洗 涤 2 次,最后重悬于含 2%胎牛血清的 RPMI1640 培养基 养基中。血球计数板计数,将细胞浓度调整为 10⁷ cells/mL,每皿铺 2 mL 细胞。将细胞置于 24°C、5% CO₂ 培养箱培养过夜, PBS 洗去非贴壁细胞,贴壁细 胞在含 10%胎牛血清的 RPMI1640 培养基中培养。吉 姆萨染色后显微镜观察,确定超过 95%的贴壁细胞 是单核/巨噬细胞(Lu *et al*, 2013)。

46 卷

Tab.1 Sequences used for multiple alignment and phylogenetic tree construction			
쫐크므	物种		
豆水亏	拉丁名	中文名	nstruction 英文名 human large yellow croaker ayu zebrafish grass carp common carp European seabass channel catfish crucian carp tiger pufferfish Atlantic salmon rainbow trout orange-spotted grouper
NM_000594	Homo sapiens	人	human
EF070393	Pseudosciaena crocea	大黄鱼	large yellow croaker
JP740414	Plecoglossus altivelis	香鱼	ayu
NM_212859	Danio rerio	斑马鱼	zebrafish
HQ696609	Ctenopharyngodon idella	草鱼	grass carp
AJ311800	Cyprinus carpio	鲤鱼	common carp
DQ070246	Dicentrarchus labrax	欧洲鲈鱼	European seabass
AJ417565	Ictalurus punctatus	斑点叉尾鮰	channel catfish
KC771269	Carassius carassius	黑鲫	crucian carp
NM_001037985	Takifugu rubripes	红鳍东方鲀	tiger pufferfish
EF079662	Salmo salar	大西洋鲑	Atlantic salmon
HE798147	Oncorhynchus mykiss	虹鳟	rainbow trout
HQ011926	Epinephelus coioides	斜带石斑鱼	orange-spotted grouper

表1 多重比对及系统发育进化树构建采用序列

1.4 香鱼外周血白细胞的分离

参考 Lam 等(2011)的方法分离香鱼外周血白细胞,具体步骤如下: 75%酒精消毒香鱼尾部,用肝素 钠溶液润洗后的 1.0 mL 注射器于香鱼尾静脉采血, 加等量 PBS 稀释。将稀释后的血液沿管壁加到 70% 的 Ficoll/磷酸缓冲液(PBS)液面上, 500 g 离心 30 min, 吸取中间白膜层细胞于 15.0 mL 离心管中,加入等量 PBS, 500 g 离心 20 min 收集白细胞,重复 2 次,加适 量 PBS 重悬,瑞士染色鉴定,确定超过 95%的细胞是 外周血白细胞。

1.5 鳗弧菌感染的香鱼组织样品制备

鳗弧菌感染香鱼的实验过程及感染剂量参考杨 旦阳等(2013)的方法,具体步骤如下:感染组香鱼用 1.0×10⁴ CFU/尾的浓度腹腔注射鳗弧菌菌悬液,对照 组香鱼注射相同体积的灭菌生理盐水,分别在感染 后 4、8、12 和 24 h (hours post infection)时采集脾、 肝和头肾等组织并立即投入液氮中;从香鱼尾静脉

抽取血液, 4°C 静置过夜后低速离心收集血清, 随后转于--70°C 超低温冰箱保存。

1.6 LPS、poly(I: C)和鳗弧菌感染的香鱼单核/巨噬 细胞样品制备

将 LPS 和 poly(I: C)分别以 10 ng/mL 和 40 μg/mL 的作用浓度加入香鱼单核/巨噬细胞中,于作用 4、8、 12 和 24 h 时收集培养基上清,无菌滤膜过滤后分装; 细胞用 PBS 洗涤 3 次,加入 RNAiso 试剂裂解细胞, 5 min 后收集裂解液作为香鱼单核/巨噬细胞样品,同

上清样品置于-70°C保存。

过夜培养的鳗弧菌用 PBS 稀释后, 按照感染复数(multiplicity of infection, MOI)为 10:1 的比例接种 至香鱼单核/巨噬细胞中, 于 4、8、12 和 24 h 时收集 培养基上清和单核/巨噬细胞样品, 收集和保存方法 同上。

1.7 qRT-PCR 检测

参考黄左安等(2011)的方法进行总 RNA 的抽提、 第一链 cDNA 的合成及 qRT-PCR 检测。根据已获得的 香鱼 TNF-α cDNA 序列设计检测引物, PaTNF-α test (+): 5'-ACATGGGAGCT GTGTTCCTC-3'和 PaTNF-α test (-): 5'-GCAAACACACCGAAAAAGGT-3', 预期扩增大小 115 bp; 根据香鱼管家基因 β-actin cDNA 序列 (AB020884)设计内参检测引物 PaActin2 (+): 5'-TCGTGCGTGACATCAAGGAG-3'和 PaActin2 (-): 5'-CGCACTTCATGATGCTGTTG-3'、预期扩增片段 长度为 231 bp。qRT-PCR 扩增体系 25 μL, 包括灭菌 水 10 µL、SYBR Premix Ex Tag (2×)缓冲液 12.5 µL、 cDNA 模板 0.5 μL、上下游引物各(10 μmol/L)1 μL。 扩增反应在 ABI StepOne 荧光定量 PCR 仪(美国 ABI 公司)上进行、反应条件为: 94°C 180 s (预变性, 1个 循环); 94°C 30 s, 58°C 30 s, 72°C 30 s (扩增段, 共40 个循环); 94°C 30 s, 72°C 60 s, 95°C 30 s (熔解段, 1个 循环)。每个样品重复3次。荧光定量的结果由仪器 自带程序读取。根据 2^{-ΔΔCt} 相对标准曲线法计算 PaTNF-α mRNA 的相对表达量(Livak et al, 2001)。

1.8 PaTNF-α 的原核表达、抗血清制备

根据获得的 PaTNF- α 开放阅读框(ORF)设计原核 表达引物, 引物序列如下: pGEX-4T3-PaTNF-α (+): 5'-CGGATCCATGGATACTAATTGCAAAGTAC-3' 和 pGEX-4T3-PaTNF-α (-): 5'-GGAATTCTCACAGCAA ACACACC-3'、其中下划线碱基为的限制性内切酶 BamH I 和 EcoR I 识别序列、斜体字母为保护碱基。 PCR 扩增体系 25 μL, 包括 10×Ex Taq buffer 2.5 μL, dNTP (2.5 mmol/L) 4.0 µL, cDNA 模板 0.5 µL, 上下游 引物(10 µmol/L)各 1 µL, Ex Taq DNA 聚合酶 0.25 µL, ddH₂O 15.75 µL。扩增反应在 Mastercycler pro 梯度 PCR 仪(德国 Eppendorf 公司)上进行,反应程序为: 94°C 预变性 120 s; 再 30 个循环: 94°C 变性 30 s, 58°C 退火 30 s, 72°C 延伸 60 s; 最后 72°C 延伸 10 min。 与预期相符的扩增片段经 EcoR I 和 BamH I 双酶切, 插入到经相同内切酶酶切的原核表达载体 pGEX-4T-3 中, 获得重组质粒 pGEX-4T-3-PaTNF-α。该重组 质粒经测序验证无误后转化大肠杆菌 BL21 pLys E 菌 株, 经 IPTG 诱导表达, 表达产物经 SDS-PAGE 检测, 考马斯亮蓝 G-250 染色观察目的蛋白是否表达。

pGEX-4T-3-PaTNF-α/BL21 经 IPTG 大量诱导后, 经 5%—20%梯度胶分离,用预冷的 0.25 mol/L KCI 溶液染色 10 min,切下目的蛋白用于免疫 ICR 小鼠。 每周免疫 1 次,共免疫 3 次。最后 1 次免疫后第 3 天 从小鼠眼动脉取血,4°C 静置过夜后冷冻离心收集血 清,于-70°C 保存备用。

1.9 Western blot 检测

将收集的香鱼血清和单核/巨噬细胞上清样品用 Bradford 法定量(Bradford, 1976),参考黄左安等(2011) 的方法进行 Western blot 检测。香鱼单核/巨噬细胞培 养上清和重组蛋白样本经 SDS-PAGE 电泳分离后湿 转法转移至聚偏二氟乙烯(polyvinylidene fluoride, PVDF)膜上,转膜结束后将 PVDF 膜转移至封闭液 (含 5%脱脂奶粉的 PBS-T)中于 4°C 封闭过夜,按 1: 500 的比例加入 PaTNF-α 抗血清(一抗), 37°C 摇床孵 育 2 h, PBS-T 洗涤后按 1: 1000 的比例加入 HRP-IgG(二抗), 37°C 摇床孵育 1 h, PBS-T 洗涤采用 ECL 化学发光法显影, 胶片扫描后采用 Quantity One 软件 对电泳条带计算灰度值。

2 结果

2.1 PaTNF-α cDNA 序列分析

PaTNF-α cDNA 全长 1932 bp (GenBank 登录号:

JP740414),包括一个完整 ORF,起始于第 347—350 位的一个 ATG 起始密码子,终止于第 1051—1054 位 的一个 TGA 终止密码子,预测编码一个由 235 个氨 基酸组成、分子量大小约为 26.4 kDa 的前体蛋白,等 电点为 6.35。

软件分析结果表明, 推测的 PaTNF-α 不具有信 号肽序列, 具有 TNF 家族典型的特征序列"IIIPDDG IYFVYSQ", 分子内包含一个保守的二硫键 Cys¹⁴⁰-Cys¹⁸¹和位于 72 位 Thr 和 73 位 Leu 之间 TNF-α 转化 酶 (TNF-α converting enzyme, TACE)酶切位点, 并且 在第 34—56 位氨基酸处有一个单一的跨膜结构域 "WTMWGALLAMALCVSAALFFTWN" (图 1)。

2.2 PaTNF-α 基因的系统进化分析

序列分析表明, PaTNF-α 与其它鱼类 TNF-α 具有 较高的氨基酸序列同源性(31.2%—53.4%), 其中与虹 鳟 TNF-α 同源性最高,为 53.4%。根据哺乳动物和鱼 类的 TNF-α 氨基酸全长序列构建的系统进化树揭示, 鱼类 TNF-α 单独形成一个大簇,香鱼与虹鳟、大西洋 鲑的 TNF-α 独立成簇,且与虹鳟 TNF-α 的进化相关 性最高(图 2)。

2.3 鳗弧菌感染前后 PaTNF-α mRNA 表达的变化

取健康香鱼的肝、脾、体肾、头肾、脑、肠、肌、 外周血白细胞和单核/巨噬细胞进行 qRT-PCR 检测, 结果表明,健康香鱼 TNF-α mRNA 在头肾中表达量 最高,其次是脾、体肾、肝、肌、单核/巨噬细胞和外 周血白细胞(图 3)。腹腔注射鳗弧菌后、感染组香鱼 表现典型的弧菌病症状、并能从肝、脾和肾等组织中 分离出病原菌(结果未显示),对照组香鱼无明显症 状。与对照组相比, 鳗弧菌感染 4 h 时, 肝、脾和头 肾中 PaTNF- α mRNA 的表达量显著增加, 分别为对 照组的 2.62、19.52 和 3.09 倍(P<0.05); 在 8 h 时, 肝 和头肾中 PaTNF- α mRNA 表达量继续增加, 12 h 时达 到峰值、分别为对照组 30.08 和 11.69 倍(P<0.05)、而 在 8 h 后, 脾中 PaTNF- α mRNA 与对照组无明显差异; 外周白血细胞中 PaTNF-α mRNA 表达量在 12 h 时显 著高于对照组、为对照组的 2.20 倍(P<0.05)、在 24 h 时, 与对照组无明显差异(图 3)。

LPS、poly(I: C)和鳗弧菌处理前后香鱼单核/巨 噬细胞 PaTNF-α mRNA 表达的变化

LPS、poly(I: C)和鳗弧菌处理香鱼单核/巨噬细胞 后 PaTNF- α mRNA 的表达量显著增加,其中 poly(I: C) 和鳗弧菌处理组 PaTNF- α mRNA 的表达量在 4 h 时显 著增加,分别为对照组的 2.45 和 560.28 倍, LPS 处理

large yellow croaker zebrafish Atlantic salmon rainbow trout ayu human	-MVAYTTAPSDLBMGLEERTVVVVEKKSSTDWIWKVTGALLVVALCFGGVLVFAWYWT NKLES-RAFLDVBEGELPLFLVIVSRRKAGSSKSGVWRVFGIILAVGLCAAAAVCFTLH MEGDCSRVTVDLBKG-PVYFSPIVTLVREKSTRQWRLCGALLAMALCVSAALFNTWHG- MEGDCSRVTVDLBNG-PVSFTVTLVREKSTQRWRLCGALLAMALCVSAALFFT NDTNC-KVLLDVBEG-LMTFAN-VTVVREASTHRGRWTMWCALLAMALCVSAALFFTWNP- NSTESMIRDVELAEEALPKKTGGPQGSRRCLFLSLFSFLIVAGATTLFCLLHFG-	GKPELLTQSGQTEALIEKT KTQGN KKQDP KKQDH KIGPQREEFPRD	76 63 62 57 62 66
	TACE cut site J	TNF family signature	;
large yellow croaker zebrafish Atlantic salmon rainbow trout ayu human	Y TAEKTDPHYTLKRISSKAKAAIHLEGSYDD-TQPTAQLEWKNGQGQAFAQGGFRLYN QQDGSVLRUTLRORISQCNFTSKAAIHLIGGYNSE-SKTLDWRDDQDQAFSSGCLKUV IEKADELQHMUR-QLSENRKAAIHLEGEYNPSGSYKSSVEWTDKEGQGFSQCGLKUN IEKADEIQHTLR-QLSGNIKAAIHLEGEYNTYGDYKSSVEWTDDEGQGFSQCGLKUN IEKADDIRHTLR-HLSGIRNAIHLEGFHNSS-YSNTTVQWSNEVDQGFSVCMLKUIN LSLISPLAQAVR-SSSRTPSDKPVA-HVVANPQAEGQLQWUNRRANALLANGVELRD	NG II I PQTGLYFVYSQASF REI II I PDDGIYFVYSQASF NEI VI PQMGLYFVYSQASF NEI VI PQMGLYFII NGI VIKSRGLYFVYSQVSF NGI VVPSEGLYLII YSQVIF	151 140 138 133 136 140
large yellow croaker zebrafish Atlantic salmon rainbow trout ayu human	S-S R-VSCNDGDEEGAGKRL TPLSHRIWRYSDSIGSRASIMSAVRSACQNTAQEDN H-ISCTSELTEEQVLMSHAVMRFSESYGGKKPLFSAIRSICTQEP H-VSCKANPKHPN-KDMVHLSNTVTRWSPSYGTEDNKVYQPLLNSVRTVCKKSS-NSE H-VSCKADPKHPNNQDMVHLSNTVTRWSPSYGTEDNKEYQPLLNSVRTVCKKSS-NGE K-VKCQTQMVHLSHGIRRRTDTYGNEDDDDEALYLPLLHSVRTVCGGV KGQCQPSTHVLLTHTISRIAVSYQTKVNLLSAIKSPQQRETPE	YGVGHG <mark>WYNA IYLGAVF</mark> QL ES-BNLWYNT IYLGA <mark>A</mark> BHL AASBGKWYNA YYVGAVFSL ASBGKWYNA YYMGAVFSL PSGBGNAFTS YYMGAVFLM GAEAKPWYEP IYLGGVFQL	222 202 212 208 203 202
large yellow croaker zebrafish Atlantic salmon rainbow trout ayu	NRGDKLWTETNQPTELETDEGKTFFGVFAF 252 REGDRLGTDTTTALLPMVENDNGKTFFGVFGL 234 ERGDRLRTVTENRLLPHLESGAGKNFFGVFAL 244 EKGDRLRTVTENRLLPHLESGAGKNFFGVFAL 240 DEGDRLKTDTNSRHVRHLQDESGKTFFGVFAL 235		

Transmembrane domain

图 1 香鱼与其它动物 TNF-α 氨基酸序列的多重比对

233

SAEINRPDYLDFA-ES<mark>G</mark>QVYF0

Fig.1 Multiple alignment of TNF-α amino acid sequences of ayu and other animals
"—"代表 TNF-α 跨膜结构域, "□"代表 TNF 家族特征序列, "↓"代表潜在的 TACE 酶切位点, "—S-S—"代表保守的半胱氨酸残基形成的二
硫键, 阴影阈值>60%, 黑色阴影代表相同氨基酸, 灰色阴影代表相似氨基酸

0.1

human

图 2 基于 NJ 法构建的香鱼和其它物种 TNF-α 全长氨基 酸序列的系统进化树

Fig.2 Phylogenetic tree of the full-length amino acid sequences of ayu and other animals TNF-α using neighbor-joining method 分叉处数值表示重复抽样 1000 次所得到的置信度百分比,只显示置信度 60%以上的数值;标尺长度表明每个位点发生 0.1 次置换

组 PaTNF-α mRNA 与对照组无明显差异(*P*<0.05); 在 8 h 时, LPS、poly(I: C)和鳗弧菌处理组 PaTNF-α mRNA 表 达量分别为对照组的 15.89、5.46 和 544.96 倍(*P*<0.05); 12 h 时, LPS 和鳗弧菌处理组 PaTNF-α mRNA 表达量 仍然高于对照组,分别为对照组的 4.99 和 365.03 倍, 而 poly(I: C)处理组与对照组无明显差异(*P*<0.05); 24 h 时, LPS 和poly(I: C)处理组PaTNF-α mRNA 表达量均与 对照组无明显差异, 而鳗弧菌处理组 PaTNF-α mRNA 表达量仍高于对照组,为对照组的 24.95 倍(图 4)。

2.5 PaTNF-α的原核表达和抗血清制备

重组质粒 pGEX-4T-3-PaTNF-α 经测序验证无误 后转至 BL21 pLys E, 加入 IPTG 诱导后高效表达, 菌 体总蛋白经 SDS-PAGE 分离后出现一条高表达蛋白 带, 分子量为 53.0 kDa 左右, 与预测的重组蛋白分子 量(52.7 kDa)相符(图 5a)。将目的条带切胶验证后, 用 于抗血清制备。

Fig.3 qRT-PCR analysis of PaTNF- α transcripts

a. PaTNF-α mRNA 在健康香鱼中的表达, 1: 脑; 2: 肠; 3: 肌; 4: 肝; 5: 脾; 6: 体肾; 7: 头肾; 8: 外周血白细胞; 9: 单核/巨噬细胞。b—e: PaTNF-α mRNA 在鳗弧菌感染香鱼中的表达, b: 肝; c: 脾; d: 头肾; e: 外周血白细胞。

以香鱼 TNF-α 与 β-actin mRNA 的比值作为 PaTNF-α mRNA 的相对表达量,*: 与对照组比较差异显著 (P<0.05) (n=4)

图 4 qRT-PCR 分析 LPS、poly(I: C)和鳗弧菌处理前后香鱼单核/巨噬细胞 PaTNF-α mRNA 表达变化 Fig.4 qRT-PCR analysis of PaTNF-α transcripts in ayu moncytes/macrophages upon LPS, poly(I: C) *and V. anguillarum* infection 以香鱼 TNF-α 与 β-actin mRNA 的比值作为 PaTNF-α mRNA 的相对表达量,*: 与对照组比较差异显著 (*P*<0.05) (*n*=4)

以 PaTNF-α 抗血清进行 Western blot, 结果能观 察到单一的反应条带, 说明 PaTNF-α 抗血清制备成 功, 且特异性较好(图 6b), 而香鱼血清中 PaTNF-α 成 熟肽蛋白分子量约为 18 kDa, 比重组蛋白大约小 34.7 kDa, 比前体蛋白大约小 8.4 kDa (图 5b)。

2.6 鳗弧菌感染前后香鱼血清和单核/巨噬细胞上清 中 PaTNF-α 的表达变化

采用 Western blot 检测鳗弧菌感染前后香鱼血清

和单核/巨噬细胞上清中 PaTNF-α 的表达。结果显示, 鳗弧菌感染后,香鱼血清中 PaTNF-α 的表达显著增加,4 h 时鳗弧菌感染香鱼血清中 PaTNF-α 的表达量 为对照组的 5.20 倍,8 h 后含量达到峰值,为对照组的 13.22 倍,随感染时间延长,12 和 24 h 血清中的含量 略微下降,但仍为对照组的 12.55 倍和 11.55 倍(图 6a)。香鱼单核/巨噬细胞感染鳗弧菌后,培养基上清 中 PaTNF-α 的表达也显著增加,在12 h 达到峰值,为 对照组的 2.92 倍, 在 24 h 时略有降低, 但仍为对照组的 1.92 倍(图 6b)。

图 5 PaTNF- α 的原核表达和抗血清检测

Fig.5 Prokaryotic expression of PaTNF-α and the detection of its antiserum

a: SDS-PAGE 检测 PaTNF-α 的原核表达,考马斯亮蓝 G-250 染色。 M: 低相对分子质量标准蛋白质(kDa); 1: BL21 plys E, IPTG 诱导; 2: pGEX-4T-3-PaTNF-α/BL21 plys E, IPTG 诱导; 3: PaTNF-α 重组 蛋白的切胶纯化产物; b: Western blot 检测 PaTNF-α 抗血清特异性, ECL 显影。NC: 空白对照; 4: 原核表达产物; 5: 香鱼血清; 6: 香 鱼单核/巨噬细胞上清

3 讨论

TNF- α 是一种具有多效性的促炎性细胞因子,在

哺乳动物以及某些鱼类中被广泛克隆和报道。本研究从 香鱼单核/巨噬细胞转录组数据库中获得了 PaTNF- α 全 长 cDNA 序列。序列分析结果揭示, PaTNF- α 氨基酸 序列与其它鱼类都拥有 TNF 家族的特征序列 "IIIPDDGIYFVYSQ",它与虹鳟的 TNF- α 氨基酸序列 同源性最高,为 53.4%。系统进化树分析表明,鱼类 TNF- α 独立成簇,香鱼与虹鳟 TNF- α 进化相关性最 高。Western blot 分析结果表明,香鱼血清和单核/巨 噬细胞上清中 PaTNF- α 的分子量均为 18 kDa 左右, 与预测的 PaTNF- α 经 TACE 加工裂解之后产生的成 熟肽分子量大小一致。Lu *et al* 研究表明,香鱼 TACE 能影响头肾来源单核/巨噬细胞中 PaTNF- α 的表达 (Lu *et al*, 2015)。因此,可以推测鱼类 TACE 能影响 TNF- α 的释放(Horiuchi *et al*, 2010; Lu *et al*, 2015)。

表达特征分析表明, PaTNF-α mRNA 在健康香鱼 被检组织与细胞中有不同程度的表达,且在头肾的 表达量最高,与已报道的鲤鱼(Savan *et al*, 2004)和条 纹婢鎓(*Latris lineata*) (Covello *et al*, 2009)等鱼类研究 结果较为一致。目前,已有较多文献揭示,鱼类 TNF-α 的表达与病原体感染密切相关,主要体现为, 病原体感染后鱼类 TNF-α 的表达显著上调(Hirono *et al*, 2000; Zhang *et al*, 2012; Wang *et al*, 2013)。例如, 草鱼感染嗜水气单胞菌(*Aeromonas hydrophila*)后, 肝 TNF-α mRNA 的表达在 12 h和 24 h时分别上调 2.2 倍和 2.1 倍, 48 h 时达到最高(2.24 倍), 脾 TNF-α

图 6 Western blot 检测鳗弧菌感染前后香鱼血清和单核/巨噬细胞上清中 PaTNF-α 的表达变化 Fig.6 Western blot analysis of PaTNF-α in ayu serum and monocytes/macrophage supernatant after *V. anguillarum* infection a: 不同感染时间香鱼血清中 PaTNF-α Western blot 条带及灰度值分析; b: 不同感染时间香鱼单核/巨噬细胞上清中 PaTNF-α Western blot 条带及灰度值分析。*: 与对照组相比差异显著(*P*<0.05) (*n*=3)

mRNA 的表达在 3 h 时达到峰值、上调 6.64 倍、头肾 TNF-α mRNA 表达量在 3 h 时达到峰值, 上调 17.16 倍,6h时上调约11倍,随后降至对照组水平(Wang et al, 2014); 草鱼感染杀鲑气单胞菌 (Aeromonas salmonicida)3 h 和 24 h 时, 脾 TNF-α mRNA 的表达 量分别增加约 100 倍和 4 倍(Zanuzzo et al, 2015)。本 研究中, 香鱼感染鳗弧菌后, 肝、头肾和外周血白细 胞中 PaTNF-α mRNA 表达变化趋势与上述研究结果 相似、但达到峰值的时间点和峰值不同、肝、头肾和 外周血白细胞 PaTNF-α mRNA 在感染 12 h 时达到最 高,分别为对照组的 30.08、11.69 和 2.20 倍,而脾 PaTNF- α mRNA 表达量在 4 h 时即达到峰值,为对照 组的 19.52 倍。本研究还发现、鳗弧菌感染后、香鱼 血清中 PaTNF- α 的表达逐渐增加,8h时达到峰值,为 对照组的 13.22 倍, 12 h 和 24 h 时略微下降, 但仍显 著高于对照组。

头肾是硬骨鱼类重要的造血组织和免疫器官, 含有丰富的单核/巨噬细胞,已知单核/巨噬细胞是鱼 类 TNF-α 的主要产生部位(Stafford et al, 2001; Hong et al, 2013)。因此, 我们从香鱼头肾中分离了单核/巨 噬细胞, 分别研究了 LPS、poly(I: C)和鳗弧菌刺激对 其 PaTNF-α mRNA 表达的影响,结果表明, LPS、 poly(I: C)和鳗弧菌都能诱导香鱼单核/巨噬细胞 PaTNF-α mRNA 表达量显著增加, 与已报道的虹鳟 (Zou et al, 2003; Hong et al, 2013)、 鲤鱼(Saeij et al, 2003)和草鱼(Zhang et al, 2012; Wang et al, 2013)等鱼 类较为一致。在草鱼中, poly(I: C)免疫刺激肾细胞 8 h 时, TNF-α mRNA 表达量上调了 61 倍, 而 GCRV 免疫 刺激肾细胞 24 h, TNF-α mRNA 表达量上调了 51 倍 (Wang et al, 2013); 在虹鳟中, LPS 和 poly(I: C)诱导 头肾巨噬细胞 TNF-α mRNA 表达的变化趋势相同, 均在4h时达到峰值,但LPS的诱导明显强于 poly(I: C), LPS 诱导 4 h 时头肾巨噬细胞 TNF-α mRNA 表达 上调约 1000 倍, 而此时 poly(I: C)诱导 TNF-α mRNA 表达上调约 80 倍(Hong et al, 2013)。上述研究中、各 免疫刺激对鱼类 TNF-α mRNA 表达的诱导程度均高 于本研究结果,可能由于 LPS 和 poly(I: C)的处理浓 度不同所致。同时、鳗弧菌对 PaTNF- α mRNA 表达的 诱导程度高于 LPS 和 poly(I: C)的诱导, 且较早达到 峰值。Zhang 等(2012)研究还揭示, LPS 诱导草鱼头肾 白细胞培养基上清中 TNF-α 浓度显著增加, 12 h 时达 到最高, 与本研究中鳗弧菌诱导香鱼单核/巨噬细胞 上清 PaTNF-α 的表达较为一致。上述研究结果揭示、 头肾来源的单核/巨噬细胞是鱼类 TNF-α 的重要产生 部 位, 在 免 疫 刺 激 下 短 期 内 大 量 合 成 并 释 放 TNF-α(Hirono *et al*, 2000; Xie *et al*, 2008; Zhang *et al*, 2012)。

4 结论

本研究测定了香鱼 TNF-α cDNA 序列, 序列分析 揭示其与虹鳟 TNF-α 序列最相似。健康香鱼中, PaTNF-α mRNA 在头肾中表达量最高; 腹腔注射鳗 弧菌后, 香鱼肝、脾、头肾和外周白血细胞中 PaTNF-α mRNA 表达量显著上调; 头肾来源的单核/巨噬细胞 经鳗弧菌、LPS 和 poly(I: C)体外处理后 PaTNF-α mRNA 表达量增加; 鳗弧菌感染后香鱼血清和单核/ 巨噬细胞上清中的 PaTNF-α 表达量含量也显著增加, 揭示香鱼 TNF-α 表达与鳗弧菌感染紧密相关, 可能 参与病原体感染诱导的炎症免疫反应。研究结果为进 一步研究鱼类 TNF-α 的生物学功能及其在鱼类病原 体感染的炎症反应中的作用机制提供基础资料。

参考文献

- 李长红,陈 炯,史雨红等,2009. 宁海地区香鱼弧菌病病原 菌鉴定. 微生物学报,49(7):931—937
- 杨旦阳, 陈 炯, 陆新江等, 2013. 香鱼 *CCL4-like* 基因的克 隆、序列分析及免疫相关性表达变化分析. 中国细胞生物 学学报, 35(5): 676—683
- 黄左安,陈 炯,陆新江等,2011. 香鱼凝血因子 X 基因表达 与鳗利斯顿氏菌感染的相关性. 动物学研究,32(5): 492—498
- Bradford M M, 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem, 72(1-2): 248-254
- Covello J M, Bird S, Morrison R N *et al*, 2009. Cloning and expression analysis of three striped trumpeter (*Latris lineata*) pro-inflammatory cytokines, TNF- α , IL-1 β and IL-8, in response to infection by the ectoparasitic, *Chondracanthus goldsmidi*. Fish Shellfish Immunol, 26(5): 773–786
- Grayfer L, Walsh J G, Belosevic M, 2008. Characterization and functional analysis of goldfish (*Carassius auratus* L.) tumor necrosis factor-alpha. Dev Comp Immunol, 32(5): 532—543
- Gruys E, Toussaint M J M, Niewold T A et al, 2005. Acute phase reaction and acute phase proteins. J Zhejiang Univ Sci, 6B(11): 1045—1056
- Hirono I, Nam B -H, Kurobe T *et al*, 2000. Molecular cloning, characterization, and expression of TNF cDNA and gene from Japanese flounder *Paralychthys olivaceus*. J Immunol, 165(8): 4423—4427
- Hong S, Li R G, Xu Q Q et al, 2013. Two types of TNF-α exist in teleost fish: phylogeny, expression, and bioactivity analysis of type-II TNF-α3 in rainbow trout Oncorhynchus mykiss. J Immunol, 191(12): 5959–5972
- Horiuchi T, Mitoma H, Harashima S et al, 2010. Transmembrane

TNF- α : structure, function and interaction with anti-TNF agents. Rheumatology, 49(7): 1215—1228

- Laing K J, Wang T H, Zou J *et al*, 2001. Cloning and expression analysis of rainbow trout *Oncorhynchus mykiss* tumour necrosis factor-α. Eur J Biochem, 268(5): 1315–1322
- Lam F W-S, Wu S-Y, Lin S-J *et al*, 2011. The expression of two novel orange-spotted grouper (*Epinephelus coioides*) TNF genes in peripheral blood leukocytes, various organs, and fish larvae. Fish Shellfish Immunol, 30(2): 618–629
- Livak K J, Schmittgen T D, 2001. Analysis of relative gene expression data using real-time quantitative PCR and the $2^{-\Delta\Delta CT}$ method. Methods, 25(4): 402–408
- Lu X J, Chen J, He Y Q *et al*, 2013. Molecular characterization of an IL-1β gene from ayu, *Plecoglossus altivelis*. Fish Shellfish Immunol, 34(5): 1253–1259
- Lu X J, Chen Q, Yang G J *et al*, 2015. The TNFα converting enzyme (TACE) from ayu (*Plecoglossus altivelis*) exhibits TNFα shedding activity. Mol Immunol, 63(2): 497–504
- Ordás M C, Costa M M, Roca F J *et al*, 2007. Turbot TNFα gene: molecular characterization and biological activity of the recombinant protein. Mol Immunol, 44(4): 389–400
- Rajmani R S, Singh P K, Kumar G R et al, 2015. In-vitro characterization and evaluation of apoptotic potential of bicistronic plasmid encoding HN gene of Newcastle disease virus and human TNF-α. Anim Biotechnol, 26(2): 112—119
- Saeij J P J, Stet R J M, de Vries B J et al, 2003. Molecular and functional characterization of carp TNF: a link between TNF polymorphism and trypanotolerance?. Dev Comp Immunol, 27(1): 29—41
- Savan R, Sakai M, 2004. Presence of multiple isoforms of TNF alpha in carp (*Cyprinus carpio* L.): genomic and expression analysis. Fish Shellfish Immunol, 17(1): 87–94
- Stafford J L, McLauchlan P E, Secombes C J et al, 2001. Generation of primary monocyte-like cultures from rainbow trout head kidney leukocytes. Dev Comp Immunol, 25(5—6): 447—459
- Tamura K, Stecher G, Peterson D et al, 2013. MEGA6: Molecular

evolutionary genetics analysis version 6.0. Mol Biol Evol, 30(12): 2725–2729

- Van Horssen R, ten Hagen T L M, Eggermont A M M, 2006. TNF- α in cancer treatment: molecular insights, antitumor effects, and clinical utility. Oncologist, 11(4): 397–408
- Wang H, Shen X B, Xu D et al, 2013. Lipopolysaccharideinduced TNF-α factor in grass carp (*Ctenopharyngodon idella*): evidence for its involvement in antiviral innate immunity. Fish Shellfish Immunol, 34(2): 538–545
- Wang L, Liu L C, Zhou Y et al, 2014. Molecular cloning and expression analysis of mannose receptor C type 1 in grass carp (*Ctenopharyngodon idella*). Dev Comp Immunol, 43(1): 54—58
- Willrich M A V, Murray D L, Snyder M R, 2015. Tumor necrosis factor inhibitors: clinical utility in autoimmune diseases. Transl Res, 165(2): 270–282
- Xiao J, Zhou Z C, Chen C et al, 2007. Tumor necrosis factor-alpha gene from mandarin fish, *Siniperca chuatsi*: Molecular cloning, cytotoxicity analysis and expression profile. Mol Immunol, 44(14): 3615–3622
- Xie F J, Zhang Z P, Lin P et al, 2008. Cloning and infection response of tumour-necrosis factor alpha in large yellow croaker *Pseudosciaena crocea* (Richardson). J Fish Biol, 73(5): 1149—1160
- Zanuzzo F S, Urbinatia E C, Rise M L et al, 2015. Aeromonas salmonicida induced immune gene expression in Aloe vera fed steelhead trout, Oncorhynchus mykiss (Walbaum). Aquaculture, 435: 1—9
- Zhang A Y, Chen D Y, Wei H *et al*, 2012. Functional characterization of TNF- α in grass carp head kidney leukocytes: induction and involvement in the regulation of NF- κ B signaling. Fish Shellfish Immunol, 33(5): 1123–1132
- Zou J, Peddie S, Scapigliati G et al, 2003. Functional characterisation of the recombinant tumor necrosis factors in rainbow trout, Oncorhynchus mykiss. Dev Comp Immunol, 27(9): 813–822

MOLECULAR CLONING, CHARACTERISATION AND IMMUNE-RELATED EXPRESSION OF TUMOR NECROSIS FACTOR α (TNF-α) GENE IN AYU PLECOGLOSSUS ALTIVELIS

YANG Zhi-Jing, LI Chang-Hong, ZHANG Hao, MIAO Liang, CHEN Jiong

(Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo 315211, China)

Abstract Tumor necrosis factor alpha (TNF- α) is a member of TNF superfamily, playing an important role in fighting against bacteria and viruses infection in animals. We obtained and studied that of ayu Plecoglossus altivelis, known as TNF- α (PaTNF- α) gene, with *de novo* transcriptome sequencing of ayu monocytes/macrophages. The full-length of cDNA sequence of the gene was 1932 nucleotides, containing a large open reading frame that encoded 235 amino acids, and the molecular mass was deduced for 26.4 kDa. The multiple sequence alignment of complete amino acid sequences indicates that PaTNF- α possessed the TNF family signature motifs, a protease cleavage site, and a conserved disulfide bond. PaTNF- α shared the highest amino acid sequence identity (53.4%) with that of rainbow trout (Oncorhynchus mykiss). Phylogenetic tree analysis also confirmed that PaTNF- α fell into the fish TNF- α cluster and was most closely related to that of rainbow trout. Quantitative real-time PCR (qRT-PCR) analysis showed that PaTNF-a mRNA had the highest expression level in head kidney of healthy ayu. Upon Vibrio anguillarum infection, PaTNF-a transcripts upregulated significantly in the liver, spleen, head kidney, and peripheral blood leucocytes (PBLs). Upon lipopolysaccharide (LPS), poly (I: C), or V. anguillarum infection, PaTNF- α transcripts upregulated remarkably in avu monocytes/macrophages. The mature peptide of PaTNF- α was overexpressed and the antiserum against PaTNF- α was prepared. The Western blot assay demonstrated that PaTNF- α increased obviously in ayu serum and monocyte/macrophage culture supernatant that infected with V. anguillarum. Therefore, the relationship between PaTNF- α expression and pathogen infection is close, which may provide a theoretical basis for studying the functions of fish TNF- α and mechanisms of regulating fish immune response to pathogens.

Key words TNF-α; *Plecoglossus altivelis*; *Vibrio anguillarum*; monocyte/macrophage; expression