用微卫星分析细鳞鲑(Brachymystax lenok) 连续 3 代选育群体的遗传结构*

黄天晴 徐革锋 谷 伟 王炳谦 张玉勇 郑先虎 姚作春 赵 成 鲁翠云

(中国水产科学研究院黑龙江水产研究所 哈尔滨 150070)

摘要 本研究拟利用微卫星标记分析细鳞鲑($Brachymystax\ lenok$)连续 3 代选育群体的遗传结构及差异。通过筛选出的 22 对细鳞鲑微卫星引物,利用 PCR 进行扩增后进行毛细管凝胶电泳,利用 GeneMapper V4.1 软件进行图像收集和数据分析。在 3 代共 96 个样本中共检测到 181 个等位基因,各标记检测的等位基因数为 2—26 个,平均为 8.227 个; 3 代平均等位基因数(N_a)为 6.500—6.773,平均有效等位基因数(N_e)为 3.356—3.649,3 代间 N_a 和 N_e 差异均不显著; 3 代平均观测杂合度(H_e)为 0.462—0.530,平均多态信息含量(PIC)为 0.459—0.525,平均期望杂合度(H_e)为 0.494—0.566; F_2 和 F_3 的 H_e 、PIC 3 项遗传多样性参数均显著低于 F_1 (P<0.05); Hard-Weinberg 平衡检验结果表明细鳞鲑 3 代选育群体整体保持了遗传平衡状态,但经 Bonferroni 校正后,尚有 2 个标记在 F_1 和 F_3 极限著偏离遗传平衡(P<0.0005),3 个标记在 F_2 极限著偏离遗传平衡(P<0.0005)。细鳞鲑在选育过程中通过群体选育等方法注重了对稀有等位基因的保护,在细鳞鲑多代选育过程中保持了较高的多态性水平,但在选育过程中某些等位基因出现了富集现象,3 代间的遗传分化也较小,仅 1.49%的遗传变异来自群体间,表明细鳞鲑群体尚具有持续选育的潜力。

关键词 细鳞鲑; 微卫星标记; 遗传结构

中图分类号 O789 doi: 10.11693/hyhz20180100022

细鳞 鲑 (Brachymystax lenok) 隶属于 鲑形目 (Salmoniformes), 鲑科(Salmonidae), 细鳞鲑属, 在我国主要分布于东北部的黑龙江、鸭绿江、图门江、绥芬河等流域(李思忠, 1984)。细鳞鲑肉质细嫩鲜美, 必需氨基酸含量远高于鲤(Cyprinus carpio L.)、鲫(Carassius auratus)等淡水鱼类(徐革锋等, 2010), 具有较高的营养和经济价值。为了保护和利用细鳞鲑资源,中国水产科学研究院黑龙江水产研究所从乌苏里江及牡丹江采捕细鳞鲑亲鱼,于 2003—2010 年连续进行了人工繁殖及养殖试验,掌握了细鳞鲑全人工繁育技术(牟振波等, 2013), 对细鳞鲑的繁殖生理(牟振波等, 2008; 徐革锋等, 2009a)、苗种的早期发育

(李永发等, 2009; 徐革锋等, 2013)及生长生理(Liu et al, 2015; Xu et al, 2015; 徐革锋等, 2016)开展了一系列的研究, 实现了细鳞鲑规模化苗种繁育及养殖, 在此基础上开展了细鳞鲑良种的选育, 目前已经培育至 F_3 , 使其逐步成为广泛养殖的名特优品种之一。

相对而言,细鳞鲑遗传方面的研究开展较少,徐革锋等(2009b)分析了乌苏里江、鸭绿江和牡丹江细鳞鲑的染色体核型;王荻等(2009)用 AFLP 标记的分析结果表明牡丹江细鳞鲑群体的多态性比例最高(67.80%),鸭绿江群体次之(55.81%),而乌苏里江群体最低(33.39%);夏颖哲等(2006)和张艳萍等(2014)分别用线粒体 D-loop 区序列分析了细鳞鲑及秦岭细

^{*}中央级公益性科研院所基本科研业务费专项, HSY201601号; 现代农业产业技术体系专项资金资助, CARS-46号; 中国水产科学研究院基本科研业务费, 2018HY-ZD0302号; 国家水产种质资源平台, 2018DKA30470号。黄天晴, 博士, E-mail: huangtianqing@hrfri.ac.cn

鳞鲑(Brachymystax lenok tsinlingensis)的遗传结构,线粒体全基因组序列的比对结果显示两者 98.3%的核苷酸序列相同(Si et al, 2012)。近年来,微卫星标记(microsatellite)因其多态性高、呈现共显性遗传等特点成为研究群体遗传分化的首选标记,但细鳞鲑的微卫星标记资源相对有限(Liu et al, 2014; Yu et al, 2014),制约了其在细鳞鲑种质鉴定、遗传保护方面的应用。本研究从遗传标记积累较多的近缘种虹鳟(Oncorhynchus mykiss)的微卫星标记中,筛选了适用于细鳞鲑遗传分析的标记,并分析了细鳞鲑连续 3 代选育群体的遗传结构及差异,以期为细鳞鲑种质资源保护以及遗传选育提供物质基础。

1 材料与方法

1.1 实验材料

细鳞鲑($Brachymystax\ lenok$)群体样本均采自中国水产科学研究院黑龙江水产研究所丹东繁育基地。野生细鳞鲑于 2002 年采捕于乌苏里江虎头江段,培育成熟后于 2003—2010 年实现了全人工繁殖(牟振波等,2013),并以 2009 年生产的苗种建立细鳞鲑 F_1 选育基础群体,2011 年和 2014 年繁殖获得 F_2 和 F_3 选育基础群体。2015 年 4 月,随机采集每代选育群体 32 尾,其中 F_1 (7 龄)平均体重为 2415±765g,平均体长为 60.5±7.4cm; F_2 (4 龄)平均体重为 1018±380g,平均体长 45.6±7.7cm; F_3 (1 龄)平均体重为 139±30.6g,平均体长为 20.8±1.8cm。剪取部分鳍条组织用以提取基因组 DNA(李超等,2014)。

1.2 微卫星引物

利用 GenBank 数据库中检索的虹鳟微卫星引物 150 对分析随机 4个细鳞鲑样本,检测标记的适用性、稳定性及多态性。64 对引物在细鳞鲑中获得了稳定、清晰的目的条带,38 对引物在个体间表现出多态性,最终选择 22 个微卫星标记检测了全部 96 个样本的基因型。引物信息及在虹鳟高密度遗传图谱(Rexroad III et al, 2008)上的位置见表 1。

1.3 DNA 提取及 PCR 扩增

利用基因组 DNA 提取试剂盒(Axygen)提取细鳞 鲑鳍条组织的基因组 DNA, 经过紫外分光光度计 (260/280)测定浓度和纯度后,调整浓度至 50ng/ μ L。 采用毛细管电泳技术检测 96 个样本的基因型,在正向引物的 5'端标记蓝色(FAM)和绿色(HEX)荧光,建立 15μ L PCR 扩增反应体系,包括 1.5mmol/L MgCl₂、50mmol/L KCl, 10mmol/L Tris-Cl (pH 8.3), 200μ mol/L

dNTP、微卫星引物、0.3μmol/L、100ng DNA 模板及 1U *Taq* DNA 聚合酶。PCR 反应程序为 94°C 3min; 94°C 30s, 56°C 30s, 72°C 30s, 25 个循环; 72°C 5min。反应结束后,用 3730XL 遗传分析仪(ABI)进行毛细管凝胶电泳,利用 GeneMapper V4.1 软件进行图像收集和数据分析。

1.4 数据分析

使用软件"鱼类种质资源遗传分析装置 (ZL200710144749.3)"进行数据转换,用 PopGene32 (Version 1.32)软件计算每个微卫星标记的等位基因数 (observed number of alleles, N_a)、等位基因频率 (allele frequency, P)、有效等位基因数 (effective number of alleles, N_e)、观测杂合度 (observed heterozygosity, H_o) 和期望杂合度 (expected heterozygosity, H_e)。标记的多态性信息含量 (polymorphism information content, PIC)按照 Botstein 等(1980)的方法计算,公式如下:

PIC =
$$1 - \left(\sum_{i=1}^{n} P_i^2\right) - \left(\sum_{i=1}^{n-1} \sum_{j=i+1}^{n} 2P_i^2 P_j^2\right)$$

式中, n 为某一位点上等位基因数, P_i 、 P_j 分别为第 i 和第 j 个等位基因在群体中的频率, j=i+1。

用 GenePop(Version 4.2)软件进行 χ^2 检验估计群体 Hardy-Weinberg 平衡偏离。

群体的遗传分化系数(F_{st})、基因流系数(N_{m})以及 群体间的遗传相似性指数(I)及遗传距离(D_{s})也由 PopGene32 软件计算, 运行 PHYLIP (version3.696)软件 的 Neighbor 程序, 绘制群体间基于 UPGMA 的聚类图。

2 结果

2.1 PCR 扩增结果

用随机 4 个细鳞鲑样本初步筛选 150 个虹鳟微卫星标记,在 56°C 退火温度下,64 个标记扩增出清晰、稳定的目的条带,38 个标记表现出不同程度的多态性。选择其中22 个微卫星标记用毛细管电泳技术分析了细鳞鲑连续3 代选育群体96 个样本的基因型,结果共检测到181 个等位基因,片段大小为118—355bp,每个标记扩增到2—26 个等位基因,平均为8.227(表1),其中16 个标记(72.73%)检测到4 个以上的等位基因,检测到等位基因数(N_a)最多的标记为OMM1236,扩增出26 个等位基因;N_a最少的标记为OMM1236,扩增出26 个等位基因;N_a最少的标记为OMM1192、OMM1263 和OMM3065,仅检测到2个等位基因。标记OMM1329 在全部96 个细鳞鲑样本的毛细管电泳图谱见图1。

表1 微卫星引物序列及扩增情况 Tab.1 Sequence and amplified result of microsatellite markers

860

		דמטיז אליני דימטיז	Tablit Sequence and amplitica result of miscrosatemite markets				
标记	GenBank 注册号	正向引物序列(5'3')	反向引物序列(5'3')	重复序列	片段长度 (bp)	等位基因数 (N _a)	虹鳟连锁群
OMM1042	BV722064	GCCTGCCTCTGCTAGTAGTCA	TAGCCTACTCAGCAGTGAGAGGTATAG	(CTAT) ₂₁	127—238	18	12
OMM1145	AF375040	CTCCTTCGGTGAAGTAAACCT	TTCGGTAAGTTCATGTCGC	$(GA)_{13}$	134—158	~	6
OMM1192	AF469977	GGGCTCATGGAAGCATTAACGC	TCGCATCCACAAAGGTAGGTAGGC	$(GT)_{15}$	290—300	2	12
OMM1231	AF470011	TCCACCTGCTCTGACCTCTACTCA	GCAGCCAGAGAACAGTAAGCATGT	$(CTAT)_{11}$	232—279	12	1
OMM1236	AF470016	GGACAGATTCACGGGTGTCT	ATCGGTTGTTAACTAGTGTGGC	(ATCT) ₁₈	240—324	26	7
OMM1263	AF470029	CTGCATTCCAATACTCCACAG	TGGACGAACACTGGATCAG	$(CA)_{29}$	261—284	2	3
OMM1329	G73564	GGGAAGTGTTCACCATTACACAAG	CATCCAGGAACGCACCTTTA	(CATC),	126—240	6	8
OMM1372	BV005159	CACTTCATGATGCCGAAAGCAG	CCCCCATCATGACTCCTTCTAGTT	$(GA)_{11}$	217—234	4	sex
OMM1727	BV212207	GGCCATCATCCATATCAG	GGAGGAGGCTACAAGTC	$(CAT)_8$	224—245	~	4
OMM1762	BV212231	CCTCTAATTTCACTCGGATG	CCTTTGTCTGTCTTAAACCC	$(AG)_{20}$	147—208	13	28
OMM3042	BV722029	ATTCAAAGGGCCTCATGCAT	TGCATGTGTTCCCTTGGAAA	$(CA)_{18}$	153—159	3	11
OMM3048	BV078106	CACAAATGAAAAGGGCAGAG	GCCTCTAAAGCAAACCATCA	$(CA)_{24}$	192—203	5	7
OMM3065	BV078105	GCCCAAACCATGACAACA	GGTGTTCATGCTTTTGCAGACT	$(GT)_{26}$	118—122	2	17
OMM3080	BV678008	TCAGGGACATCATAGTAGGGA	TACCCACCCACA0CTGACTTAT	(GT) ₆	175—181	Э	2
OMM3081	BV678009	CCTCCCTTTCTCGACCTCC	CAGCTCTCTCGCGTTCTCC	(CT) ₁₃	196—234	5	ю
OMM3126	BV683039	AGACAGCGAGGCTTACTACTG	GTCCTCGCTACTGGCATAA	$(GT)_{18}$	263—296	6	17
OMM5006	CA347214	AAGGCATCATTGGTGATAACAAGG	GGGACGATGCTTTGGCTAAGA	$(GA)_{19}$	220—239	4	27
OMM5044	CA349174	GCCCACATAAACACAGACGCA	GTCCGGTGGTTGAGCAGTACA	$(CA)_{27}$	168—188	~	20
OMM5106	CA348902	GGTATGATGCCTCTGAATGAACAGTAT	ACCAGTTGGTGTTTAACTCATATCAGC	$(CA)_{16}$	271—355	20	19
OMM5136	BV211865	CCAGCACTTTCTGTCTCATA	CTCCACAGGCCTTATTACTT	$(AT)_{17}$	171—200	12	sex
OMM5192	BX317661	CCGACGCAGGACATACATAC	GGGATGGTAAGGCAGTCAGA	$(CA)_{31}$	312—331	જ	14
BX076085	BX076085	AAGACAGGAGATGAAGACACCG	ATATGTCGTGGGAAACATGTAGG	$(GT)_{12}$	178—182	3	sex

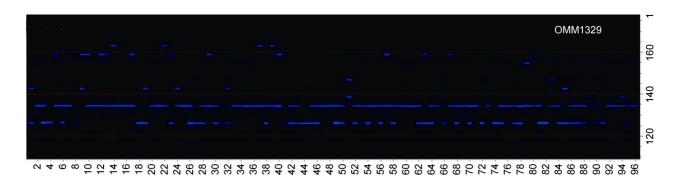


图 1 细鳞鲑 3 代选育群体在微卫星标记 OMM1329 的毛细管电泳图谱
The capillary electrophoretogram of the three-generation breeding populations of *B. Janak* at *C*

Fig. 1 The capillary electrophoretogram of the three-generation breeding populations of *B. lenok* at OMM1329 注: 1—32: F₁ 群体; 33—64: F₂ 群体; 65—96: F₃ 群体

2.2 连续 3 代细鳞鲑选育群体遗传结构分析

细鳞鲑 F₁选育群体在 22 个微卫星标记的等位基 因数 (N_a) 为 2—17、平均为 6.500;有效等位基因数 (N_e) 为 1.032—10.722, 平均为 3.649。 F₂选育群体的 N_a为 2-21, 平均为 6.773; Ne 为 1.032-12.412, 平均为 3.356。F₃选育群体的 N_a为 1—17,平均为 6.773; N_e为 1.000—11.571, 平均为 3.624。 成对样本的 T 检验结果 显示 N_a 和 N_c 在细鳞鲑连续 3 代选育群体间差异不显 著。细鳞鲑 F_1 选育群体的观测杂合度 (H_0) 为 0.031—0.969, 平均为 0.530; 期望杂合度(H_e)为 0.031-0.921, 平均为 0.566。 F_2 选育群体的 H_0 为 0.031—0.875、平均为 0.462; H_e为 0.031—0.934、平均 为 0.494。F₃ 选育群体的 H₀ 为 0.000—0.969, 平均为 0.474; He 为 0.000—0.928, 平均为 0.519。 成对样本的 T 检验结果显示细鳞鲑 F_2 和 F_3 选育群体的 H_0 和 H_0 显 著低于 F_1 选育群体(P < 0.05),而 F_2 和 F_3 差异不显著。 细鳞鲑 F_1 选育群体的多态信息含量(PIC)为 0.030— 0.900, 平均为 0.525; F₂选育群体的 PIC 为 0.030— 0.919, 平均为 0.459; F₃选育群体的 PIC 为 0.000— 0.907, 平均 为 0.481。 可见, F₁选育群体处于高度多态水平(PIC 0.5) (Botstein et al, 1980), 而 F₂和 F₃选育群体虽然保持了中 度多态水平(0.25 PIC<0.5) (Botstein et al, 1980), 但是 与 F₁ 相比多态信息含量已显著降低。

用 GenePop(Version 4.2)软件分析了细鳞鲑连续 3 代选育群体的 Hardy-Weinberg 遗传偏离,结果表明细鳞鲑 3 代选育群体整体保持了遗传平衡状态 (multi-loci test, P=1),但经 Bonferroni 校正后, F_1 选育群体在 OMM1762 和 OMM3048 极限著偏离遗传平衡 (P<0.0005), F_2 选育群体在 OMM1145、OMM1329 和 OMM3048 极限著偏离遗传平衡(P<0.0005), F_3 选育群体在 OMM5192 极限著偏离遗传平衡 (P<0.0005)。除了 F_2 选育群体在 OMM1329 表现为杂合子显著过剩外,其余均表现为杂合子显著不足。详细统计数据见表 2。

2.3 连续 3 代细鳞鲑选育群体的遗传分化

用 PopGene32 软件计算的细鳞鲑连续 3 代选育群体间近交系数($F_{\rm st}$)为 0.0053—0.0329,平均为 0.0149,表明 1.49%的遗传差异来自群体间,说明群体间遗传分化较弱。连续 3 代选育群体的基因流($N_{\rm m}$)为 7.3393—47.2500,平均为 16.5748,表明群体间有广泛的遗传交流。群体间遗传距离为 0.0219—0.0252,遗传相似系数为 0.9751—0.9782, $F_{\rm l}$ 与 $F_{\rm l}$ 间遗传距离最小(0.0219),遗传相似系数最大(0.9782); $F_{\rm l}$ 与 $F_{\rm l}$ 间遗传距离最大(0.0252),遗传相似系数最小(0.9751)(表 3)。利用 UPGMA 法构建的群体遗传关系聚类图如图 2 所示。

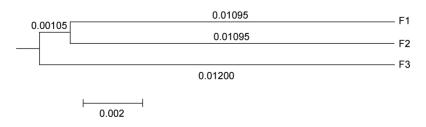


图 2 依据群体间的遗传距离构建的 UPGMA 聚类图

Fig. 2 The clustering of populations built by UPGMA method according to their genetic distances

表 2 细鳞鲑连续 3 代选育群体在 22 个微卫星标记的遗传多样性参数及 Hardy-Weinberg 遗传平衡分析结果 Tab.2 Genetic diversity index and Hardy-Weinberg equilibrium analysis of 22 microsatellite markers for *B. lenok*

F ₁ N ₃ /N _c H ₀ /H _c PIC 14/7.699 0.875/0.884 0.858 7/4.947 0.594/0.810 0.771 2/1.032 0.031/0.031 0.030 11/8.192 0.969/0.892 0.866 17/10.039 0.906/0.915 0.892 2/1.358 0.312/0.268 0.229 5/3.012 0.656/0.679 0.618 3/2.042 0.281/0.518 0.444 6/1.907 0.438/0.483 0.446 9/3.287 0.250/0.230 0.213 4/2.216 0.250/0.230 0.213 4/2.216 0.250/0.268 0.209 3/1.415 0.344/0.298 0.500 0.504/0.662 0.622 4/1.527 0.656/0.657 0.652/0.585 0.662/0.585 0.662/0.585 0.662/0.585 0.6622	there are a cont	ווומרי מוומ ז	ididy - Weilloele	equinomani anaiy	SIS UI 77 III	ici osatellite	ndes and margy-weinforg equinificant analysis of 22 interestation in all D. Terror	enon		
N ₃ /N _e H ₀ /H _e PIC 14/7.699 0.875/0.884 0.858 7/4.947 0.594/0.810 0.771 2/1.032 0.031/0.031 0.030 11/8.192 0.966/0.915 0.866 17/10.039 0.906/0.915 0.802 2/1.358 0.312/0.268 0.229 5/3.012 0.656/0.679 0.618 3/2.042 0.281/0.518 0.444 6/1.907 0.438/0.483 0.446 9/3.287 0.531/0.707 0.657 3/1.292 0.250/0.230 0.213 4/2.216 0.219/0.558 0.500 2/1.358 0.312/0.268 0.265 3/2.359 0.562/0.585 0.486 7/2.872 0.594/0.662 0.621 4/1.527 0.406/0.351 0.320 8/2.829 0.656/0.657 0.622	F_{1}			${ m F}_2$				F_3		
14/7.699 0.875/0.884 0.858 7/4.947 0.594/0.810 0.771 2/1.032 0.031/0.031 0.030 11/8.192 0.969/0.892 0.866 17/10.039 0.906/0.915 0.892 2/1.358 0.312/0.268 0.229 5/3.012 0.656/0.679 0.618 3/2.042 0.656/0.679 0.618 6/1.907 0.438/0.483 0.446 9/3.287 0.531/0.707 0.657 3/1.292 0.250/0.230 0.213 4/2.216 0.219/0.558 0.500 2/1.358 0.312/0.268 0.265 3/2.359 0.562/0.585 0.486 7/2.872 0.594/0.662 0.621 4/1.527 0.406/0.351 0.320 8/2.829 0.656/0.657 0.622		$P_{ m HWE}$	$N_{\rm a}/N_{\rm e}$	$H_{\rm o}/H_{ m e}$	PIC	P _{HWE}	$N_{\rm a}/N_{\rm e}$	H _o / H _e	PIC	P _{HWE}
7/4.947 0.594/0.810 0.771 2/1.032 0.031/0.031 0.030 11/8.192 0.969/0.892 0.866 17/10.039 0.906/0.915 0.892 2/1.358 0.312/0.268 0.229 5/3.012 0.656/0.679 0.618 3/2.042 0.281/0.518 0.446 6/1.907 0.438/0.483 0.446 9/3.287 0.531/0.707 0.657 3/1.292 0.250/0.230 0.213 4/2.216 0.219/0.558 0.500 2/1.358 0.312/0.268 0.265 3/2.359 0.562/0.585 0.486 7/2.872 0.594/0.662 0.621 4/1.527 0.406/0.351 0.320 8/2.829 0.656/0.657 0.622		0.419	14/8.225	0.844/0.892	0.867	0.914	14/9.102	0.969/0.904	0.880	0.040
2/1.032 0.031/0.031 0.030 11/8.192 0.969/0.892 0.866 17/10.039 0.906/0.915 0.892 2/1.358 0.312/0.268 0.229 5/3.012 0.656/0.679 0.618 3/2.042 0.281/0.518 0.444 6/1.907 0.438/0.483 0.446 9/3.287 0.531/0.707 0.657 3/1.292 0.250/0.230 0.213 4/2.216 0.219/0.558 0.500 2/1.358 0.312/0.268 0.265 3/2.359 0.562/0.585 0.486 7/2.872 0.594/0.662 0.621 4/1.527 0.406/0.351 0.320 8/2.829 0.656/0.657 0.622		0.011	7/4.064	0.594/0.766	0.723	0.000**	8/4.785	0.563/0.804	0.764	0.041
11/8.192 0.969/0.892 0.866 17/10.039 0.906/0.915 0.892 2/1.358 0.312/0.268 0.229 5/3.012 0.656/0.679 0.618 3/2.042 0.281/0.518 0.444 6/1.907 0.438/0.483 0.446 9/3.287 0.531/0.707 0.657 4/2.216 0.250/0.230 0.213 4/2.216 0.219/0.558 0.500 2/1.358 0.312/0.268 0.265 3/1.415 0.344/0.298 0.265 3/2.359 0.562/0.585 0.486 7/2.872 0.406/0.351 0.320 8/2.829 0.656/0.657 0.622		1.000	2/1.032	0.031/0.031	0.030	1.000	1/1.000	0.000/0.000	0.000	_
17/10.039 0.906/0.915 0.892 2/1.358 0.312/0.268 0.229 5/3.012 0.656/0.679 0.618 3/2.042 0.281/0.518 0.444 6/1.907 0.438/0.483 0.446 9/3.287 0.531/0.707 0.657 3/1.292 0.250/0.230 0.213 4/2.216 0.219/0.558 0.500 2/1.358 0.312/0.268 0.265 3/2.359 0.562/0.585 0.486 7/2.872 0.594/0.662 0.621 4/1.527 0.406/0.351 0.320 8/2.829 0.656/0.657 0.622		0.372	11/7.699	0.875/0.884	0.856	0.091	10/8.292	0.875/0.893	898.0	0.861
2/1.358 0.312/0.268 0.229 5/3.012 0.656/0.679 0.618 3/2.042 0.281/0.518 0.444 6/1.907 0.438/0.483 0.446 9/3.287 0.531/0.707 0.657 3/1.292 0.250/0.230 0.213 4/2.216 0.219/0.558 0.500 2/1.358 0.312/0.268 0.265 3/1.415 0.344/0.298 0.265 3/2.359 0.562/0.585 0.486 7/2.872 0.594/0.662 0.621 4/1.527 0.406/0.351 0.320 8/2.829 0.656/0.657 0.622		0.074	21/12.412	0.844/0.934	0.919	0.011	17/11.571	0.969/0.928	0.907	0.779
5/3.012 0.656/0.679 0.618 3/2.042 0.281/0.518 0.444 6/1.907 0.438/0.483 0.446 9/3.287 0.531/0.707 0.657 3/1.292 0.250/0.230 0.213 4/2.216 0.219/0.558 0.500 2/1.358 0.312/0.268 0.265 3/1.415 0.344/0.298 0.265 3/2.359 0.562/0.585 0.486 7/2.872 0.594/0.662 0.621 4/1.527 0.406/0.351 0.320 8/2.829 0.656/0.657 0.622		0.324	2/1.133	0.125/0.119	0.110	0.746	2/1.098	0.094/0.091	0.085	0.822
3/2.042 0.281/0.518 0.444 6/1.907 0.438/0.483 0.446 9/3.287 0.531/0.707 0.657 3/1.292 0.250/0.230 0.213 4/2.216 0.219/0.558 0.500 2/1.358 0.312/0.268 0.229 3/1.415 0.344/0.298 0.265 3/2.359 0.562/0.585 0.486 7/2.872 0.594/0.662 0.621 4/1.527 0.406/0.351 0.320 8/2.829 0.656/0.657 0.622		0.681	6/2.236	0.625/0.562	0.496	0.000**	8/2.513	0.625/0.612	0.531	0.999
6/1.907 0.438/0.483 0.446 9/3.287 0.531/0.707 0.657 3/1.292 0.250/0.230 0.213 4/2.216 0.219/0.558 0.500 2/1.358 0.312/0.268 0.229 3/1.415 0.344/0.298 0.265 3/2.359 0.562/0.585 0.486 7/2.872 0.594/0.662 0.621 4/1.527 0.406/0.351 0.320 8/2.829 0.656/0.657 0.622		0.003	4/2.077	0.312/0.527	0.436	0.154	4/2.301	0.406/0.574	0.483	0.368
9/3.287 0.531/0.707 0.657 3/1.292 0.250/0.230 0.213 4/2.216 0.219/0.558 0.500 2/1.358 0.312/0.268 0.229 3/1.415 0.344/0.298 0.265 3/2.359 0.562/0.585 0.486 7/2.872 0.594/0.662 0.621 4/1.527 0.406/0.351 0.320 8/2.829 0.656/0.657 0.622		0.994	5/1.538	0.375/0.355	0.330	0.991	7/1.665	0.406/0.406	0.382	0.999
3/1.292 0.250/0.230 0.213 4/2.216 0.219/0.558 0.500 2/1.358 0.312/0.268 0.229 3/1.415 0.344/0.298 0.265 3/2.359 0.562/0.585 0.486 7/2.872 0.594/0.662 0.621 4/1.527 0.406/0.351 0.320 8/2.829 0.656/0.657 0.622		0.000**	8/2.214	0.531/0.557	0.514	0.239	8/3.205	0.625/0.699	0.634	0.024
4/2.216 0.219/0.558 0.500 2/1.358 0.312/0.268 0.229 3/1.415 0.344/0.298 0.265 3/2.359 0.562/0.585 0.486 7/2.872 0.594/0.662 0.621 4/1.527 0.406/0.351 0.320 8/2.829 0.656/0.657 0.622		0.905	3/1.135	0.125/0.121	0.114	0.991	3/1.210	0.188/0.177	0.166	0.964
2/1.358 0.312/0.268 0.229 3/1.415 0.344/0.298 0.265 3/2.359 0.562/0.585 0.486 7/2.872 0.594/0.662 0.621 4/1.527 0.406/0.351 0.320 8/2.829 0.656/0.657 0.622		0.000**	5/1.853	0.250/0.468	0.436	0.000**	4/1.645	0.219/0.398	0.366	0.000**
3/1.415 0.344/0.298 0.265 3/2.359 0.562/0.585 0.486 7/2.872 0.594/0.662 0.621 4/1.527 0.406/0.351 0.320 8/2.829 0.656/0.657 0.622		0.324	2/1.168	0.156/0.146	0.134	0.670	2/1.064	0.062/0.062	0.059	868.0
3/2.359 0.562/0.585 0.486 7/2.872 0.594/0.662 0.621 4/1.527 0.406/0.351 0.320 8/2.829 0.656/0.657 0.622		0.744	3/1.250	0.219/0.203	0.188	0.939	3/1.336	0.188/0.256	0.237	0.059
7/2.872 0.594/0.662 0.621 4/1.527 0.406/0.351 0.320 8/2.829 0.656/0.657 0.622		0.831	4/2.263	0.594/0.567	0.459	0.948	5/2.392	0.469/0.591	0.504	0.830
4/1.527 0.406/0.351 0.320 8/2.829 0.656/0.657 0.622		0.446	7/3.408	0.781/0.718	0.671	0.953	8/2.589	0.531/0.624	0.578	0.760
8/2.829 0.656/0.657 0.622		0.929	4/1.211	0.188/0.177	0.167	0.999	4/1.253	0.156/0.205	0.194	0.142
		0.834	7/2.266	0.656/0.568	0.532	986.0	8/2.609	0.688/0.626	0.583	0.999
0.600	0.938/0.921 0.900	0.888	18/9.225	0.875/0.906	0.883	0.382	16/11.130	0.844/0.925	0.903	0.043
OMM5136 10/6.282 0.844/0.854 0.822 0.274		0.274	11/4.339	0.656/0.782	0.745	0.727	10/5.491	0.844/0.831	0.794	0.921
OMM5192 3/1.336 0.219/0.256 0.237 0.146		0.146	2/1.098	0.094/0.091	0.085	0.822	4/1.379	0.188/0.279	0.256	0.000**
BX076085 3/2.550 0.719/0.618 0.526 0.512		0.512	3/1.994	0.406/0.506	0.402	0.382	3/2.107	0.531/0.534	0.416	866.0
均值 6.500/3.649 0.530/0.566 0.525 /			6.773/3.356	0.462/0.494	0.459	_	6.773/3.624	0.474/0.519	0.481	/

注: P_{HWE}, Hardy-Weinberg 平衡检验概率值; *, P<0.0023; **, P<0.0005

表 3 群体间遗传距离(对角线上)与遗传相似度(对角线下) Tab.3 Nei's genetic distance (above diagonal) and genetic identity (below diagonal)

群体	F_1	F_2	F_3
F_1	****	0.9782	0.9751
F_2	0.0219	****	0.9775
F_3	0.0252	0.0228	****

3 讨论

细鳞鲑作为我国珍稀的土著冷水性鱼类、其自 然资源量急剧下降,在中国濒危动物红皮书中已被 列为易危物种(汪松, 1998), 保护和合理开发细鳞鲑 势在必行。目前、细鳞鲑在完成规模化人工繁殖苗种 的基础上, 开展了以生长和怀卵量为目标的选育, 已 获得 F3 苗种。维持群体的遗传多样性水平是群体持 续利用的前提、遗传多样性越高、性状改良潜力及育 种价值也就越大。本研究用 22 个虹鳟微卫星标记评 估细鳞鲑连续 3 代选育群体的遗传结构、3 代平均观 测杂合度(H₀)分别为 0.530、0.462 和 0.474, 期望杂合 度 (H_e) 平均为 0.566、0.494 和 0.519, F_1 群体的 H_0 和 H_e 均高于 Jia 等(2008)用 13 个虹鳟微卫星标记分析的 乌苏里江野生细鳞鲑群体的杂合度 $(H_0=0.5056)$ H_e =0.5465),但 F_2 和 F_3 的杂合度已显著低于野生群 体。与 F_1 群体相比, F_2 群体的 H_0 和 H_e 分别降低了 12.83%和 12.72%, F3 群体降低了 10.57%和 8.30%, 表 明细鳞鲑已经受到人工选择的影响,导致部分位点 纯合子比例增加, 尤其在等位基因数较少的标记如 OMM1263、OMM3065、OMM3080 等。累代选育致 使群体遗传多样性降低在其他鱼类也有发现, 大黄 鱼 F_4 选育群体的 H_0 从 F_1 的 0.779 下降到 0.532, 下降 了 31.71%(赵广泰等, 2010); 翘嘴鳜 F₄选育群体的 H₆ 从 F1 的 0.405 下降到 0.229, 下降了 43.46%(郑荷子 等, 2013), 说明鱼类在选育初期, 遗传多样性呈现较 大幅度的降低、而选育代数较多的"新吉富"罗非鱼 F_{13} 选育群体的 H_0 从 F_{10} 的 0.5744 下降到 0.5256, 仅 下降了8.50%(于爱清等, 2011), 也说明随着选择代数 的增加, 遗传多样性趋于稳定。多态信息含量(PIC) 直观反应了群体的遗传多样性水平, 细鳞鲑连续 3 代 选育群体的 PIC 在 0.459—0.525, 表明群体均处于中 高度多态水平(PIC 0.25) (Botstein et al, 1980), 尚具 有一定的遗传选育潜力, 而显著降低的遗传参数也 提示我们在今后的选育工作中,应该注重维持和保 护选育群体的遗传多样性, 制定合理的选育种策略, 以确保顺利进行选育工作。

遗传分化系数(Fst)是反映群体间遗传分化程度 的重要参数。Wright(1978)将群体间遗传分化程度划 分为轻度(F_{st} =0—0.05)、中度(F_{st} =0.05—0.15)、较大 $(F_{st}=0.15-0.25)$ 和极大 $(F_{st}>0.25)$ 。本研究结果显示细 鳞鲑连续 3 代选育群体在 22 个微卫星标记的 F_{st} 为 0.0053-0.0329, 平均为 0.0149, 表明群体间遗传分 化较弱、但是 F_1 与 F_3 间的遗传距离(0.0252)略远于 F_1 与 F₂间(0.0219)。由于细鳞鲑选育代数较少, 后续累 代选育群体间的遗传分化趋势尚无法预测。但在选育 代数较多的罗非鱼中的研究结果显示 Fo 与 Fs、Fo之 间的 F_{st} 平均值(0.06840)大于 F_0 与 F_6 、 F_7 之间 (0.05103), 而 F₀ 与 F₈、F₉ 之间遗传距离(0.0691 和 0.0722)相对于 F₀与 F₆、F₇之间(0.0581 和 0.0595)也 有加大的趋势、表明随着选育世代的增加、后续世代 与 F₀ 的遗传距离逐代增大、遗传相似性逐代减小、也 表明 9 代选育在罗非鱼世代间形成了中度的遗传分 化(颉晓勇等, 2007)。鉴于此, 在人工定向选育过程中, 细鳞鱼选育群体趋于遗传纯化的趋势无法避免。因此, 在细鳞鲑的开发利用过程中、建议采用保护与选育 并举的策略、同时建立保种和育种 2 个群体、保种群 体最大限度地保持细鳞鲑种质资源库的遗传多样性、 并适当补充野生资源、在保种的同时也可补充后续 育种群体遗传多样性的不足: 育种群体在进一步选 育中、保持适当比例的选择压力以便使选育群体的 优良性状得到持续提高, 同时应采用分子标记辅助 选育, 使与目标性状相关的位点尽快纯合固定, 而其 它位点尽可能保持多态,并适当增加每代繁育亲本 的数量、减少近交繁殖可能带来的负面影响。

4 结论

综上所述,本研究选用虹鳟微卫星标记分析了连续3代细鳞鲑选育群体的遗传结构,鉴定出22对可用于细鳞鲑遗传育种研究的微卫星标记,分析结果也为细鳞鲑的持续选育、种质保护及持续利用提供参考。

参考文献

于爱清, 李思发, 蔡完其, 2011. "新吉富"罗非鱼选育 $F_{10} \sim F_{13}$ 遗传变异微卫星分析. 上海海洋大学学报, 20(1): 1—7

王 荻, 徐革锋, 刘 洋等, 2009. 细鳞鱼三个野生种群的遗传多样性 AFLP 分析. 农业生物技术学报, 17(4): 638—644

牟振波, 李永发, 徐革锋等, 2013. 细鳞鱼全人工繁育技术的

- 研究. 水产学杂志、26(1): 15-18
- 牟振波, 徐革锋, 杨双英, 2008. 细鳞鱼卵巢滤泡细胞的发育及功能. 中国水产科学, 15(1): 167—171
- 李 超, 鲁翠云, 郑先虎等, 2014. 一种保存鱼类鳍条的便捷 方法. 水产学杂志, 27(1): 22—24
- 李永发, 丛 宇, 徐革锋等, 2009. 细鳞鱼发眼卵孵化及仔、稚鱼培育. 水产学杂志, 22(4): 34—35
- 李思忠, 1984. 中国鲑科鱼类地理分布的探讨. 动物学杂志, 19(1): 76—79
- 汪 松, 1998. 中国濒危动物红皮书: 鱼类. 北京: 科学出版 社, 35—37
- 张艳萍, 杜岩岩, 王 太等, 2014. 秦岭细鳞鲑群体遗传结构 生态学报, 34(17): 4950—4956
- 郑荷子, 易提林, 梁旭方等, 2013. 翘嘴鳜连续 4 代选育群体 遗传多样性及遗传结构分析. 淡水渔业, 43(6): 8—12
- 赵广泰, 刘贤德, 王志勇等, 2010. 大黄鱼连续 4 代选育群体 遗传多样性与遗传结构的微卫星分析. 水产学报, 34(4): 500—507
- 夏颖哲,盛 岩,陈宜瑜,2006. 利用线粒体 DNA 控制区序列 分析细鳞鲑种群的遗传结构. 生物多样性,14(1): 48—54
- 徐革锋, 叶远涛, 刘 洋等, 2010. 雌雄细鳞鱼肌肉营养成分比较分析, 水产学杂志, 23(2): 29—33
- 徐革锋, 刘 洋, 李永发等, 2013. 细鳞鲑早期发育过程中的消化系统发生. 中国水产科学, 20(4): 733—742
- 徐革锋, 刘 洋, 郝其睿等, 2016. 不同蛋白质和脂肪水平对细鳞鲑幼鱼生长和肌肉氨基酸含量的影响. 中国水产科学, 23(6): 1311—1319
- 徐革锋, 李永发, 范兆廷等, 2009a. 细鳞鱼卵子发生过程中细胞器的形态变化与作用. 动物学杂志, 44(6): 81—88
- 徐革锋, 牟振波, 薛淑群等, 2009b. 不同流域细鳞鱼染色体遗传多态性分析. 水生生物学报, 33(5): 975—979
- 颉晓勇,李思发,蔡完其,2007. 吉富品系尼罗罗非鱼选育过程中遗传变异的微卫星分析. 水产学报、31(3):385—390

- Botstein D, White R L, Skolnick M *et al*, 1980. Construction of a genetic linkage map in man using restriction fragment length polymorphisms. American Journal of Human Genetics, 32(3): 314—331
- Jia Z Y, Zhang Y Y, Shi L Y et al, 2008. Amplification of rainbow trout microsatellites in *Brachymystax lenok*. Molecular Ecology Resources, 8(6): 1520—1521
- Liu Q, Li Y, Liang H W et al, 2014. Isolation and characterization of fourteen novel microsatellite loci from Brachymystax lenok tsinlingensi. Journal of Genetics, 93(2): e35—e37
- Liu Y, Li Z J, Zhang T L *et al*, 2015. Growth and energy budget of juvenile lenok *Brachymystax lenok* in relation to ration level. Chinese Journal of Oceanology and Limnology, 33(2): 347—355
- Rexroad III C E, Palti Y, Gahr S A *et al*, 2008. A second generation genetic map for rainbow trout (*Oncorhynchus mykiss*). BMC Genetics, 9: 74
- Si S J, Wang Y, Xu G F et al, 2012. Complete mitochondrial genomes of two lenoks, *Brachymystax lenok* and *Brachymystax lenok tsinlingensis*. Mitochondrial DNA, 23(5): 338—340
- Wright S, 1978. Variability Within and Among Natural Populations. Chicago: The University of Chicago Press, 114
- Xu G F, Wang Y Y, Han Y *et al*, 2015. Growth, feed utilization and body composition of juvenile Manchurian trout, *Brachymystax lenok* (Pallas) fed different dietary protein and lipid levels. Aquaculture Nutrition, 21(3): 332—340
- Yu J N, Kim S, Lim C E, 2014. Development of 21 novel microsatellite markers for conservation genetic studies of *Brachymystax lenok tsinlingensis*, an endangered species in Korea, using next-generation sequencing. Conservation Genetics Resources, 6(1): 213—216

GENETIC STRUCTURE OF THREE CONSECUTIVE BREEDING GENERATIONS OF BRACHYMYSTAX LENOK REVEALED BY MICROSATELLITE MARKERS

HUANG Tian-Qing, XU Ge-Feng, GU Wei, WANG Bing-Qian, ZHANG Yu-Yong, ZHENG Xian-Hu, YAO Zuo-Chun, ZHAO Cheng, LU Cui-Yun (Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin 150070, China)

Abstract Brachymystax lenok is a commercially important cold-water fish widely distributed throughout the eastern Siberia including portions of Kazakhstan, Mongolia, China, and Korea. Genetic structure and genetic variation in 96 individuals from three generations of the fish were studied to optimize selective breeding of the fish. Samples of the fin clip were randomly collected from F₁, F₂, and F₃ populations. Total DNA was extracted into the concentration of to 50ng/µL. Samples were amplified by 22 polymorphic microsatellite markers from rainbow trout Oncorhynchus mykiss labeled with FAM (blue) and HEX (green) and analyzed by capillary electrophoresis. A total of 181 alleles were detected in the fragment size of 118-355bp among the 96 individuals. The number of alleles varied from two to 26 per locus in the average of 8.227. The average number of alleles (N_a) of F₁, F₂, and F₃ was 6.500, 6.773, and 6.773, respectively. The average number of effect alleles (N_e) of F_1 , F_2 , and F_3 was 3.649, 3.356, and 3.624, respectively. The N_a and N_e value of the 22 markers showed no significant difference among generations. The average observed heterozygosity (H_0) and expected heterozygosity (H_e) were from 0.462 to 0.5303 and 0.494 to 0.566 among generations, respectively. The average polymorphism information content (PIC) ranged from 0.459 to 0.525. The H_0 , H_e , and PIC of F_2 and F_3 were significantly lower than that of F_1 (P<0.05). The three populations accorded with Hard-Weinberg equilibrium checked by χ^2 test. Highly significant deviations from Hardy-Weinberg equilibrium were observed in five markers involving the F₁ (OMM1762 and OMM3048), F₂ (OMM1145, OMM1329, and OMM3048), and F₃ (OMM3048 and OMM5192) after Bonferroni correction (P<0.0005). These deviations were due to heterozygote deficits except of OMM1329 in F₂ population. The genetic differentiation is very weak ($F_{s}=0.0149<0.05$) with only 1.49% genetic variation between generations. The lenok kept more rare alleles in the process of breeding by population selection, the three populations of lenok were at moderate and high level genetic diversity, and several allele enriching in the selection process. Therefore, the genetic differentiation was very weak, suggesting that the species remained suitable for further selective breeding, which may provide a reference to the germplasm resource protection and continuous selection breeding.

Key words Brachymystax lenok; microsatellite; genetic structure