三疣梭子蟹含硒谷胱甘肽过氧化物酶 基因克隆及其表达分析^{*}

李 蒙^{1,2,3} 王金凤^{1,2,3,4} 黄 骞^{1,2,3,4} 李才文^{1,2,3,4}

(1. 中国科学院海洋研究所 海洋生态与环境科学重点实验室 青岛 266071; 2. 青岛海洋科学与技术国家实验室 海洋生 态与环境科学功能实验室 青岛 266237; 3. 中国科学院海洋大科学研究中心 青岛 266071; 4. 中国科学院大学 北京 100049)

摘要 为探究三疣梭子蟹的免疫机制以及谷胱甘肽过氧化物酶(GPx)在甲壳动物响应寄生虫感染 免疫过程中的作用,本研究采用 RACE 方法从三疣梭子蟹中克隆获得硒半胱氨酸-谷胱甘肽过氧化物 酶基因的全长 cDNA 序列,其 cDNA 序列全长为 696bp, 5'-UTR 长度为 102bp, 3'-UTR 长度为 87bp,开 放阅读框长度为 507bp,编码 168 个氨基酸,其中含有一个典型的由蛋白石终止密码子(²²⁰TGA²²²)编 码的硒半胱氨酸(⁴⁰U)。预测了该基因编码的氨基酸序列及其中的保守结构域,包括 GPx 家族签名序 列(⁶⁴LAFPCNQF⁷¹)、活性位点序列(¹⁵²WNFEKF¹⁵⁷)以及与酶催化活性相关的氨基酸位点包括谷氨酰 胺(⁷⁴Q)、精氨酸(⁹⁰R 和 ¹⁶⁸R)和色氨酸(¹⁴²W)。相似性比对和系统发育分析结果表明,三疣梭子蟹硒 半胱氨酸-谷胱甘肽过氧化物酶(SeGPx)与甲壳动物中的 SeGPxs 相似性较高,其中与拟穴青蟹 SeGPx 相似性最高,并与其在系统发育树中聚为一支。经血卵涡鞭虫侵染后(0—192h), SeGPx 基因在三疣梭 子蟹的血细胞、肝胰腺和鳃组织中的转录水平均发生显著性升高。该结果表明,SeGPx 在三疣梭子蟹 应对血卵涡鞭虫的免疫反应中发挥重要作用,可通过调控甲壳宿主体内被病原扰乱的氧化还原状态 进而起到宿主组织保护作用。

关键词 甲壳动物;固有免疫;寄生虫;谷胱甘肽过氧化物酶基因;分子克隆;基因表达 中图分类号 S917 doi: 10.11693/hyhz20180500128

谷胱甘肽过氧化物酶(Glutathione peroxidase, GPx)是一类广泛存在于需氧生物体内的重要抗氧化 酶。GPxs 家族成员一般可分为两大类型,分别为不含 硒谷胱甘肽过氧化物酶(non-selenium-dependent GPx, non-SeGPx)和含硒谷胱甘肽过氧化物酶(seleniumdependent GPx, SeGPx)(Arthur, 2001; Brigelius-Flohé *et al*, 2013)。而且,在哺乳动物中,GPxs 家族成员可 进一步分为 8 种不同亚型(Herbette *et al*, 2007; Margis *et al*, 2008; Toppo *et al*, 2008)。作为重要抗氧化酶,谷 胱甘肽过氧化物酶可将活性氧种类(Reactive oxygen species, ROS),如无机过氧化物(H₂O₂)或者有机过氧 化物催化产生水或者酒精,进而参与生物体内氧化还 原稳态的调控过程(Ursini *et al*, 1995)。而最新研究表 明, GPxs 除了具有对 ROS 的催化功能外, 还可在生 物机体中发挥某些新型生理功能, 例如 GPx1 对胰岛 素信号通路的调控作用、GPx2 的致癌过程、GPx3 参 与机体炎症反应、GPx4 参与细胞凋亡过程、GPx5 参 与精子发生过程以及 GPx7 和 GPx8 参与潜在的蛋白 折叠过程(Brigelius-Flohé *et al*, 2013)。

相较于脊椎动物而言, GPxs 在甲壳动物中的功能研究仍相对较少。目前, GPx 基因仅在少数虾、蟹甲壳类动物中,如凡纳滨对虾(Litopenaeus vannamei)、脊尾白虾(Exopalaemon carinicauda)、克氏原螯虾(Procambarus clarkii)、中国明对虾

通信作者: 李才文, 博士生导师, 研究员, E-mail: cwli@qdio.ac.cn 收稿日期: 2018-05-24, 收修改稿日期: 2018-08-29

^{*}国家自然科学基金面上项目, 41676102 号; 支持"率先行动"中国博士后科学基金会与中国科学院联合资助优秀博士后项目, 2016LH0034 号; 中国博士后科学基金第 60 批面上资助项目, 2016M600561 号。李 蒙, 博士后, E-mail: limeng@qdio.ac.cn

(Fenneropenaeus chinensis)、罗氏沼虾(Macrobrachium rosenbergii)、斑节对虾(Penaeus monodon),以及拟穴 青蟹(Scylla paramamosain)中克隆获得(Liu et al, 2007; Ren et al, 2009; Yeh et al, 2009; Liu et al, 2010; Fu et al, 2012; Duan et al, 2013; Xia et al, 2013)。而且,近 年来的研究结果表明, GPx 基因可参与甲壳动物对细 菌、病毒等病原感染的免疫响应过程,在甲壳动物的 固有免疫中发挥重要作用(Liu et al, 2007; Ren et al, 2009; Yeh et al, 2009; Liu et al, 2010; Fu et al, 2012; Duan et al, 2013; Xia et al, 2013)。

三疣梭子蟹是广泛分布于东亚沿海地区的重要 海产经济蟹类之一。在我国、三疣梭子蟹养殖在海产 蟹类养殖业中具有重要地位、近年来其年产量均超 过10万吨,其中2016年养殖产量为125000吨,产值 逾100余亿元(农业部渔业渔政管理局、2017)。然而、 自 2004 年以来、血卵涡鞭虫逐渐成为引发三疣梭子 蟹流行病害"牛奶病"的重要寄生性病原,给我国三疣 梭子蟹养殖业造成巨大的经济损失, 严重妨碍我国 海产蟹类养殖业的可持续、健康发展(许文军等, 2007; 李才文等, 2014a, b; 王金凤等, 2015; Li et al, 2013; Wang et al, 2017)。而探究三疣梭子蟹对血卵涡鞭虫的 免疫机制可为该寄生虫流行性疾病的防控提供重要 理论依据。因此、在本研究中、我们克隆分析了三疣 梭子蟹 GPx 基因的全长 cDNA 序列, 并进一步检测了 经血卵涡鞭虫侵染后该基因在三疣梭子蟹多个重要 组织中的转录表达变化,初步探究了 GPx 基因在甲 壳动物固有免疫中的重要作用。

1 材料和方法

1.1 实验动物和病原准备

从山东青岛市胶南当地养殖场采购三疣梭子蟹 [体重(140±10)g],采用血涂片镜检法和特异性 PCR 扩增法对用于本实验的三疣梭子蟹进行血卵涡鞭虫 感染检测分析(Stentiford *et al*, 2005; Small *et al*, 2007a),确认无该寄生虫感染。将三疣梭子蟹置于室 内水循环系统中[盐度=30,温度=(23±0.5)°C,氨 =0—0.3mg/L,亚硝酸盐=0—0.6mg/L, pH=7.4—8.2] 驯养1周后开展后续相关实验。

采集血卵涡鞭虫重度感染蟹作为免疫刺激实验中的病原供体,病原分离准备工作可参见 Small 等 (2007b)。简言之,将约 0.5mL 感染血卵涡鞭虫的蟹血 淋巴液加入含有 10mL MAM 缓冲液(Small *et al*, 2007b)的无菌 25cm²细胞培养瓶中,室温放置 30min。

然后,将培养瓶中的虫体细胞悬浮液转入新的无菌 25cm² 细胞培养瓶中,室温放置 30min。收集虫体细 胞悬浮液并在转速为 400g 和 7°C 条件下离心 10min, 弃上清后保留虫体细胞沉淀。采用 MAM 缓冲液洗涤 血卵涡鞭虫两次后,对悬浮液中血卵涡鞭虫的数量 进行计数,将虫体细胞浓度稀释至 1.0×10⁶cells/mL, 用于后续 2.5 部分的实验中。

1.2 总 RNA 提取和反转录 PCR

采用 Trizol 试剂(TaKaRa, Japan)提取组织总 RNA, 采用无 RNA 酶的 DNAase I (TaKaRa, 日本)去除基因 组 DNA 污染。RNA 样品质量及浓度采用 NanoDrop 2000 紫外分光光度计(A260nm/A280nm)进行测定分 析,并通过 1%的琼脂糖凝胶电泳分析 RNA 样品中 28S rRNA 和 18S rRNA 条带的完整性检测 RNA 样品 完整性。使用 PrimeScriptTM反转录试剂盒(TaKaRa 公 司,日本),根据说明书操作反转录合成 cDNA 第一 链,保存于-80°C 超低温冰箱中用于后续基因转录表 达分析。

1.3 三疣梭子蟹 GPx 基因的全长 cDNA 序列克隆

根据已克隆获得三疣梭子蟹 GPx 基因的 cDNA 序列中间片段(GenBank 序列号: KU529652), 使用 Primer Premier 5.0 软件设计基因特异性引物序列(表 1), 采用 SMART RACE cDNA 扩增试剂盒(Clontech, USA)分别克隆获得 GPx 基因的 5'和 3'末端 cDNA 序 列。首先按照 RACE 试剂盒的操作说明、将三疣梭子 蟹肝胰腺组织总 RNA 样品反转录合生用于后续 5′和 3' RACE PCR 扩增的 cDNA 第一链模板。RACE 扩增 的外层 5'和 3'末端 PCR 反应分别采用基因特异性引 物 5gsp1 和 3gsp1 与 UPM 引物配对, PCR 反应程序设 置为: 94°C 预变性 5min; 94°C 变性 30s, 68°C 退火 30s (每个循环降 1°C), 72°C 延伸 1min(15 个循环); 94°C 变性 30s, 58°C 退火 30s, 72°C 延伸 1min(28 个循环), 最后 72°C 延伸 10min。RACE 扩增的内层 5'和 3'末 端 PCR 反应分别采用基因特异性引物 5gsp2 和 3gsp2 与 NUP 引物配对, PCR 程序同上。采用 TA 克隆试剂 盒(TaKaRa 公司、日本)将 5'和 3' RACE-PCR 内层扩 增产物插入 pMD19-T 载体中、挑选含有重组质粒的 10 个阳性单克隆菌落送至 Invitrogen 公司测序。最 后, 通过 Lasergene 软件(DNAStar 公司, 美国)对 GPx 基因的中间 cDNA 序列、5'和 3'末端 cDNA 序 列进行拼接,从而获得三所梭子蟹 GPx 基因的全长 cDNA 序列。

Table 1 The primers used for the 5 - and 5 - KACE and qKI-1 CK					
引物名称	引物序列 (5'—3')	引物用途			
PtSeGPx-5gsp1	TCCACCTTGCCAAACATCTCCAT	5/DACE			
PtSeGPx-5gsp2	CTCCTCGTGAGTGGTGTTTTCCTG	J KACE			
PtSeGPx-3gsp1	GCTDATCCAGAACACGGCG				
PtSeGPx-3gsp2	GTCCTGGTAACAACTTTGAGCC	3'RACE			
PtSeGPx-QRT-F	GTCCTGGTAACAACTTTGAGCC	DT DOD			
PtSeGPx-QRT-R	ATGATACACTTGGGGTCTGCC	qRI-PCR			
β -actin-qF	TCACACACTGTCCCCATCTACG	qRT-PCR			
β-actin-qR	ACCACGCTCGGTCAGGATTTTC				
UPM	Long-CTAATACGACTCACTATAGGGCAAGCAG-TGGTATCAACGCAGAGT Short-CTAATACGACTCACTATAGGGC	5′和 3′RACE			
NUP	AAGCAGTGGTATCAACGCAGAGT	5′和 3′RACE			

表1 本研究中 5'和 3' RACE 扩增和实时荧光定量 PCR 引物 Tab 1 The primers used for the 5', and 2' RACE and aPT PCP

1.4 序列和系统发育分析

采用 MUSCLE 在线软件对 PtSeGPx 氨基酸序列 与其他物种 GPxs 氨基酸序列进行比对分析(http:// www.ebi.ac.uk/Tools/msa/muscle/), 通过 Lasergene 软 件中的 MegAlign 程序分析 PtSeGPx 氨基酸序列与已 报道 GPxs 氨基酸序列的相似性。采用 MEGA 5.0 软 件(http://www.megasoftware.net/)基于邻接法构建系 统发育树对 PtSeGPx 进行系统发育分析。上述序列分 析中所使用的其他物种 GPxs 序列可参见表 2。此外、 通过在线分析工具 InterPro(http://www.ebi.ac.uk/ interpro/)MotifScan(http://mvhits.isb-sib.ch/cgi-bin/mo tif scan)对 PtSeGPx 蛋白序列中的保守结构域进行预 测分析。N-连接糖基化位点通过 NetNGlyc 1.0 Server 进行预测分析 (http://www.cbs.dtu.dk/services/ NetNGlyc/)。PtSeGPx 蛋白的三维结构通过在线分析 软件 Swiss-model(http://swissmodel.expasy.org/)进行 分析,其分子量和等电点则通过 LasergeneR 软件 (DNASTAR Inc., USA)中的 EditSeq 程序分析获得。

1.5 *PtSeGPx* 基因经血卵涡鞭虫侵染后的转录表达 分析

为了获得 *PtSeGPx* 基因经血卵涡鞭虫免疫刺激 后的转录表达变化,本文经由 70%酒精擦拭后的第 五步足关节膜对实验组中的三疣梭子蟹(*n*=40)注射 100μL 含有血卵涡鞭虫滋养体细胞的 Nephrops 缓冲 液(Shields *et al*, 2000),注射剂量为 10⁵虫体细胞/个 体;对照组中的三疣梭子蟹(*n*=40)则注射等体积 Nephrops 缓冲液。本实验已有研究表明,上述血卵涡 鞭虫注射剂量可有效引发三疣梭子蟹的免疫响应(Li *et al*, 2015a, b)。实验期间,实验组和对照组分别放置 于相同环境条件下的独立循环水系统中进行喂养。在 实验起始后 6、12、24、48、96 和 192h 时进行样品 采集,于实验组和对照组中在每个时间点随机选取 5 只梭子蟹进行解剖取样,采集鳃、肝胰腺和血细胞样 品,采集方法可参见 Li 等(2015a, b)。此外,本文在免 疫刺激实验起始前采集 5 只未处理的三疣梭子蟹个 体相应的组织样品作为后续数据分析的空白对照。

经血卵涡鞭虫侵染后,采用实时荧光定量 PCR 检测分析 PtSeGPx 基因在三疣梭子蟹中三个重要组 织中(鳃、肝胰腺和血细胞)的转录表达水平,实时荧 光定量 PCR 的引物参见表 1、引物序列的特异性通过 溶解曲线和 1%琼脂糖凝胶电泳分析进行确认。实时 荧光定量 PCR 仪器采用 Rotor-Gene Q 2plex HRM 热 循环仪(QIAGEN, 德国), 采用 25µL PCR 反应体系, 包括 12.5 µL SYBR Premix Ex Tag II (2×) (TaKaRa, Japan)、10µmol/L上、下游引物各 0.5、1µL cDNA 模 板和 10.5μL 无菌水, 每个反应设置 3 个重复。PCR 程序设定为: 95°C 预变性 30s, 然后 95°C 变性 5s, 60°C 退火 30s (40 个循环)。PCR 反应完成后添加溶 解曲线评估 PCR 扩增反应的特异性,并依据公式 E=10^(-1/slope)测定实时荧光定量 PCR 的扩增效率 (Rasmussen, 2001)。采用 $2^{-\Delta\Delta Ct}$ 方法(Livak *et al*, 2001), 以 β-actin 作为内参基因计算目的基因的相对 mRNA 表达量(Liu et al, 2013; Li et al, 2015a, b)。

1.6 数据分析

实验数据以平均值 \pm 标准差(mean \pm SD)的形式呈现,采用统计分析软件 SPSS 20.0 对数据进行单因素 方差分析(ANOVA)和 Duncan 多重比较显著性分析。 P<0.05表示数据具有显著性差异。

表 2 本研究中用于序列分析的 GPx 基因家族序列 Tab 2 The members of GPx family used for sequence analysis

序列名称	GenBank 序列号	来源物种
三疣梭子蟹 GPx	KY216076	Portunus trituberculatus
拟穴青蟹 GPx	AEN69448	Scylla paramamosain
日本沼虾 GPx	ADV17661	Macrobrachium nipponense
罗氏沼虾 GPx	ACM68948	Macrobrachium rosenbergii
脊尾白虾 GPx	AGJ03551	Exopalaemon carinicauda
栉孔扇贝 GPx	ACF25900	Chlamys farreri
文蛤 GPx	ADR51677	Meretrix meretrix
紫贻贝 GPx	ADY38576	Mytilus galloprovincialis
背角无齿蚌 GPx	ANG56607	Sinanodonta woodiana
菲律宾蛤仔 GPx	ACU83220	Ruditapes philippinarum
九孔鲍 GPx	ADF80272	Haliotis diversicolor supertexta
非洲爪蟾 GPx1	NP_001088896	Xenopus laevis
非洲爪蟾 GPx3a	NP_001085319	X. laevis
非洲爪蟾 GPx4a	NP_001165215	X. laevis
非洲爪蟾 GPx7	NP_001088904	X. laevis
斑马鱼 GPx1	NP_001007282	Danio rerio
斑马鱼 GPx2	NP_001316688	D. rerio
斑马鱼 GPx3	NP_001131027	D. rerio
斑马鱼 GPx4a	NP_001333466	D. rerio
斑马鱼 GPx4b	NP_001025241	D. rerio
斑马鱼 GPx7	NP_001018337	D. rerio
小鼠 GPx1	NP_032186	Mus musculus
小鼠 GPx2	NP_109602	M. musculus
小鼠 GPx3	NP_032187	M. musculus
小鼠 GPx4	AAI06148	M. musculus
小鼠 GPx5	NP_034473	M. musculus
小鼠 GPx6	NP_663426	M. musculus
小鼠 GPx7	NP_077160	M. musculus
小鼠 GPx8	NP_081403	M. musculus
人 GPx1	AAH07865	Homo sapiens
人 GPx2	AAH22820	H. sapiens
人 GPx3	NP_002075	H. sapiens
人 GPx4	AAH39849	H. sapiens
人 GPx5	NP 001500	H. sapiens
人 GPx6	NP 874360	H saniens
ل GPx7	NP_056511	H sanians
	NF_030311	
A GPX8	NP_001008398	H. sapiens

2 结果与讨论

2.1 *PtSeGPx* 基因全长 cDNA 序列的克隆分析 我们采用 RACE 技术首次从三疣梭子蟹中成功 克隆获得 *SeGPx* 基因的全长 cDNA 序列,并已提交至

GenBank 数据库(GenBank 序列号: KY216076)。 *PtSeGPx* 基因的 cDNA 序列全长为 696bp, 开放阅读 框长度为 507bp, 编码 168 个氨基酸, 5'UTR 长度为 102bp, 3'UTR 长度为 87bp(图 1)。此外, cDNA 序列中 的起始密码子 ATG、终止密码子 TAG 以及 poly (A) 尾见图 1。PtSeGPx 氨基酸序列中的蛋白石密码子 (²²⁰TGA²²²)编码硒半胱氨酸(⁴⁰U),它是硒蛋白家族成 员的典型特征(Allmang *et al*, 2006)。与前人研究结果类 似(Yeh *et al*, 2009; Liu *et al*, 2010; Duan *et al*, 2013),在 PtSeGPx 蛋白序列中预测发现了 GPx 家族签名序列 ⁶⁴LAFPCNOF⁷¹、活性位点序列 ¹⁵²WNFEKF¹⁵⁷等保守结 构域(图 1),并发现与其催化功能相关的保守氨基酸位点, 包括谷氨酰胺 Gln(⁷⁴Q)、色氨酸(¹⁴²W)以及 2 个精氨酸 (⁹⁰R 和 ¹⁶⁸R) (Aumann *et al*, 1997)(图 1)。同时,与甲壳动 物中的研究结果一致(Yeh *et al*, 2009; Liu *et al*, 2010; Duan *et al*, 2013),在 PtSeGPx 蛋白序列中预测到 2 个天 冬酰胺连接的糖基化位点 ⁷⁶NTT⁷⁸ 和 ¹⁰⁸NGT¹¹⁰(图 1)。

ACATGGGGACTCAGTCACCACCCAGACCTGACGGAGGATACA 42 102 **ATG**GCCAGCCGTGTTAAGTCTTTCTACGAGCTCAGTGCTAAGGCTCTCTCCGGTGTGGAG 162 M A S R V K S F Y E L S A K A L S G V E (20)GTACCGTTCAGCAAGTACCGTGGGAAGGTCGTACTGATCCAGAACACGGCGTCTCTCTGA 222 V P F S K Y R G K V V L I Q N T A S L U (40)GGTACGACCACGCGGGACTTCCTCGAGATGAACCAGCTGATCGAAAAGTTTGGTGACCGT 282 G T T T R D F L E M N Q L I E K F G D R (60) CTCGCAGTCCTCGCGTTCCCCTGCAATCAGTTTGGTCACCAGGAAAACACCACTCACGAG 342 LAVLAFPCNQFGHQE<u>NTT</u>HE (80) GAGCTTCTGAGTTCCCTGCGCCACGTTCGTCCTGGTAACAACTTTGAGCCCAAGATGGAG 402 ELLSSLRHV**R**PGNNFEPKME (100) 462 MFGKVEVN<u>GT</u>GTHQVFQLLK (120) GAGGCGCTGCCGTTGCCCGTGGACGACCCAGTGAGTCTAATGGCAGACCCCAAGTGTATC 522 EALPLPVDDPVSLMADPKCI (140) ATCTGGAACCCCGTGACACGCTCTGATGTTGCCTGGAATTTTGAAAAGTTCCTTGTTGAC 582 I W N P V T R S D V A W N F E K F L V D (160) TCCAGCGGCAAGCCAATTAAAAGA**TAG**GCAGGAAATTGAGAAGAGATAGGAAGGAAATTG 642 S S G K P I K R (168)696

图 1 PtSeGPx 的 cDNA 序列及其编码氨基酸序列

Fig.1 The nucleotide and deduced amino acid sequences of PtSeGPx 注: 起始密码子 ATG 和终止密码子 ATG 以粗体标出,保守结构域 GPx 家族签名序列(⁶⁴LAFPCNQF⁷¹)和活性位点序列(¹⁵²WNFEKF¹⁵⁷)以 阴影标出,保守功能氨基酸位点(⁷⁴Q) and Trp (¹⁴²W) (⁹⁰R, ¹⁶⁸R)以粗体和阴影标出,硒半胱氨酸(⁴⁰U)以方框标出,天冬酰胺连接的糖基化 位点(⁷⁶NTT⁷⁸和¹⁰⁸NGT¹¹⁰)以下划线标出

此外, PtSeGPx 蛋白的预测分子量为 18.8kDa, 等 电点为 7.98, 其三维结构由 3 个 α 螺旋和 7 个 β 折叠 片组成, 硒半胱氨酸(⁴⁰U)位于 α 1 螺旋和 β 3 折叠片形 成的位于蛋白表面的口袋中(图 2)。在克氏原螯虾中, 其 GPx 蛋白的三维结构中含有 5 个 α 螺旋和 5 个 β 折叠片(Xia *et al*, 2013)。而在罗氏沼虾中, 其 GPx 蛋 白的三级结构则由 5 个 α 螺旋和 7 个 β 折叠片组成 (Yeh *et al*, 2009)。由此可以看出, 甲壳动物中 GPx 蛋 白的三级结构组成可能会因甲壳动物种类不同而有 所区别。

Fig.2 The predicted three dimensional (3D) structure of PtSeGPx

2.2 序列比对和系统发育分析

多重序列比对结果显示, PtSeGPx蛋白序列与已 报道甲壳动物中的 SeGPxs 蛋白序列相似性(>70%) 要高于与其他物种 GPxs 的相似性(30%—60%), 其 中与拟穴青蟹 SeGPx 蛋白序列相似性最高为 91.0%(图 3)。并且, PtSeGPx 中的保守结构域 GPx 家 族 签 名 序 列 (⁶⁴LAFPCNQF⁷¹)、 活 性 位 点 序 列 (¹⁵²WNFEKF¹⁵⁷)以及 硒 半胱氨酸 残基(⁴⁰U) 在 无脊椎 动物和脊椎动物的 GPxs 蛋白中具有很高的保守性 (图 3)。

	GPx家族签名序列		
PcGPx	MSAIKSFYELSAKALS-GELVSFKK YQGKVVLLENTASI <mark>U</mark> GTTTRDFVQMNELKEKFGND-LEV <mark>LAFFCNQF</mark> GHQENN-TEEELL 82		
MnGPx	MSAIKSIYELSAKALS-GEMVSFSK YKGKVILVENTASIUGTTTRDFLQMNELKDKFGDA-LEVLAPPCNQFGHQENN-TEEELL 82		
MrGPx	MSAIKSFYELSAKALS-GETVSFSK YKGKVILVENTAAI <mark>U</mark> GTTTRDFVQMNELKEKFGDA-LAV <mark>LAFPCNQFGHQENN-TDEELL 82</mark>		
SpGPx	MADSVQSFYELSAKDLS-GEEVPFSK YEGKVVLIQNTASI <mark>U</mark> GTTTRDFLEMNELIEKFGDN-LAV <mark>LAFPCNQFGHQENT-THEELL</mark>		
PtGPx			
MgGPx	MEDIRLRSPASIKNFHQFSAFKCVLKKKVNFSDFKGKVLVQNVASIUGTTVRDFTQMNELIDKFGDK-LVULGFPCNQFGHQENG-NGEELL		
SwGPx	MAVRSPVKLQNFFELTAKTLN-GQEVNLSK FKGKVILVENVASI <mark>U</mark> GTTVRDFTQMNELASKFEGK-LV <mark>I</mark> LGFPCNQFGHQENG-NHEELL 87		
DrGPx1			
MmGPx1	MCAARLSAAAQSTVIAFSARPLTGGEPVSLGS LRGKVLLLENVASIUGTTIRDYTEMNDLQKRLGPRGLVVLGPFCNQFGHQENG-KNEELL 91		
HSGPX1			
AfGPX1	-MPGQSSGGVAVFAAFFGLISSVSGQTEVCSQFARSSSSVIDFSIQDIYQQRLINISE TRGRVLIPVNVATUGLAHQ-YVGLNALQRDYVARGLEV.GVPCNQFAGLQFGWNGSDIM) \	
MIMGPX	MQRGSALGALLSLTAALVGASEVDGDTPPRSTCDPSLSNNTIFDFTFQNVTGNASIDMTSLRGRVTLVVNVATYUGTVVQ-YHGLNALQSNHGAEGLQVLGVPCNQFYFQEPSWNGQELM	,	
		10	
	活性位点序列	相	1似性 (%)
PcGPx	活性位点序列 NTLKYVRPGNNFVPKMEIFGKVTVNGSEAHPIFKYLKERLPLFSDDTVSFMNDPQCIIWK PVCRNDIAWNFEKFLIGKDGQPFKRYSKKFETKNIAEDITSLLK	柜 186	1似性 (%) 71.1
PcGPx MnGPx	活性位点序列 NTLKYVRPGNNFVPKMEIFGKVTVNGSEAHPIFKYLKERLPLPSDDTVSFMNDPQCIIWK PVCRNDIAWNFEKFLIGKDGQPFKRYSKKFETKNIAEDITSLLK	柜 186 186	似性 (%) 71.1 70.5
PcGPx MnGPx MrGPx	活性位点序列 NTLKYVRPGNNFVPKMEIFGKVTVNGSEAHPIFKYLKERLPLPSDDTVSFMNDPQCIIWK PVCKNDLAWNFEKFLIGKDGQPFKRYSKKFETKNIAEDITSLLK	札 186 186 186	拟性 (%) 71.1 70.5 71.1
PcGPx MnGPx MrGPx SpGPx	活性位点序列 NTLKYVRPGNNFVPKMEIFGKVTVNGSEAHPIFKYLKERLPLPSDDTVSFMNDPQCIIWK PVCRNDIAWNPEKFLGKDGQPFKRYSKKFETKNIAEDITSLLK	相 186 186 186 187	1似性 (%) 71.1 70.5 71.1 91.0
PcGPx MnGPx MrGPx SpGPx PtGPx	活性位点序列 NTLKYVRPGNNFVPKMEIFGKVTVNGSEAHPIFKYLKERLPLPSDDTVSFMNDPQCIIWKPVCRDIAWNPEKFLIGKDGQPFKRYSKKFETKNIAEDITSLLK	相 186 186 186 187 168	限性 (%) 71.1 70.5 71.1 91.0
PcGPx MnGPx MrGPx SpGPx PtGPx MgGPx	活性位点序列 NTLKYVRPGNNFVPKMEIFGKVTVNGSEAHPIFKYLKERLPLPSDDTVSFMNDPQCIIWK PVCRDIAWNFEKFLIGKDGQPFKRYSKKFETKNIAEDITSLLK	相 186 186 186 187 168 199	限性 (%) 71.1 70.5 71.1 91.0
PcGPx MnGPx SpGPx PtGPx MgGPx SwGPx	活性位点序列 NTLKYVRPGNNFVPKMEIFGKVTVNGSEAHPIFKYLKERLPLFSDDTVSFMNDPQCIIWK PVCRNDIAWNFEKFLIGKDGQPFKRYSKKFETKNIAEDITSLLK	相 186 186 186 187 168 199 195	附性 (%) 71.1 70.5 71.1 91.0
PcGPx MnGPx SpGPx PtGPx MgGPx SwGPx DrGPx1	活性位点序列 NTLKYVRPGNNFVPKMEIFGKVTVNGSEAHPIFKYLKERLPLPSDDTVSFMNDPQCIIWK PVCRNDIAWNPEKFLIGKDGQPFKRYSKKFETKNIAEDITSLLK	相 186 186 187 168 199 195 191	71.1 70.5 71.1 91.0 58.1 58.1 60.5 55.7
PcGPx MnGPx SpGPx PtGPx MgGPx SwGPx DrGPx1 MmGPx1	活性位点序列 <pre> TLKYVRPGNNFVPKMEIFGKVTVNGSEAHPIFKYLKERLPLPSDDTVSFMNDPQCIIWK PVCRNDIAWNPEKFLIGKDGQPFKRYSKKFETKNIAEDITSLLK NTLKYVRPGNNFVPKMEVFGKVTVNGSEAHPIFKYLKERLPLPSDDSVSFMNDPQCIIWK PVCRNDIAWNPEKFLIGKDGQPFKRYSKKFETKNIEDINALLK</pre>	相 186 186 186 187 168 199 195 191 201 202	附性 (%) 71.1 70.5 71.1 91.0 58.1 58.1 60.5 55.7 55.7
PcGPx MnGPx SpGPx PtGPx MgGPx DrGPx1 MmGPx1 HsGPx1	活性位点序列 <pre> TLKYVRPGNNFVPKMEIFGKVTVNGSEAHPIFKYLKERLPLPSDDTVSFMNDPQCIIWK PVCRDIAWNPEKFLGKDGQPFKRYSKKFETKNIAEDITSLLK</pre>	相 186 186 187 168 199 195 191 201 203 217	秋性 (%) 71.1 70.5 71.1 91.0
PcGPx MnGPx SpGPx PtGPx MgGPx DrGPx1 MmGPx1 HsGPx1 AfGPx1	活性位点序列 NTLKYVRPGNNFVPKMEIFGKVTVNGSEAHPIFKYLKERLPLPSDDTVSFMNDPQCIIWK PVCRDIAWNPEKFLGKDGQPFKRYSKKFETKNIAEDITSLLK	相 186 186 186 187 168 199 195 191 201 203 217 237	秋性 (%) 71.1 70.5 71.1 91.0
PcGPx MnGPx SpGPx PtGPx MgGPx SwGPx DrGPx1 MmGPx1 AfGPx1 MmGPx	活性位点序列 NTLKYVRPGNNFVPKMEIFGKVTVNGSEAHPIFKVLKERLPLPSDDTVSFMNDPQCIIWK PVCRNDIAWNPEKFLIGKDGQPFKRYSKKFETKNIAEDITSLLK	相 186 186 187 168 199 195 191 201 203 217 237	11 70.5 71.1 91.0 58.1 58.1 58.1 55.7 55.7 33.8 35.6

Fig.3 Comparison and percent identity (%) of PtSeGPx protein sequence with the counterparts of other species
 注:保守结构域,包括 GPx 家族签名序列(⁶⁴LAFPCNQF⁷¹)、活性位点序列(¹⁵²WNFEKF¹⁵⁷)与硒半胱氨酸残基(U)均以黄色方框标注;氨基酸位点的保守性程度由高到低依次分别以不同符号(*)、(:)和 (.)进行标注

基于邻接法对 PtSeGPx 氨基酸序列与其他物种 GPxs 序列进行系统发育分析,结果显示 PtSeGPx 与 甲壳动物 SeGPx 序列同源性较高,并与其聚为一支 (图 4)。目前,依据蛋白石密码子编码的硒半胱氨酸 的存在与否(Herbette *et al*, 2007),谷胱甘肽过氧化物 酶通常被分为含硒谷胱甘肽过氧化物酶(SeGPx)和不 含硒谷胱甘肽过氧化物酶(non-SeGPx)两个亚家族 (Arthur, 2001; Brigelius-Flohé *et al*, 2013)。因此,由以 上分析结果可以发现,本研究克隆获得的三疣梭子 蟹 *GPx* 基因是甲壳动物中一个新发现的含硒谷胱甘 肽过氧化物酶基因。

2.3 PtSeGPx 基因经血卵涡鞭虫侵染后的转录表达 变化

经血卵涡鞭虫侵染后, *PtSeGPx* 基因在三疣梭子 蟹血细胞、肝胰腺和鳃组织中的转录水平均发生显著 性变化。*PtSeGPx* 基因在三个被检测组织中的转录表 达均可受到血卵涡鞭虫的诱导并发生显著性表达上 调(图 5)。本研究中, *PtSeGPx* 基因在三疣梭子蟹血细 胞和肝胰腺中的转录表达显著上调结果与之前的研 究结果是一致的(Li *et al*, 2016)。经血卵涡鞭虫侵染后, *PtSeGPx* 基因在三疣梭子蟹血细胞(图 5a)和肝胰腺组 织(图 5b)中的转录水平变化呈现类似的表达变化模 式,均可在 6—192h 侵染期间发生显著性表达上调 (*P*<0.05)。在三疣梭子蟹鳃组织中,*PtSeGPx* 基因的转 录表达在经血卵涡鞭虫侵染 12、48 和 192h 时发生显 著性上调(*P*<0.05),而在侵染 24h 时发生显著性下调 (*P*<0.05)(图 5c)。以上结果表明,*PtSeGPx* 基因在三疣 梭子蟹鳃中的表达变化与其在血细胞和肝胰腺中的 表达变化具有差异性,一方面这可能与本研究中对三 疣梭子蟹的侵染方式相关;另一方面可能是由组织器 官的免疫功能差异性所导致的不同组织器官在应对血 卵涡鞭虫侵染过程中的免疫应答差异性,进而导致 *PtSeGPx* 基因在三个不同组织器官中出现差异性表达。

血细胞和肝胰腺是甲壳动物中的重要免疫组织, 对细菌和病毒等病原发挥重要的免疫防御功能。已有 研究发现,在脊尾白虾和克氏原螯虾中受到细菌或 病毒侵染后, *GPx* 基因在其血细胞和肝胰腺组织中的 转录水平发生显著性表达上调,表明 *GPx* 基因在甲

壳动物免疫系统中具有重要作用(Duan *et al*, 2013; Xia *et al*, 2013)。同时,研究表明,作为一种重要抗氧 化酶, *GPx* 基因在甲壳动物应对入侵病原的免疫反应 中的转录表达上调可促进清除机体产生的过量 ROS, 使甲壳宿主减轻或避免发生氧化损伤,在甲壳宿主 自我防护过程中发挥重要作用(Liu *et al*, 2007; Yeh *et al*, 2009; Liu *et al*, 2010)。Duan 等(2015)研究发现,副 溶血弧菌可通过紊乱斑节对虾体内的抗氧化酶(如 GPx、CAT和SOD等)影响甲壳宿主的抗氧化状态,进 而引起斑节对虾中鳃组织和肝胰腺组织中的氧化应 激反应,甚至导致其肝胰腺组织损伤。因此,本研究 中 *PtSeGPx* 基因的显著性表达上调结果表明, *PtSeGPx* 在三疣梭子蟹对血卵涡鞭虫的免疫响应过 程发挥重要作用,参与调控平衡甲壳宿主在免疫反 应中的氧化还原状态,使其重要组织避免遭受氧化 损伤从而对宿主起到重要防护作用。

图 5 PtSeGPx 基因的转录表达分析 Fig.5 Relative mRNA expression profiles of PtSeGPx transcripts 注:数据显著性差异以*表示(P<0.05, n=5)

3 结论

本研究首次于三疣梭子蟹中克隆获得含硒谷胱 甘肽过氧化物酶基因*PtSeGPx*的全长 cDNA 序列并对 其进行了序列分析,进一步采用 qRT-PCR 方法探究 了血卵涡鞭虫侵染条件下 *PtSeGPx* 基因在三疣梭子 蟹中 3 个重要组织中的转录表达变化。本研究表明, *PtSeGPx* 基因在三疣梭子蟹对血卵涡鞭虫的免疫响 应过程中发挥重要作用,这将有助于我们进一步了 解甲壳动物响应寄生虫感染的分子免疫机制。

参考文献

- 许文军,施 慧,徐汉祥等,2007.养殖梭子蟹血卵涡鞭虫感 染的初步研究.水生生物学报,31(5):637—642
- 李才文, 许文军, 2014a. 海水甲壳类寄生性病原血卵涡鞭虫 (Hematodinium spp.)研究进展. 海洋与湖沼, (1): 1—10
- 李才文, 宋书群, 刘 云等, 2014b. 寄生性病原血卵涡鞭虫 (Hematodinium sp.)感染山东半岛养殖梭子蟹的初步研究. 海洋与湖沼, (4): 776—782
- 王金凤,李才文,李 蒙等,2015. 血卵涡鞭虫感染三疣梭子

蟹的病原形态学及组织病理学变化.海洋与湖沼,46(4): 748—757

- 农业部渔业渔政管理局, 2017. 中国渔业统计年鉴. 北京: 中国农业出版社, 1—157
- Allmang C, Krol A, 2006. Selenoprotein synthesis: UGA does not end the story. Biochimie, 88(11): 1561–1571
- Arthur J R, 2001. The glutathione peroxidases. Cell Mol Life Sci, 57(13-14): 1825-1835
- Aumann K D, Bedorf N, Brigelius-Flohé R et al, 1997. Glutathione peroxidase revisited — simulation of the catalytic cycle by computer-assisted molecular modelling. Biomed Environ Sci, 10(2—3): 136—155
- Brigelius-Floh é R, Maiorino M, 2013. Glutathione peroxidases. Biochim Biophys Acta, 1830(5): 3289–3303
- Duan Y F, Liu P, Li J T et al, 2013. Expression profiles of selenium dependent glutathione peroxidase and glutathione S-transferase from Exopalaemon carinicauda in response to Vibrio anguillarum and WSSV challenge. Fish Shellfish Immunol, 35(3): 661—670
- Duan Y F, Zhang J S, Dong H B et al, 2015. Oxidative stress response of the black tiger shrimp *Penaeus monodon* to *Vibrio parahaemolyticus* challenge. Fish Shellfish Immunol, 46(2): 354—365

- Fu M J, Zou Z H, Liu S F et al, 2012. Selenium-dependent glutathione peroxidase gene expression during gonad development and its response to LPS and H₂O₂ challenge in *Scylla paramamosain*. Fish Shellfish Immunol, 33(3): 532—542
- Herbette S, Roeckel-Drevet P, Drevet J R, 2007. Seleno-independent glutathione peroxidases. More than simple antioxidant scavengers. FEBS J, 274(9): 2163—2180
- Li C W, Song S Q, Liu Y *et al*, 2013. *Hematodinium* infections in cultured Chinese swimming crab, *Portunus trituberculatus*, in northern China. Aquaculture, 396–399: 59–65
- Li M, Li C W, Wang J F *et al*, 2015a. Immune response and gene expression in hemocytes of *Portunus trituberculatus* inoculated with the parasitic dinoflagellate *Hematodinium*. Mol Immunol, 65(1): 113–122
- Li M, Wang J F, Song S Q *et al*, 2015b. Early transcriptional response to the parasitic dinoflagellate *Hematodinium* in hepatopancreas of *Portunus trituberculatus*. J Invertebr Pathol, 130: 28–36
- Li M, Wang J F, Song S Q *et al*, 2016. Molecular characterization of a novel nitric oxide synthase gene from *Portunus trituberculatus* and the roles of NO/O₂⁻-generating and antioxidant systems in host immune responses to *Hematodinium*. Fish Shellfish Immunol, 52: 263–277
- Liu C H, Tseng M C, Cheng W, 2007. Identification and cloning of the antioxidant enzyme, glutathione peroxidase, of white shrimp, *Litopenaeus vannamei*, and its expression following *Vibrio alginolyticus* infection. Fish Shellfish Immunol, 23(1): 34-45
- Liu K F, Yeh M S, Kou G H et al, 2010. Identification and cloning of a selenium-dependent glutathione peroxidase from tiger shrimp, *Penaeus monodon*, and its transcription following pathogen infection and related to the molt stages. Dev Comp Immunol, 34(9): 935—944
- Liu Y, Cui Z X, Li X H et al, 2013. A newly identified anti-lipopolysaccharide factor from the swimming crab *Portunus trituberculatus* with broad spectrum antimicrobial activity. Fish Shellfish Immunol, 34(2): 463—470
- Livak K J, Schmittgen T D, 2001. Analysis of relative gene expression data using real-time quantitative PCR and the $2^{-\Delta\Delta Ct}$ method. Methods, 25(4): 402–408
- Margis R, Dunand C, Teixeira F K et al, 2008. Glutathione

peroxidase family-an evolutionary overview. FEBS J, 275(15): 3959-3970

- Rasmussen R, 2001. Quantification on the LightCycler. In: Meuer S, Wittwer C, Nakagawara K I eds. Rapid Cycle Real-time PCR. Berlin, Heidelberg: Springer Press, 21–34
- Ren Q, Sun R R, Zhao X F *et al*, 2009. A selenium-dependent glutathione peroxidase (Se-GPx) and two glutathione S-transferases (GSTs) from Chinese shrimp (*Fenneropenaeus chinensis*). Comp Biochem Physiol C: Toxicol Pharmacol, 149(4): 613–623
- Shields J D, Squyars C M, 2000. Mortality and hematology of blue crabs, *Callinectes sapidus*, experimentally infected with the parasitic dinoflagellate *Hematodinium perezi*. Fish Bull, 98: 139–152
- Small H J, Shields J D, Hudson K L et al, 2007a. Molecular detection of *Hematodinium* sp. infecting the blue crab, *Callinectes sapidus*. J Shellfish Res, 26(1): 131–139
- Small H J, Shields J D, Neil D M et al, 2007b. Differences in enzyme activities between two species of *Hematodinium*, parasitic dinoflagellates of crustaceans. J Invertebr Pathol, 94(3): 175–183
- Stentiford G D, Shields J D, 2005. A review of the parasitic dinoflagellates *Hematodinium* species and *Hematodinium*like infections in marine crustaceans. Dis Aquat Organ, 66(1): 47-70
- Toppo S, Vanin S, Bosello V et al, 2008. Evolutionary and structural insights into the multifaceted glutathione peroxidase (Gpx) superfamily. Antioxid Redox Signal, 10(9): 1501—1514
- Ursini F, Maiorino M, Brigelius-Flohé R et al, 1995. Diversity of glutathione peroxidases. Methods Enzymol, 252: 38—53
- Wang J F, Li M, Xiao J et al, 2017. Hematodinium spp. infections in wild and cultured populations of marine crustaceans along the coast of China. Dis Aquat Organ, 124(3): 181—191
- Xia X F, Zheng J J, Shao G M *et al*, 2013. Cloning and functional analysis of glutathione peroxidase gene in red swamp crayfish *Procambarus clarkii*. Fish Shellfish Immunol, 34(6): 1587—1595
- Yeh S P, Liu K F, Chiu S T et al, 2009. Identification and cloning of a selenium dependent glutathione peroxidase from giant freshwater prawn, *Macrobrachium rosenbergii*. Fish Shellfish Immunol, 27(2): 181–191

MOLECULAR CLONING AND EXPRESSION OF A SELENIUM-DEPENDENT GLUTATHIONE PEROXIDASE GENE FROM *PORTUNUS TRITUBERCULATUS*

LI Meng^{1, 2, 3}, WANG Jin-Feng^{1, 2, 3, 4}, HUANG Qian^{1, 2, 3, 4}, LI Cai-Wen^{1, 2, 3, 4}

(1. CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; 2. Marine Ecology and Environmental Science Laboratory, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China; 3. Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China; 4. University of Chinese Academy of Sciences, Beijing 100049, China)

Abstract Glutathione peroxidase (GPx) is an essential antioxidant enzyme that associated with the immune defense of aerobic living organisms against invading pathogens. To investigate the potential role of GPx genes in crustacean immune response against parasitic infection, we isolated and characterized a novel selenium-dependent glutathione peroxidase gene (PtSeGPx) in *Portunus trituberculatus*. The open reading frame (ORF) encoded 168 amino acids, with a characteristic selenocysteine residue (⁴⁰U) encoded by an opal codon (²²⁰TGA²²²). The conserved domains including the GPx signature motif 2 (⁶⁴LAFPCNQF⁷¹) and the active site motif (¹⁵²WNFEKF¹⁵⁷), as well as the catalytically related amino acid residues consisting of Gln (⁷⁴Q), Arg (⁹⁰R), Trp (¹⁴²W), and Arg (¹⁶⁸R), were identified in the deduced PtSeGPx protein sequence. Amino acid comparison and phylogenetic analyses indicated that the PtSeGPx was closely related to and clustered with the crustacean SeGPxs. The PtSeGPx transcripts were extensively and induced significantly in multiple major tissues (e.g. hemocytes, hepatopancreas, and gills) of *P. trituberculatus* during its host immune response against the invasion of the parasitic dinoflagellate *Hematodinium*, implying its involvement in the crustacean innate immunity against parasitic infection.

Key words crustacean; innate immunity; parasite; glutathione peroxidase gene; molecular cloning; gene expression