南海北部深层近惯性振荡信号研究^{*}

侯华千^{1,2} 于 l^1 李 k^3 任 强¹ 魏传杰¹

(1. 中国科学院海洋研究所 青岛 266071; 2. 中国科学院大学 北京 100049; 3. 中国科学院沈阳沈阳自动化研究所 机器人学国家重点实验室 沈阳 110016)

摘要 本研究通过分析布放在南海北部的着陆器流速数据,研究一支蓝移的近惯性振荡信号,发 现该信号可以传到600m水深以下,持续时间为11月3—16日。该信号的最大的东向流速为0.133m/s, 最大南向流为0.124m/s。谱分析发现垂向流速呈现出5个不同的流核,最强流核发生在600—650m 位置。近惯性能量下传速度为67±5m/d,从600m下传到1000m的位置能量耗散18%。经验正交函 数(empirical orthogonal function, EOF)分解结果显示,这次近惯性振荡信号开始是第一模态占主导, 随后变成高阶模态为主导的形式。由于不知道其信号生成的源头,所以无法确定近惯性振荡形成原 因,结合前人的研究结果,可以排除台风引起此次近惯性振荡信号的生成。卫星的海表高度异常显示, 此时的正涡度有利于此次近惯性振荡发生蓝移特征。

关键词 南海北部;近惯性振荡;谱分析;经验正交函数分解(empirical orthogonal function, EOF) 中图分类号 P732.3 doi: 10.11693/hyhz20190300046

近惯性振荡是存在于海洋中的一种固有振荡。其 振荡频率接近于惯性频率 *f*, 在频谱空间是一小束存 在,并没有一个精确的振动频率(Alford *et al*, 2016), 故得名为近惯性振荡。其生成原因有很多,如台风 (Yang *et al*, 2015)、飓风(Firing *et al*, 1997)等强风过程, 海洋中的环流与底地形相互作用(Nikurashin *et al*, 2013), 以及内波与内波之间的波波相互作用 (Hazewinkel *et al*, 2011)等等,这些都是近惯性振荡 的形成原因。由于近惯性振荡的形成原因不同,所以 近惯性振荡信号具有间断性。这对近惯性振荡的研究 产生了很大的难度。

频域中的经验正交函数(empirical orthogonal function, EOF)分解被广泛的应用于复杂时间序列 (Denbo *et al*, 1984), 在海洋学的研究领域, 应用也十 分广泛(如 Denbo *et al*, 1984, Xu *et al*, 2013 和 Hou *et al*, 2019)。Denbo 在 1984 年发现在俄勒冈海岸(Oregon Coast, 45.16°N)的EOF 第一模态在水深 60m 处具有线

性陡坡,存在 0.14cm/s 向海表上传的群速度。Sobarzo 等人(2007)发现了智利上升流与近惯性振荡的关系, 沿水深流速的 180°的位向偏转与上升流具有共同特 征。Edwards 等(2008)利用 EOF 对南大西洋海湾的内 潮和近惯性振荡信号进行了分析,分解了其中正压 部分和斜压部分。Igeta 等(2009)观测到了日本海的近 惯性振荡,其形成与最大风应力有关,并进一步模拟 了海岸对近惯性波动的捕获作用。Hou 等(2019)通过 EOF 分解将近惯性振荡信号分解出台风诱导部分和 非台风诱导部分。

南海是太平洋西部的半封闭海盆,最大深度 4577m(位于马尼拉海沟),并且会受到吕宋海峡黑潮 入侵的影响(如 Nan *et al*, 2011;侯华千等, 2016)。同 时,当潮汐进入吕宋海峡时,会产生强烈的南海内波, 与近惯性振荡等发生强烈的波波相互作用,从而加 强了南海内部流动的复杂性(Alford, 2008; Xie *et al*, 2011)。Chu 等(2000)通过普林斯顿海洋模式对台风

通信作者:于 非,博士生导师,教授,E-mail:yuf@qdio.ac.cn 收稿日期: 2019-03-01,收修改稿日期: 2019-04-07

^{*} 国家自然科学基金委员会-山东省人民政府联合资助海洋科学研究中心项目,U1406401 号;国家自然科学基金委员会-创 新研究群体科学基金,41421005 号;国家重点研发计划-准实时传输深海剖面锚系观测潜标研发,2017YFC1403400 号。侯华千,博 士研究生, E-mail: 417728851@qq.com

Ernie 影响下的南海响应进行了模拟。Sun 等(2011) 通过南海西部(13.99°N, 110.52°E)布放的潜标, 观测 到了蓝移(高频)的近惯性震荡信号, 并且推论出是中 尺度涡引起的多普勒频移导致近惯性振荡信号发生 蓝移。Xu 等(2013)通过南海北部大陆坡上 9 个月的声 学 多 普 勒 流 速 剖 面 仪 (Acoustic Doppler Current Profilers, ADCP)观测数据, 发现台风黑格经过时产 生的近惯性振荡能量和剪切是此处内潮的 2—3 倍。 Guan 等(2014)通过对南海东北部的两个潜标的观测 研究, 探讨了南海东北部上层 400m 的近惯性振荡特 征以及波波相互作用的特征。Pallàs-Sanz 等(2016)发 现墨西哥湾内的流套结构环流背景下的近惯性振荡 下传到 1300m 以下, 证明近惯性振荡信号是可以下 传到 800m 以下的。

尽管前人对南海的近惯性振荡研究很多,同时 已经有很多前人的研究对上层的近惯性振荡信号进 行分模态描述(如 Denbo *et al*, 1984, Xu *et al*, 2013 和 Hou *et al*, 2019),对于下传到 800m 以下的近惯 性振荡的研究仍然缺少观测的证据。本文的目的, 其一是研究南海 600m 以下层近惯性振荡的特征; 其二是深入分析深层近惯性振荡的不同模态,并解 释近惯性振荡存在于深层以及信号的特征生成的 原因。

本文的结构如下,第一部分主要介绍数据与研 究方法,对所采用的数据的精度等特征进行详细的 解释;第二部分展示此次近惯性振荡期间的流场频 谱分布、背景流特征、近惯性流特征和近惯性动能等 数据结果,并且利用 EOF 分解分析近惯性振荡的垂 向模态。第三部分讨论了近惯性振荡的生成位置和成 因,以及产生蓝移近惯性振荡的可能原因,第四部分 对全文进行总结。

1 方法与数据

1.1 着陆器与声学多普勒流速剖面仪

本研究所使用的着陆器,布放位置位于南海东 北部(22.10°N,119.28°E),布放水深大约为1135m, 布放时间为2017年7月—2018年1月。布放位置与 附近地形图如图1所示。着陆器上附着一个75kHz 的ADCP。由于着陆区位于海底,所以ADCP的声学 发射方向为向上发射。该ADCP测量的时间分辨率为 20min。ADCP 底端第一个数据距离 ADCP16.7m,随 后向上每8m 读取一个数据。读取的流速精度为 5±1%mm/s,可取得水深600—1100m的流场。

Fig.1 South China Sea topographic map with typhoon path during near-inertial oscillation 注: 红点为着陆器位置, 余同

1.2 卫星高度计数据

卫星测高技术被广泛应用于南海的各项研究, 如中尺度涡(Chen *et al*, 2009)、潮汐(Zu *et al*, 2008)、 大洋环流(Wang *et al*, 2001)等。本研究所使用的数据 源自 AVISO 的卫星高度计数据(https://www.aviso. altimetry.fr/en/home.html)。利用动态差值方法得到空 间分辨率为 $1/8^{\circ} \times 1/8^{\circ}$ 的数据,数据网格满足笛卡尔 坐标系,数据的时间分辨率为 1d。

1.3 谱分析与数字滤波器

谱分析是将已有的时间序列的数据通过变换得出 频谱空间的分析方法,主要能力是测量未知信号的功 率谱。在海洋波动的研究中具有广泛应用(如 Pallàs-Sanz et al, 2016; Hou et al, 2019)。通过谱分析中的傅里 叶变换,考虑到奈奎斯特极限(Nyquist limit),在计算 时对输入信号采样的频率必须至少是信号带宽的 2 倍。然后,傅里叶变换将产生包含 0—0.5v 的所有频率 的频谱(v 为全部数据时间段的最大频率)。

当滤波器的输入和输出都是离散时间信号的时候, 单位滤波器的冲激响应 h(n)也是离散的, n 表示不同的 信号,这种滤波器被称为数字滤波器。数字滤波器的 作用是对数据进行滤波,如同信号通过系统一样。对 于线性时不变的系统,其输入和输出的关系是

$$y(n) = x(n)h(n), \tag{1}$$

当输入信号 x(n)通过滤波器 h(n)的时候, 输出的 信号 y(n)不再含有 $|\omega| > \omega_c$ 的频率成分, 仅使 $|\omega| < \omega_c$ 的 频率成分通过。

本研究所采用的滤波器为巴特沃斯滤波器 (Butterworth, 1930),具有通频带的频率响应曲线光滑 的特点,被广泛应用于海洋潮汐研究(Guan *et al*, 2014)。 本研究考虑到海洋的近惯性振荡频带范围,选取了巴特沃斯四阶滤波器,对原始数据进行计算,这里和前人选取的阶数相同(Guan *et al*, 2014; Yang *et al*, 2015)。

1.4 EOF 分解

在数据和信号处理中, EOF 分解是一种对信号及 数据集的分解方法, 该方法根据从数据中确定的正 交基函数对原始数据进行分解的。有点类似主成分分 析, 这种方法将已有的数据集分解为时间序列和空 间函数两部分。通常, EOF 分解通过计算数据集的协 方差矩阵的特征向量来找到基函数, 所以矩阵的特 征向量的基函数在数据位置是非线性的。

2 结果分析

2.1 背景流特征

数据结果取自着陆器附着的 ADCP 数据, 利用

时间周期大于 3d 的低通滤波对原始流速数据进行处 理。原始数据认为大于 2m/s 的数据是不可信的,所 以都予以删除。所得结果如图 2 所示。东西向深度 平均流速在 11 月 1 日(2017年,下同)前是向西的(图 2b),此后变成向东方向,最大东向流速为 0.133m/s。11 月 18—23 日,900m 以下出现西向的 流核。该流核最大流速为 0.110m/s,所在深度为 985m,时间为 11 月 20 日。与东西向流速相比,南 北向流速在这个时间区间相对稳定,深度平均的流 速是向南的(图 2d)。其中存在少量北向流核,主要 分布于 800m 以上。北向最大流速 0.028m/s,最大 南向流速为 0.124m/s。观测结果表明,在这个月的 水体通量主要是东南向的,结合地形图(图 1)可以 发现研究时间段很少出现垂直于坡面向上爬坡的 流(北向流)。

2.2 流场特征分析

为了研究这一时间段海流的信号特征,本研究 采用了谱分析方法,分析原始信号的频谱分布。谱分 析结果显示,此时的近惯性振荡信号表现出明显的 蓝移特征,峰值频率稍微高于局地科氏频率 *f*,峰值 频率为 1.12*f*。通过谱分析结果可以发现在 600— 1100m 水深的区域内,近惯性信号东西向流和南北向 都出现 5 个强的能量核心(图 3),但是他们的位置稍 有不同。东西向流场谱分析结果中, 谱峰所在深度的 分布位置分别为 600—650m, 680—710m, 740—770m, 830—910m 和 950—1000m(图 3a); 然而南北向流场 谱分析结果中, 谱峰所在深度的分布位置分别为 600—650m, 740—800m, 850—910m, 940— 960m 和 970—1010m(图 3b)。谱分析的结果还可以发现, 最强 谱峰出现在观测上层, 随着深度的增加逐渐变弱的 趋势。其中东西向最大的能量核心(600—650m)的最 大值是位于最下的能量核心(950—970m)的 1.37 倍; 南北向最大的能量核心(600—650m)的最大值是位于 最下的能量核心(970—1010m)的 3.13 倍。所以, 东西 向流场耗散要弱于南北向流场的耗散。

图 3 ADCP 流场数据谱分析结果 Fig.3 Spectrum analysis of ADCP data 注: f: 惯性频率; cpd: cycle per day, 1 cpd=86400Hz

本研究通过带通滤波对原始流速信号进行处理, 进一步了解近惯性振荡信号的特征。考虑到近惯性振 荡峰值频率为 1.12*f*,本研究所选取的谱分析频带为 1.0*f*—1.2*f*。所获得近惯性振荡信号结果如图 4 所示。 通过图 4 可以发现,近惯性振荡信号比较显著的日期 是从 11 月 3 日—11 月 16 日。在此期间, 东西向近惯 性振荡信号最强发生在 900m 以下。其中, 最强的东 向流为 0.120m/s; 最强的西向流为 0.123m/s, 他们都 发生在水深 1010m 处。然而, 南北向的近惯性振荡信 号最强则发生在 600—900m 的位置。最强北向近惯

性振荡信号为 0.133m/s, 发生在 700m 水深; 最强南 向近惯性振荡信号为 0.135m/s, 发生在 750m 水深。 由于近惯性振荡信号并不是各向同性的, 所以说明 惯性椭圆在不同的水深呈现不同的偏角和大小。

从图 4 我们还可以看到,在 950m 以下的水深出 现了明显的一层近惯性振荡,强度虽然比上层弱,但 是具有两个特点:第一,这部分近惯性信号具有明显 的分层,和上层强的近惯性信号之间存在一个不连 续的减弱特征;第二,这部分近惯性信号的能量下传 趋势不如上半部分明显。由此我们推断,这种特征可 能受海底边界的约束作用,在海底位置出现了能量 的反射,从而出现了驻波的特征。这一特征东西流向 强于南北流向,并且在 950m 以深强度还有所增强,可 能是由地底形边界约束下的近惯性振荡的传播导致。

接下来本文计算了近惯性流的能量分布。近惯性 能量分布如图 5 所示。图 5a 显示了近惯性振荡能量 的时空分布,其中最强的近惯性振荡信号发生在 775m。近惯性振荡能量具有下传趋势,下传速度约为 67±5m/d。图 5b 将图 5a 显示的主要的近惯性能量做 时间平均,计算出近惯性能量的垂向分布。从图 5b 可以看出,能量在 600—1100m 下传过程中逐渐衰减, 在 1000m 位置消耗了 18%。图 5c 显示了近惯性能量 的垂向平均,所选取的范围为 600—1100m。图 5 显 示,这次强的近惯性振荡从 11 月 3 日开始发生,直到 11 月 16 日结束。最强的峰值能量是此时之外的背景 近惯性能量信号的 5 倍。

图 5 近惯性动能分布(a)以及近惯性动能的垂直结构(b)和时间序列(c) Fig.5 Near inertial kinetic energy (a) and its vertical structure (b) and time series (c)

2.3 近惯性振荡的垂向模态

为了进一步分析近惯性振荡信号的垂向模态,我 们使用了 EOF 分解的方法对近惯性信号进行模态分 解。图 6显示了 10月 26日—11月 26日的模态特征。 因为东西向流和南北向流前四模态总能量的和均超过 了 80%,因此,只选用了前四模态展示。从图 6 中可以 发现东西向和南北向的流动具有相似性,所以可以一 起讨论。东西向流速和南北向流速的第一模态,在垂 直结构上都出现了 3 次正负翻转(垂向上存在四个不同 方向的流速),所占能量都超过 30%以上。第一模态的 垂直结构十分相似, 第一次翻转深度在 700—750m 处, 第二次在 900—950m 处, 第三次在 1050m 以下。同时, 观察第一模态的时间序列, 可以发现振动峰值和总近 惯性能量的起始时间相同, 都是从大约 11 月 3 日开始 加强, 但是在 11 月 11—12 日减弱, 略早于总能量衰减 的时间。第二模态所占总能量的 25%左右, 垂向翻转 次数同样是 3 次, 但是东西向和南北向的翻转位置不 相同。第二模态时间序列显示, 最强能量略晚于第一 模态的最大值, 此现象正好弥补了第一模态衰减较早 的现象。第三模态的垂向特征不同于前两模态, 其垂 向翻转特征不明显,强的翻转只出现了一次。时间序 列上,这两模态的强弱变化基本上弥补了前两模态都 较弱的阶段。第四模态激发后衰减并不显著, 垂向翻 转三次, 所以猜测是背景的近惯性振荡信号。

图 6 东西向(a, c)和南北向(b, d)流的 EOF 分解结果 Fig.6 The result of zonal (a, c) and meridional (b, d) near inertial current by EOF analysis

为了了解近惯性振荡不同模态时间序列的信号 特点,本研究对每个模态的时间序列进行了谱分析, 结果如图 7 显示。图 7 所绘制的功率谱已经经过滤波 计算,带宽以外的信号已经被滤去,这导致所计算的 谱空间的分辨率不高,每个模态只有 3 个相对有效的 数值,其他数值比峰值小 2 个量级,能量接近于 0。 其中图 7a 显示了东西向流速各个模态的频带信号组 成,第一模态峰值频率最强,但是相比于更高阶模态, 第一模态所包含的其他频率的信号较少。第二模态的 峰值频率的振荡信号含量最小。图 7b 显示了南北向 流不同模态的频带组成。东西向流速的各个模态所包 含成分比较相似,相差不大。

总结 EOF 分解结果, 近惯性信号在激发初期, 主要产生第一模态的能量, 第一模态振动的东西和南 北向相对相似, 并且能量较强。随后主要的近惯性振 荡信号逐渐发展出各项异性的特征, 变成第二、三等 高阶模态为主的振荡模式。从这里可以看出近惯性振 荡信号在衰减的同时, 出现了主振动模态的改变。

图 7 EOF 时间序列结果的谱分析 Fig.7 Spectrum analysis of time series of EOF result

3 讨论

3.1 近惯性振荡的生成原因与位置

图 1 显示了近惯性振荡发生期间的台风信息。最近的台风于 11 月 10 日进入南海, 并且于 12 日减弱

为热带风暴,台风的强风域半径(大于 15m/s 风速半径)为110km。根据已知近惯性能量的数据,近惯性能量增强于11月3日,结束于11月16日。同时,根据已知水深,假设能量下传速度保持不变,即能量群速度在全水深保持一致的情况下,近惯性信号生成海

表的时间大约为 10 月 28 日左右。然而,此时并没有 强烈的台风信号输入。如果近惯性振荡信号生成于海 表,有可能是由近惯性频率的风应力导致。目前已有 的数据证据仍不能说明近惯性振荡生成的位置。

近惯性振荡信号也可能来自于海洋中的其他过程。对于南海的台风引起近惯性振荡信号,在没有外界干扰的情况,下传深度未超过400m。Chen等(2013) 观测到南海的近惯性振荡能量下传不超过300m;万 云娇等(2015)观测到南海近惯性振荡的能量下传到不 到300m 水深;Ding等(2018)观测到的近惯性信号下传 水深不超过200m。图8显示了近惯性信号期间的海表 高度异常和海表地转流流数据。从图8中我们可以发 现近惯性信号期间,背景的涡度呈现正涡度,即潜标 位于气旋涡内。Kunze 等(1985)提到, 反气旋涡容易形 成烟囱效应, 使近惯性振荡信号更容易下传。所以, 已 知的海表涡度抑制近惯性振荡信号的下传。由此我们 可以推断, 近惯性振荡信号很有可能不在表层生成。 同时, Hou 等(2019)通过对西太平洋近惯性振荡信号的 分析, 发现近惯性振荡信号不同的模态具有不同的峰 值频率, 推测是近惯性振荡生成时具有不同的生成原 因导致(表层风场生成的近惯性振荡信号和其他原因 生成的近惯性振荡信号)。本研究中不同模态的近惯性 振荡信号所对应峰值频率是相同的, 可能是由于其生 成原因单一导致。受观测数据的限制, 我们猜测, 本次 近惯性振荡的生成原因为环流与地形相互作用, 从而 形成近惯性振荡信号, 随后近惯性振荡能量下传。

图 8 海标高度异常与表层地转流 Fig.8 The sea level anomaly and the surface geostrophic current

3.2 近惯性振荡蓝移原因分析

背景流是改变近惯性振荡频率的主要原因之一。 背景流影响的近惯性振荡频率方程如公式(2)和公式 (3)(Claret *et al*, 2010):

$$\sigma = \sqrt{\frac{N^2 k_{\rm h}^2 + f_{\rm e}^2 m^2}{\boldsymbol{k}^2} + \boldsymbol{k} \cdot \boldsymbol{u}}, \qquad (2)$$

$$f_{\rm e} = f_0 + \frac{\zeta}{2} \,, \tag{3}$$

其中, σ 为实际信号的频率; N为浮力频率; k_h 为水平 波数; f_e 是受到局地涡度影响下的有效惯性频率, 由 公式(2)求得; m 为垂直波数; k 为总的三维波数; u 为 地转流速; f_e 是仅受纬度影响下的科氏频率; ζ 为局地 涡度。所以当近惯性振荡出现蓝移时, 原因可能有两 个:第一,来自背景流引起的多普勒频移效应;第二, 来自于背景涡度对局地科氏频率的改变。通过图 8 可 以发现,背景涡度为正涡度,所以此时的背景涡度是 激发近惯性振荡信号蓝移的原因之一。然而,尽管我 们可以得知,背景流在近惯性振荡期间呈现比较一 致的东南向流动(图 2),由于缺少水平波数的数据, 我们仍无法得知本研究中多普勒频移对本次近惯性 振荡信号的影响。

4 结论

本研究通过分析南海东北部附着在着陆器的 ADCP数据,研究出现在11月3—16日的近惯性振荡 信号。着陆器布放在1135m水深处。所取得数据范 对总的流场进行谱分析,我们可以发现在 11 月 份出现一支强的近惯性振荡信号。其峰值频率略高于 局地科氏频率。近惯性振荡信号在观测水深出现五个 强的能量核心,最大能量出现在 600—650m 位置,最 大能量核心是最弱的能量核心的 1.37 倍。东西向最 强流速为 0.123m/s,发生在 1010m 水深;同时最强的 南北向流速 0.135m/s,发生在 750m 水深。从以上结 果可以显示出近惯性信号的振动呈现椭圆的状态, 并且位向在随深度下传后发生变化。对近惯性动能的 研究发现,近惯性动能的下传速度为 67±5m/d,从 600m 下传到 1000m 的位置能量耗散 18%。

EOF 模态分解结果显示,近惯性能量前四模态 总能量占 80%以上,是这次近惯性振荡的主要模态。 第一模态的东西向流速和南北向流速有相似之处, 沿深度正负翻转 3 次,具有四个流速方向。第一模态 的发生时间于 11 月 3—12 日之间,是本次近惯性振 荡产生的早期信号特征。近惯性振荡后期最强的模态 变成后几个模态,这可能是因为近惯性振荡信号在 衰减的过程中能量逐渐不稳定,导致不同的振荡模 式出现。

文章的最后讨论了两个结果。第一个是有关于近 惯性振荡的生成原因和位置。首先,通过对台风的研 究发现、近惯性振荡期间并没有出现激发的台风、最 相关的一次台风现象对近惯性振荡仅产生增强的效 应、但该台风并不是本次近惯性振荡激发的原因。由 于本研究没有全水深的数据,所以无法得知近惯性 振荡具体生成的水深。对比其他南海近惯性振荡信号 的研究、我们观测到的近惯性振荡出现信号比较深。 但是通过海表的涡度可以知道,本研究期间的背景 涡度反而抑制近惯性振荡能量下传、所以我们得到 结论,近惯性振荡信号很可能不是从海表生成的。第 二个是关于近惯性振荡蓝移(频率高于局地科氏频率) 的原因分析、背景的正涡度可以导致近惯性振荡的 蓝移现象。由于无法获得近惯性振荡的传播方向,所 以无法得知背景流引起的多普勒频移对近惯性振荡 的影响。

参考文献

万云娇, 陈更新, 舒业强等, 2015. 南海冬季风潮背景下热带 气旋诱导的近惯性振荡: Mirinae (0921)个例分析. 热带海 洋学报, 34(6): 11-18

- 侯华千,谢 强,陈更新等,2016.2005—2009年、2011年和 2013年南海东北部 120°E 断面秋季体积输运的年际变化. 海洋与湖沼,47(1):36—42
- Alford M H, 2008. Observations of parametric subharmonic instability of the diurnal internal tide in the South China Sea. Geophysical Research Letters, 35(15): L15602
- Alford M H, MacKinnon J A, Simmons H L *et al*, 2016. Near-inertial internal gravity waves in the ocean. Annual Review of Marine Science, 8: 95–123
- Butterworth S, 1930. On the theory of filter amplifiers. Experimental Wireless and the Wireless Engineer, 7(6): 536-541
- Chen G X, Hou Y J, Chu X Q et al, 2009. The variability of eddy kinetic energy in the South China Sea deduced from satellite altimeter data. Chinese Journal of Oceanology and Limnology, 27(4): 943—954
- Chen G X, Xue H J, Wang D X et al, 2013. Observed nearinertial kinetic energy in the northwestern South China Sea. Journal of Geophysical Research: Oceans, 118(10): 4965— 4977
- Chu P C, Veneziano J M, Fan C W *et al*, 2000. Response of the South China Sea to tropical cyclone Ernie 1996. Journal of Geophysical Research: Oceans, 105(C6): 13991—14009
- Claret M, Viúdez Á, 2010. Vertical velocity in the interaction between inertia-gravity waves and submesoscale baroclinic vortical structures. Journal of Geophysical Research: Oceans, 115(C12): C12060
- Denbo D W, Allen J S, 1984. Rotary empirical orthogonal function analysis of currents near the Oregon coast. Journal of Physical Oceanography, 14(1): 35–46
- Ding W X, Liang C J, Liao G H *et al*, 2018. Propagation characteristics of near-inertial waves along the continental shelf in the wake of the 2008 Typhoon Hagupit in the northern South China Sea. Bulletin of Marine Science, 94(4): 1293–1311
- Edwards C R, Seim H E, 2008. Complex EOF analysis as a method to separate barotropic and baroclinic velocity structure in shallow water. Journal of Atmospheric and Oceanic Technology, 25(5): 808–821
- Firing E, Lien R C, Muller P, 1997. Observations of strong inertial oscillations after the passage of tropical cyclone Ofa. Journal of Geophysical Research: Oceans, 102(C2): 3317— 3322
- Guan S D, Zhao W, Huthnance J et al, 2014. Observed upper ocean response to typhoon Megi (2010) in the Northern South China Sea. Journal of Geophysical Research: Oceans, 119(5): 3134—3157
- Hazewinkel J, Winters K B, 2011. PSI of the internal tide on a β plane: flux divergence and near-inertial wave propagation. Journal of Physical Oceanography, 41(9): 1673—1682
- Hou H Q, Yu F, Nan F *et al*, 2019. Observation of near-inertial oscillations induced by energy transformation during typhoons. Energies, 12(1): 99
- Igeta Y, Kumaki Y, Kitade Y et al, 2009. Scattering of near-

inertial internal waves along the Japanese coast of the Japan Sea. Journal of Geophysical Research: Oceans, 114(C10): C10002

- Kunze E, 1985. Near-inertial wave propagation in geostrophic shear. Journal of Physical Oceanography, 15(5): 544—565
- Kunze E, Sanford T B, 1984. Observations of near-inertial waves in a front. Journal of Physical Oceanography, 14(3): 566— 581
- Nan F, Xue H J, Chai F *et al*, 2011. Identification of different types of Kuroshio intrusion into the South China Sea. Ocean Dynamics, 61(9): 1291–1304
- Nikurashin M, Vallis G K, Adcroft A, 2013. Routes to energy dissipation for geostrophic flows in the Southern Ocean. Nature Geoscience, 6(1): 48-51
- Pallàs-Sanz E, Candela J, Sheinbaum J *et al*, 2016. Trapping of the near-inertial wave wakes of two consecutive hurricanes in the Loop Current. Journal of Geophysical Research: Oceans, 121(10): 7431—7454
- Sobarzo M, Shearman R K, Lentz S, 2007. Near-inertial motions over the continental shelf off Concepción, central Chile. Progress in Oceanography, 75(3): 348—362
- Sun L, Zheng Q A, Wang D X et al, 2011. A case study of

near-inertial oscillation in the South China Sea using mooring observations and satellite altimeter data. Journal of Oceanography, 67(6): 677–687

- Wang D X, Liu Y, Qi Y Q et al, 2001. Seasonal variability of thermal fronts in the northern South China Sea from satellite data. Geophysical Research Letters, 28(20): 3963—3966
- Xie X H, Shang X D, van Haren H et al, 2011. Observations of parametric subharmonic instability-induced near-inertial waves equatorward of the critical diurnal latitude. Geophysical Research Letters, 38(5): L05603
- Xu Z H, Yin B S, Hou Y J *et al*, 2013. Variability of internal tides and near-inertial waves on the continental slope of the northwestern South China Sea. Journal of Geophysical Research: Oceans, 118(1): 197—211
- Yang B, Hou Y J, Hu P et al, 2015. Shallow ocean response to tropical cyclones observed on the continental shelf of the northwestern South China Sea. Journal of Geophysical Research: Oceans, 120(5): 3817–3836
- Zu T T, Gan J P, Erofeeva S Y, 2008. Numerical study of the tide and tidal dynamics in the South China Sea. Deep Sea Research Part I: Oceanographic Research Papers, 55(2): 137-154

DEEP NEAR-INERTIAL WAVE IN THE NORTHERN SOUTH CHINA SEA

HOU Hua-Qian^{1,2}, YU Fei¹, LI Bin³, REN Qiang¹, WEI Chuan-Jie¹

(1. Institute of Oceanology, Chinese Academy of Science, Qingdao 266071, China; 2. University of Chinese Academy of Science, Beijing 100049, China; 3. State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China)

Abstract Based on the ADCP data in the lander located in the northern South China Sea (SCS), a blue shift nearinertial wave signal is studied. The lander was deployed in the northern SCS at 22.10° N/119.28°E in 1135m depth working from July 2017 to January 2018. This near-inertial wave signal transmitted to 600m depth during September 3— 16. The maximum meridional velocity was 0.133m/s and the maximum zonal velocity was 0.133m/s. Five different energy cores in the near-inertial frequency band were recognized in spectrum analysis. The maximum energy core was in 600— 650m depth. The vertical group velocity was $67\pm5m/d$ downward. The energy dissipation was 18% from 600 to 1000m. This near-inertial signal began with the first EOF mode dominant, and then became a combination of higher-order EOF mode dominant. Combined with the results of previous studies, we found that the near-inertial oscillation signal was not caused by a typhoon. As the source of the signal generation was unknown, the cause of the near-inertial oscillation could not be determined. The sea level anomaly data by satellite show that the positive vorticity at that time was conducive to the blue shift of the near-inertial waves.

Key words South China Sea; near-inertial wave; spectrum analysis; empirical orthogonal function (EOF)