地形和风速影响下的海气相互作用大涡模拟研究*

叶 灿 成泽毅 高 宇 宋金宝 李 爽

(浙江大学海洋学院 浙江舟山 316021)

摘要 当水流经过海洋地形时,水流的不稳定性会引起垂向混合并伴随大量湍流过程。针对传统 海气耦合模式缺少在湍流尺度上讨论海洋地形与风速对海气相互作用影响的问题,使用并行大涡模 拟海气耦合模式(the parallelized large eddy simulation model, PALM)在 5 m/s 的背景风场下,引入理想 立方体地形,对比有无地形的影响;设置地形边长为 L,高为 3L (其中大气部分高 L), L 与水深 H 之 比为 L/H=1/2;然后保持地形条件不变。设置 5、10 和 15 m/s 三种风速,讨论风速对小尺度海气相互 作用的影响。研究表明:地形在大气部分减弱顺风向速度,增强侧风向速度,影响 0~5L 的高度区域, 而对垂向作用较小;无地形条件下湍流垂向涡黏系数 K_m 在-0.3L时,水深达到最大值 0.024 m²/s,有 地形条件下 K_m 在-0.8L时,达到最大值为 0.16 m²/s,地形的存在使得上层海洋混合加强, K_m 最大值 增加 1 个数量级。随风速增大海洋和大气中的净热通量、淡水通量和浮力通量都相应增大,在近海 面处, 5 m/s 和 10 m/s 风速下三个通量的数值接近,当风速为 15 m/s 时净热通量和淡水通量相较于前 者数值大小增加 2 倍,浮力通量增加近 3 倍,说明大风加剧了各通量在海表的交换;海洋混合层中湍 动能收支各项也响应风速的变化,其中剪切项、Stokes 剪切、耗散项随风速增大而增加,且在区域 -0.2L~0变化明显,在近海表面处剪切项、传输项、压力项和耗散项的值达到最大,同时耗散项由传 输项和剪切项平衡;随风速增大, K_m 达到最大值的深度基本一致为-0.8L。

关键词 大涡模拟; 地形与风速; 海气通量; 湍流动能收支 中图分类号 P731.26 doi: 10.11693/hyhz20230400090

海气相互作用影响着海洋生态要素的空间分布, 是影响海洋生态系统的重要过程,是当前海洋科学 的研究热点。而海洋上混合层作为一个中间层联系起 大气底边界层和上层海洋,是海气热量通量和动量 交换的重要界面,对海洋上混合层的热力学和动力 学结构展开的研究已引起越来越多的关注(Phillips, 1980; Sullivan *et al*, 2010; Reichl *et al*, 2022; Gao *et al*, 2023; Jia *et al*, 2023)。湍流的生成及其垂向混合形成 并维持了海洋上混合层,作为中间层其同时受到多 种时空尺度海洋和大气运动过程的影响,因此具有 复杂的热力学和动力学结构特征(吴凡, 2022; Pellichero *et al*, 2017; Von Storch *et al*, 2023)。同时海气界面动 量通量也称为风应力,是海流和表面海浪的主要驱 动力,是海洋从大气获得动量的重要途径。

围绕三维障碍物的湍流在自然界中很常见,并 出现在许多应用中。当水流经过三维障碍物时,其不 稳定性会导致在三维障碍物后方产生一系列中小尺 度涡旋,其中伴随着大量的湍流过程。舟山群岛是我 国第一大群岛,也是重要的渔场,其岛屿众多,水动 力条件十分复杂(秦华伟等,2014;刘紫薇等,2022), 影响渔场及其周围生态。舟山市嵊泗县海域目前拟投 资建设中广核嵊泗 5#、6#海上风电场工程,工程的建 设会大大影响附近海域的水动力过程(Menéndez-Vicente *et al*,2023; Syed *et al*,2023)。了解和分析此类 地形条件对海洋以及大气的影响可以推动对海气相 互作用的相关研究。由于海洋条件的复杂危险性,相 关海洋数据十分不易获得,而且通常获取的数据不

 ^{*} 国家自然科学基金项目,41830533 号,41876003 号。叶 灿,硕士研究生,E-mail: yecan@zju.edu.cn
 通信作者:李 爽,博士生导师,副教授,E-mail: lshuang@zju.edu.cn
 收稿日期: 2023-04-23,收修改稿日期: 2023-06-20

够详细。高分辨率卫星观测资料的大量增加为人们认 识中纬度中小尺度的海气相互作用提供了条件,但 存在分辨率不够的问题,研究表明分辨率低于 1°的 观测数据对海洋锋和海洋涡旋现象等描述不足,严 重低估了中小尺度上的感、潜热通量变化,进而可能 低估了海表热通量对热带外气旋活动的影响(Rouault *et al*, 2003)。虽然观测数据逐渐由单点向区域和全球 尺度延展,但是仍无法覆盖全部(McClain, 2009),同 时也无法完整体现海洋现象的年代际变化等特征 (Capotondi *et al*, 2015)。随着超级计算机的出现,利 用数值模拟来研究这些相互作用已经成为可能。

Walko 等(1992)利用大涡模拟(large eddy simulation, LES)方法对比探究平坦地形和正弦丘陵地形之间可 能存在的差异、发现丘陵地形山顶附近上升运动的 概率为 70%、山谷只有 15%、丘陵地形与平坦地形时 变量的水平平均垂直廓线没有重要差别, 但该研究 忽略了水平风的影响。He 等(1997)用大涡模拟方法研 究了单个建筑物周围的流场特征及建筑物顶部的涡 旋结构。Shah 等(1997)强调了大涡模拟方法用于立方 体周围流场模拟的重要性。Wood(2000)在复杂地形流 场模拟的回顾与 LES 前景展望中指出, LES 在复杂地 形流场模拟方面有独特的优越性。但是也有很大的 困难,同时受计算量的限制。Gopalakrishnan等(2000) 利用大涡模拟方法评估在哪些尺度上、地形开始显 著影响对流边界层(convective boundary layer, CBL) 中湍流的平均特征和结构、研究发现、湍流与地形特 征的尺度呈非线性关系。Lu 等(2018)利用大涡模拟模 式探究海底波状地形上湍动能收支的情况、但其使 用的是单一海洋模式、未考虑海洋与大气之间的相 互作用。李德顺等(2021)以 Ris ф实验室开展的 Bolund 岛实验结果为依据,采用雷诺时均与大涡模拟方法 对 Bolund 岛进行数值模拟、将模拟区域方向坐标线 为 239°和 270°的两条特征线命名为 Line A 和 Line B, 研究结果表明:针对 Bolund 岛的数值模拟,在 Line B 特征线上5m高度处模拟值比2m高度处更接近实验 值、在岛前的位置模拟结果比岛后更准确、同时说明 LES 方法能够有效揭示 Bolund 岛地形周围流动的绕 流特征和尾流区涡特征。胡帅等(2021)考虑地形与风 速的响应、建立风速的空间相关性模型、并将得到的 风速数据转换为风电功率数据。

大涡模拟耦合模式作为一个好的方法已经开始 被广泛应用于海洋和大气之间小尺度相互作用的研 究中。Esau(2014)将大涡模拟的海洋模块与大气模块 进行耦合,探究了间接耦合机制在海气相互作用中 的重要影响,但未考虑风的作用。Noh等(2004)和 Li 等(2013)将 Langmuir 环流效应和波浪破碎效应加入 了湍流大涡模拟中,使得湍流大涡模拟在海洋上层 的模拟更加接近实际海况;孙丹译等(2020)使用大涡 模拟海气耦合模式,探究风速对小尺度海气相互作 用的影响,通过海气通量以及湍流动能收支进行表 征;但都缺少对有地形海域条件的分析。为此本文在 前人的研究基础上使用并行大涡模拟海气耦合模式 (the parallelized large-eddy simulation model, PALM) 进行数值模拟,通过流场分布、海气通量、湍流垂向 涡黏系数和海洋湍流动能收支各项分布作为表征, 探究地形和风速对小尺度海气相互作用过程的影响。

1 模式简介及设置

1.1 PALM 简介

本研究使用的是基于Boussinesq近似的非流体静 力学数值模拟模式PALM,对经过滤波的不可压缩 Navier-Stokes方程进行求解。其基本方程如下公式 (1)~(4)所示。

$$\frac{\partial u_i}{\partial t} = -\frac{\partial u_i u_k}{\partial x_k} - \varepsilon_{ijk} f_j u_k + \varepsilon_{i3j} f_3 u_{g,k} - \frac{1}{\rho_0} \frac{\partial \pi^*}{\partial x_i} + g \frac{\theta_V - \overline{\theta_V}}{\overline{\theta_V}} \delta_{i3} + v \frac{\partial^2 u_i}{\partial x_k^2} - \frac{\partial}{\partial x_k} \left(\left\langle u_i^* u_k^* \right\rangle - \frac{2}{3} e \delta_{i3} \right), \quad (1)$$

$$\frac{\partial u_k}{\partial x_k} = 0, \qquad (2)$$

$$\frac{\partial \theta_V}{\partial t} = -\frac{\partial u_k \theta_V}{\partial x_k} - \frac{\partial}{\partial x_k} \left\langle u_k^{"} \theta_V^{"} \right\rangle - \frac{L_V}{c_p \prod} \psi_{qV} , \qquad (3)$$

$$\frac{\partial q_V}{\partial t} = -\frac{\partial u_k q_V}{\partial x_k} - \frac{\partial}{\partial x_k} \left\langle u_k^{"} q_V^{"} \right\rangle + \psi_{q_V} , \qquad (4)$$

其中,等式中尖括号表示水平域平均值,上划线表示 水平平均,下标0表示海表面值,双撇表示次网格尺 度湍流模式变量。

在海洋模式:将公式(1)中的
$$g\frac{\theta_V - \theta_V}{\overline{\theta_V}}\delta_{i3}$$
改为

 $-g \frac{\theta_V - \theta_V}{\theta_V} \delta_{i3}$,其中 ρ_0 由海水状态方程得到;考虑 到盐度*S*对于密度的影响,增加方程:

$$\frac{\partial S}{\partial t} = -\frac{\partial u_j S}{\partial x_k} - \frac{\partial}{\partial x_k} \left\langle u_k^{"} S^{"} \right\rangle \psi_s \,. \tag{5}$$

根据公式(1)~(4),利用张量伸缩运算,通过在 时间差分之前将动量预算项乘以适当的扰动速度场, 推出空间水平平均的次网格湍动能方程(subgridscale tuebulence kinetic energy, SGS-TKE) (Skyllingstad et al, 2000):

$$\frac{\partial}{\partial t} \left(\frac{1}{2} \sum_{i=1}^{3} u_{i}^{'2} \right) = -\overline{u_{i}} \overline{u_{k}} \frac{\partial \overline{u_{i}}}{\partial x_{k}} - u_{k}^{'} g \frac{\rho}{\rho_{0}} + \left\langle u_{i}^{"} u_{j}^{"} \right\rangle \frac{\partial u_{i}^{'}}{\partial x_{j}}, \quad (6)$$
$$-\frac{\partial}{\partial x_{k}} \overline{\left(u_{k}^{'} E + u_{i}^{'} \left\langle u_{i}^{"} u_{k}^{"} \right\rangle \right)} - \frac{\partial}{\partial x_{k}} \overline{\left[u_{k}^{'} \left(\frac{P}{\rho_{0}} + \frac{2}{3} e \right) \right]} - \Delta$$
$$u_{i}^{'} = u_{i} - \overline{u_{i}}, \quad (7)$$

公式(6)中等号右边各项依次是: 速度剪切项、浮 力项、次网格耗散项、湍流动能传输项、压力项和耗 散项。在表1中列举出了上述方程中出现的所有参数 及其说明。

Tab.1	List of parameters	
符号	说明	单位
t	时间	S
$x_i(x_1=x, x_2=y, x_3=z)$	笛卡尔网格坐标	m
$u_i(u_1 = u, u_2 = v, u_3 = w)$	速度分量	
З	列维-奇维塔符号	/
$f_i = \begin{bmatrix} 0, 2\Omega \cos(\phi), 2\Omega \sin(\phi) \end{bmatrix}$	科式力参数	s^{-1}
ρ	密度	kg/s^2
π^*	修改后的扰动压力	hPa
g	重力加速度	m/s^2
$ heta_V$	位势温度	K
υ	运动黏度	/
δ_{i3}	克罗内克符号	/
L_V	蒸发潜热	J/kg
c_p	恒压干燥空气的比热容	$J/(kg \cdot K)$
П	Exner 函数	/
е	次网格湍流动能	m^2/s^2
q_V	湿度	kg/kg
Ψ_{q_V}	湿度的源/汇项	kg/(kg \cdot s)
S	盐度	/
Ψ_s	盐度的源/汇项	s ⁻¹
Ε	湍流动能	m^2/s^2
Р	压强	hPa

表1 参数列表

1.2 海气耦合模式简介

PALM可以实现海气耦合模式,讨论湍流过程在 大气边界层(atmospheric boundary layer, ABL)和海洋 混合层(oceanic mixed layer, OML)中的相互作用,通 过一个大气和一个海洋两个大涡模拟之间在海面上 的各项变量实时在线交换实现耦合。根据水的密度 $\rho_{1,0}$ 来调整动量通量 $\left\langle w'u'' \right\rangle_0$ 和 $\left\langle w'v'' \right\rangle_0$ 从而保证海洋 和大气之间的通量守恒,如公式(8)和公式(9)所示:

$$\left\langle w \ddot{u} \right\rangle_{0|\text{ocean}} = \frac{\rho_0}{\rho_{1,0}} \left\langle w \ddot{u} \right\rangle_0, \qquad (8)$$

$$\left\langle w^{"}v^{"}\right\rangle_{0|\text{ocean}} = \frac{\rho_{0}}{\rho_{1,0}} \left\langle w^{"}v^{"}\right\rangle_{0}.$$
 (9)

海面的冷却由海水蒸发所导致,海洋的热通量 $\left\langle w^{"}u^{"} \right\rangle_{0|ocean}$ 同时依赖于两个变量,一个是大气的热通 量 $\left\langle w^{"}\theta^{"} \right\rangle_{0}$,另一个是大气在海表面的湿度通量 $\left\langle w^{"}q^{"} \right\rangle_{0}$,如公式(10)所示:

$$\left\langle w^{"}\boldsymbol{\theta}^{"}\right\rangle_{0} = \frac{\rho_{0}}{\rho_{1,0}} \frac{c_{p}}{c_{p,1}} \left(\left\langle w^{"}\boldsymbol{\theta}^{"}\right\rangle_{0} + \frac{L_{V}}{c_{p}} \left\langle w^{"}\boldsymbol{q}^{"}\right\rangle_{0} \right).$$
(10)

公式(10)中 $c_{p,1}$ 表示水在恒压下的比热容。 Steinhorn(1991)提出,海洋部分盐分无法蒸发,所以 海水蒸发时会导致其含盐量增加,这一过程可通过 盐度通量 $\left< w^{"}S^{"} \right>_{0|ocean}$ 表示, $\left< w^{"}S^{"} \right>_{0|ocean}$ 在海面向下, 即为负值,具体由公式(11)表示:

$$\left\langle w''S'' \right\rangle_{0|\text{ocean}} = -\frac{\rho_0}{\rho_{1,0}} \frac{S}{1\,000 - S} \left\langle w''q'' \right\rangle_0.$$
 (11)

边界条件如式(12)所示:

$$\theta_0 = \theta_{0|\text{ocean}}, u_0 = u_{0|\text{ocean}}, v_0 = v_{0|\text{ocean}}, \qquad (12)$$

其中, θ₀表示海面位温, u₀和v₀为水平速度分量。在 PALM海气耦合模式中,可以单独设置大气模式和海 洋模式的时间步长,不要求二者相等,分别进行前驱 运行后再以指定的频率执行耦合运行,这样也可以 减少计算量。在模式设置中,PALM要求大气部分和海 洋部分的水平域大小相等,因为耦合是通过海面数 据的双向双线性插值实现。

1.3 模式设置

本文使用PALM海气耦合模式,初始设置包括海 洋和大气两个部分。考虑到在模式中加入理想立方体 地形,为了保证在模拟水域内可以充分讨论地形带来 的影响,设置足够大的模拟区域,海洋部分网格数为 640×320×100 (*x*, *y*, *z*)个,网格大小是1.25 m× 1.25 m× 1 m,即模拟区域大小为800×400×100 m³ (*x*, *y*, *z*);大气 部分的网格数是640×320×60 (*x*, *y*, *z*)个,网格大小是 1.25 m×1.25 m×5 m,即模拟区域大小为800×400× 300 m³ (*x*, *y*, *z*)。PALM海气耦合可以分为前驱运行和耦 合运行两个部分,这两个部分的各项初始条件设置大 致相同,采用三阶Runge-Kutta方法为时间步长方案, 将侧边界条件设置为周期性边界条件,同时海洋模式 中的上边界和大气模式中的下边界均采用自由滑移边 界条件。参照Esau (2014)的相关研究内容设置大气模式 的表面温度是270.6 K, 温度梯度是0.015 K/m, 海洋模 式温度是272.65 K, 盐度是34.8, 本文中纬度设置为 45°N, 具体初始温盐剖面如图1所示。

本文不考虑海洋分层和海洋背景流,前驱运行 时通过风速的输入使大气模式启动,在海洋初始运 行时引入一个微小的扰动使得海洋模式启动,具体 表现是输入模式中在海表以热通量形式加入,模拟 结果不会受该微小扰动所影响。前驱运行中设置运行 时间大气模式和海洋模式均为28 800 s,耦合运行的 时间则为86 400 s,耦合的时间步长均是30 s。本文首 先通过在5 m/s的地转风背景下设置无立方体地形和 有立方体地形两种实验来探究地形对流场分布、海气 通量及湍流垂向涡黏系数的影响,将无地形条件命 名为EXP_O,有地形条件命名为EXP_T。具体对比实 验设置见表2所示。

表 2 对比实验设置 1

1ab.2	Setting of the control exper	iment I
实验名	风速	地形
EXP_O	5 m/s	无
EXP_T	5 m/s	有

注: EXP_O: 无地形条件; EXP_T: 有地形条件

探究地形对海气相互作用的影响,简单起见,本 文在耦合模式中加入理想立方体地形(图2),以立方 体柱的形式模拟三维地形的存在。定义理想立方体柱 长、宽为*L*,高为3*L*(其中在海洋部分高占2*L*,大气部 分高占*L*),模拟域总水深定义为*H*,*H*=2*L*。然后不改 变地形条件,设置三种地转风速度(5,10和15 m/s)来 讨论改变风速对小尺度海气相互作用的影响,具体 对比实验设置见表3。

Fig.2 Setting of the topography

表 3 对比实验设置 2 Tab 3 Satting of the control experiment 2

100.5	Setting of the control exp	ermient 2
实验组序号	风速	地形
	5 m/s	有
	10 m/s	有
	15 m/s	有

2 有无地形对小尺度海气相互作用的影响

2.1 流场变化

首先关注大气和海洋中速度分量在垂向上的变 化,将数据进行时间平均后得到大气风速和海洋流 速三个分量*u、v*和*w*的垂向剖面图(图3)。图3中横坐 标为速度大小,黑线表示无地形条件EXP_O,红线表 示有地形条件EXP_T。为了便于展示,本文将海洋部 分的速度分量*u、v*数值放大100倍。

与EXP_O相比, EXP_T中在地形的作用下, 大气 部分u方向风速明显减小, 模拟实验中设置立方体地 形长宽以及在大气部分的高度相等, 与模拟域水深 之比为L/H=1/2, 其对速度的影响高度可到5L, 随高 度升高地形作用逐渐减弱, 风速有所回升, 并且在高 度大于5L后u数值略大于无地形条件。海洋部分在海 表面处EXP_T条件下速度最大为0.023 m/s, 相比于 EXP_O条件u最大值为0.045 m/s减小一半; 随水深加 深两种实验条件下速度分量u数值相接近。由于模式 的地转风输入只在水平x方向, 所以在EXP_O中大气 侧风向速度v随高度升高逐渐减小, 在高度大于5L时 趋向于0, 表明在5 m/s的风速作用下对侧风向v的作 用同样可达5L的高度。在EXP_T中v方向风速较之无

Fig.3 Profile of regional average velocity 注: z 为水深, L 为理想立方体长度; EXP_O: 无地形条件; EXP_T: 有地形条件; 背景风向沿水平方向

地形情况下有所增大,说明地形的存在可以降低顺风向速度,增加侧风向速度。海洋部分海底v方向流速从0开始变化且都为正值,同u一样两种实验条件下v数值也相近。速度分量w在大气部分两种实验条件下几乎相同且接近零,表示低风速影响下大气垂向作用较弱,值得注意的是,在EXP_T中,由于高1L立方体地形的存在,在地形顶部w绝对值陡然反向增大然后恢复稳定变化趋势。在海洋中,地形阻挡作用使w从总体上数值减小,在海表由于地转风的作用,随水深加深w逐渐增大,当能量向下传递至逐渐耗散,w 值开始减小直到遇到底边界数值为0。

图4和图5分别展示了大气部分在0.2L高度处和 海洋部分在-0.2L深度处的瞬时大气风速(海洋流速) u、v、w的变化情况,时间取模式最后输出时刻,用 EXP_T减去EXP_O,反映加入地形后流场的增减情 况。图中横纵坐标将理想立方体地形存在的中间位置 处数值设为0。在初始设置中纬度为45°N,即科氏力, f=10⁻⁴ s⁻¹由于Ekman-Stokes边界层动力学的影响,所 以在图4中可以看到大气中的风向沿水平x方向顺时 针偏转。在地形斜后方水平距离4L的区域内两个实验 下风速分量u和v的差值为负,因为在EXP_T中受地 形影响,在地形后方一块区域的风速约为0,所以速 度分量差值为负。图4c中在地形斜后方风场w分量数 值变化较为混乱,表明此区域垂向混合剧烈。

同样地,受地形影响,在其后方一块区域的流速 *u*约为0,被称为"死水区",所以图5a显示在地形后方, EXP_T和EXP_O流速差值为负值,图中死水区的上下宽度和地形直径大体一致,且流速在纵向上(水平*y*方向)向两侧方向增大,一段距离后恢复正常,在横向上(水平*x*方向)上约6*L*处流速逐渐恢复正常,但是受风和地形的持续影响,之后的一段水流变得混乱。

图 5 水下 10 m 瞬时流速图(海洋部分) Fig.5 Instantaneous velocity diagram at 10 m underwater (ocean part) 注: a: u; b: v; c: w; 空白方块表示理想立方体地形

对速度分量v的变化进行讨论,从图5b中可以看出, 在地形前方产生两股相反的水流,是由于地形存在 的绕流效应导致的偶极子型v,在地形前方两端对称。图5c中,速度分量w在地形后方剧烈变化,表示由于地形作用其后方垂向混合作用加强。

2.2 海气通量

PALM中的海气耦合是ABL和OML之间的耦合, 耦合是通过一个大气-海洋界面来保存每个单元网格 内的质量(湿度、盐度)、动量和热量的湍流通量。以 ABL底部的湍流通量为OML的上边界条件,以OML 顶部的速度和海表温度作为ABL的下边界条件。ABL 在上一个时间步长获得表面湍流通量(热、动量、质量) 用于设置OML顶部边界,在同一时间步长中,OML为 下一个时间步长设置ABL底边界的表面温度和速度。

通过模式所得数据对其进行时间平均得到图6, 图中横坐标为通量。由图6可以直观地看到两个实验 下海气通量的垂向变化。在海气界面,加入地形条件 后,大气中的净热通量、淡水通量都相应增大,在同 一高度下有地形条件时净热通量、淡水通量要更大; 而浮力通量的数值在0~2.4L的区域内大于无地形条 件且为正值,在2.4L~5.0L的区域内小于无地形条件 且为负值,在5L~6L的高度区域净热通量、淡水通量 和浮力通量在两个实验条件下数值相近且趋向于0, 说明地形对大气部分的影响高度在0~5L,这与图3中 对速度剖面进行分析得出的结果一致。

图 6 净热通量、淡水通量和浮力通量的垂向剖面图 Fig.6 Vertical profiles of net heat flux, fresh water flux, and buoyancy flux 注: a: 大气和海洋的净热通量; b: 大气的淡水通量,海洋中用盐度通量代替; c: 大气和海洋的浮力通量

海洋部分在加入地形条件后,净热通量和浮力 通量都减小。而淡水通量(在海洋中用盐度通量代替) 在-1L~0的深度区域内未加入地形条件时为负值,加入地形条件后为正值,表明地形存在使海表面受热

蒸发减少;在-2L~-1L的水深区域内则相反,未加入 地形条件下为正值且接近于0,表明在水深到达-1L 直到海底蒸发很弱,在加入地形条件后为负值,地形 的存在给水深-1L到海底的区域内带来一定的(热量) 盐度交换。同时加入地形后,各通量在海洋向下传递 的距离和在大气中向上传递的距离与在无地形条件 下相差不大。

2.3 垂向涡黏系数

可通过湍流垂向涡黏系数来指示海洋的垂向混 合过程。Boussinesq(1877)第一次提出关于湍流垂向 涡黏度的假设,其计算公式为

$$\overline{u'w'} = -K_{\rm m} \frac{\partial u}{\partial z}, \qquad (13)$$

其中,水平方向上速度二阶矩的平均值表示为u'w', 平均速度沿垂向梯度的平均值为 $\frac{\partial u}{\partial z}$, K_m 则表示水 平方向上的湍流垂向涡黏系数。随后一段时间里,湍 流垂向混合参数化方案被不断完善。目前,常用的参 数化方案包括Large等(1994)提出的KPP (K-Profile Parameterization)模型、Wilcox(1998)提出并被Umlauf 等(2003)完善的k- ε 模型、Mellor等(1982)提出的MY2.5 模型等等。

根据公式(13)计算得到海洋部分的垂向涡黏系数随深度变化如图7所示,图中横坐标为湍流垂向涡黏系数*K*_m数值。因为本节模式设置风速输入只沿水平 *x*方向,所以只研究沿该方向上的*K*_m变化。模式基本 达到稳定状态的时间为运行开始后20 min,因此取模 式运行20 min后的水平平均值。

图 7 区域水平平均的垂向涡黏系数 Fig.7 Horizontal regional average vertical vortex viscosity in space

从图中可以看出, 在EXP_O垂向涡黏系数*K*_m的 值在海表从0开始, 这是因为模式未考虑波浪破碎效 应和海表通量的输入等条件; 然后随水深增大 K_m 的值 逐渐增大, 当水深为–0.3L时达到最大值, 为0.024 m²/s, 是由于表面风场的作用使得垂向混合加剧; 接下来 由于风作用向下传递的能量逐渐耗散, 所剩余能量 不足以维持水体的混合, 所以随水深继续增加 K_m 值 开始减小。与EXP_O相比较, 在EXP_T中加入立方体 地形后整体 K_m 值的变化趋势保持不变, 即增大到最 大值后再减小, 但在相同水深处 K_m 数值明显增大, 其达到最大值的深度也有所加深为–0.8L, 同时 K_m 最 大值相比于EXP_O增加1个数量级, 为0.16 m²/s。说明 在地形作用下, 海洋垂向混合增强。总体上 K_m 值均小 于1, 根据公式(13)说明影响 K_m 变化的主要因素为垂 向剪切。

3 有地形条件下风速对小尺度海气相互作用的影响

3.1 垂向动能时间序列

本节保持1.3节的初始条件不变,改变风速,设置5、10、15 m/s三种不同地转风速度,在立方体地形存在条件下,对不同风速下的小尺度海气相互作用情况进行分析。

图8展示了在不同风速下大气和海洋部分的垂向 动能时间序列,图中横坐标为时间,纵坐标为垂向动 量通量,为负值表示动量向下传递。从图8中可以看 出,耦合模式下,相较于海洋,大气部分可以更快达 到稳定状态,在各风速下海洋模式约在3 h后均能达

到稳定。大气模式中,随风速增大动量在垂向上的传 递逐渐加强,在风速为5 m/s时,对所有时间序列输 出的垂向动量通量数值进行平均,得到其平均值为 -2.2×10⁻² m²/s²;风速为10 m/s和15 m/s时,垂向动能 值上下波动。海洋模式中,垂向动能的变化并不完全 响应风速的增大,在不同风速下达到稳定状态后其 值上下波动变化。

3.2 流场分布

时间平均后得到大气风速和海洋流速分量*u、v、* w的垂向剖面如图9所示,图中横坐标为速度。图9a显 示在大气模式中,同一风速下随高度升高*u*逐渐增大 且增大趋势随高度上升渐缓,同时随风速增大*u*逐渐 增大。在图9a海洋部分,风对流速的作用在海表处较 为明显,风速为5 m/s时,海表u最大值为0.023 m/s; 风速为10 m/s时,海表u最大值为0.044 m/s增大将近 1倍;风速为15 m/s时,海表u最大值为0.06 m/s。随水 深加深,风给速度分量带来的变化逐渐减小,在不同 风速条件下u数值接近。图9b大气模式中,速度分量v 在10和15 m/s的地转风速下随高度升高风速增大且 增大趋势逐渐变缓,而在5 m/s风速下一开始随高度 升高v缓慢增大,在高度大于3L后又缓慢减小;总体 上随初始地转风风速增大v逐渐增大,说明在低风速 下好。在海洋部分,同u一样,v在近海面处变化迅速, 不同的是在同一水深处随风速增大v数值呈较明显的 增大趋势。

图 9 速度剖面图 Fig.9 The velocity profiles

从图9c中可以看出,在大气模式中垂向流速w总体上变化不明显,但在高度为1L处,w值反向突增又迅速减小,是由于大气模式中1L高的地形作用,在地形顶部形成反向涡旋,同时初始设置的地转风速度越大,w值突增越明显,说明在大风速作用下风和地形的相互影响更强。风应力可以使海洋表层产生水平流动,从而破坏混合层的稳定性,使混合层中的水体发生垂向运动,因此海洋混合层中的垂向速度比海表处的垂向速度要大得多。在风速作用下随水深增大w逐渐增大,在约-0.3L处达到最大然后逐渐减小,海底减至0,说明风的作用深度大概为水下0.3L。为了更清晰地展示流场变化,取模式最后输出时刻作出大

气模式0.2L高度处和海洋模式-0.2L深度处的瞬时水 平流速图(图10),用有地形条件的结果减去无地形条 件的结果,显示加入立方体地形后流速的增减情况。 随风速增大,大气部分在地形右后方出现明显的下 降气流,且影响范围逐渐增大,当风速为15 m/s时, 影响可达地形后方3L距离。海洋部分,在风速为5 m/s 时地形后方受到影响水流显得混乱的距离约为6L, 随着风速的增大,影响范围也逐渐增大,在整个模拟 水域内水流变得混乱。

3.3 瞬时涡度

图11为在不同风速下水下-0.2L处的瞬时(模式 最后输出时刻)涡度水平截面图,图中白色区域表示

图 10 大气和海洋部分速度 w 分量的水平截面 Fig.10 Horizontal cross-section of the velocity w-component in the atmosphere and ocean 注: a~b: 5 m/s; c~d: 10 m/s; e~f: 15 m/s; 空白方块表示理想立方体地形

立方体地形, 灰色区域代表涡度值为0。从图中可以 看出在立方体地形后面形成大小近似相等方向相反 的对称涡结构, 其涡度数上半为负值, 下半为正值。 当风速为5 m/s时, 在水平x距离约为2.3L处涡度上下 分布慢慢汇合, 形成完整的"涡街"结构; 风速为 10 m/s时, 上下分布的涡汇合距离变短, 约为2L, 而 风速为15 m/s时则在1.8L处形成完整的"涡街"结构, 可见风的增加对尾涡有一定聚拢作用。不同风速下, 立方体地形后方尾部的涡结构相似, 涡在水平y方向 的移动范围也很相近, 但当风速增大可以影响的水 平x距离更远, 涡度分布也更为分散。

3.4 海气通量

图12展示了不同风速下海气通量的垂向变化, 图中横坐标为通量大小。总体上来看,大气部分随着 高度升高各通量值逐渐减小;在海气界面处,随着风 速的增大,大气中的净热通量、淡水通量和浮力通量 也都相应增大;图12c中,由于地形的存在,在高度 为1*L*处浮力通量陡然减小再迅速恢复至正常变化趋 势,且风速越大突变程度越大。

海洋中随水深由浅至深净热通量、淡水通量和浮 力通量逐渐增大,且随风速增大相同水深处各项通

图 12 净热通量、淡水通量和浮力通量的垂向剖面图 Fig.12 The vertical profiles of net heat flux, fresh water flux, and buoyancy flux 注: a: 大气和海洋的净热通量; b: 大气的淡水通量,海洋中用盐度通量代替; c: 大气和海洋的浮力通量

量值也相应增大,在近海面处,5和10 m/s地转风条件 下,其净热通量、淡水通量和浮力通量数值接近,而 当风速为15 m/s时净热通量和淡水通量相较于前者 数值大小增加2倍,浮力通量增加近3倍,说明大风加 剧了各通量在海表处的交换。对不同条件下各通量向 下传递的距离进行分析,风速越大各通量值向下减 小的趋势越缓慢,说明风速的增加会减缓各通量在 海洋上层中的消耗,这与孙丹译等(2020)的研究结果 相同。

3.5 湍流动能收支

图13是海洋部分在三种不同风速条件下的湍流 动能收支图,根据公式(6)计算得出各项值,图中横 坐标为湍动能收支,红线代表速度剪切项,天蓝线代 表Stokes剪切项,绿线代表传输项,蓝线代表压力项, 黑线代表耗散项,为了便于展示将各项数值×10⁶。左 侧图为不同风速条件下海洋湍流动能收支情况,右 侧均为左侧在水深-0.4*L*~0范围的局部放大图。

从图13a、13c和13e中可以发现,海洋湍流动能收 支各项约在-0.2L处迅速减小。在低风速条件下(即风 速为5 m/s),模式中地形的存在抑制了剪切项的生成, 所以剪切项数值较小,在距离海面约-0.1L~0范围内 剪切生成又迅速消失,剪切项与耗散项在近海面处 的值达到最大值且两项大致持平,最大值约为 4.35×10⁻⁸ m²/s³。耗散项表示摩擦引起的动能损失,已 有研究表明动量从近海表传递到整个海洋混合层, 大约有40%的输入能量通过湍流耗散损失(Skyllingstad et al, 2000)。剪切和耗散之间在近海面处的近乎平衡 表明,大部分的湍流能量集中在直接受次网格耗散 影响的小规模流动特征中。当风速增大至15 m/s时, 剪切项明显增大,地形抑制作用减弱,其最大值为 8×10⁻⁷ m²/s³。海洋混合层中湍流动能收支也响应风速 的变化,其中剪切项、Stokes剪切、耗散项随着风速 增大而增加,且在区域-0.2L~0变化明显,由于海洋 模式受到大气风速的驱动,所以在近海表面处各项 值都达到最大,之后随深度增加逐渐减弱。同时在上 层海洋中耗散项通过传输项和剪切项来平衡。

3.6 垂向涡黏系数

根据公式(13)计算得到海洋部分的垂向涡黏系数随深度变化如图14所示,图中横坐标为湍流垂向涡黏系数。同2.3节一样,本节模式风速输入只有水平 x方向,所以只研究沿水平x方向的K_m变化,取模式运行20 min后的水平平均值。

从图14中可以看出, K_m 的垂向分布趋势受风速 影响,呈现先增大后减小的趋势。对比不同风速条件 可以看出,随着风速的增大,总体上在相同水深 K_m 值也增大;当风速为15 m/s时, K_m 最大值可达 0.33 m²/s,相较于风速为5 m/s时数值增大1倍。但是, 风速不同 K_m 值达到最大值的深度基本一致,这与通 过MY2.5等模式所得出来的结果有出入,之前的结果 显示风速越大 K_m 最大值的出现位置越向水域更深处

图 13 不同风速下的湍流动能收支图 Fig.13 Turbulent kinetic energy budget under different wind speeds 注: a: 5 m/s, b: a 的部分放大图; c: 10 m/s, d: c 的部分放大图; e: 15 m/s, f: d 的部分放大图

图 14 不同风速下垂向涡黏系数剖面 Fig.14 Vertical vortex viscosity profile at different wind speeds

移动(Furuichi *et al*, 2015), 但是在实验室实验以及数 值模拟中有被捕捉到类似的结论。陆宗泽(2018)将 MY2.5垂向湍流参数化的结果与湍流大涡模拟的结 果进行了对比,结果发现,大涡模拟的结果和MY2.5 的结果吻合得很好,并且大涡模拟在湍动方面体现 得更好,大涡模拟区别于传统的垂向混合参数化方案,直接计算出垂向湍流涡黏系数。文章设置4组不同的海表面10 m风速(10、15、20、25 m/s),结果表明随风速增大垂向涡黏系数*K*m达到最大值几乎保持在一个深度。同时*K*m值均小于1,在不同风速条件下垂向剪切依旧是影响*K*m变化的主要因素。

4 结论与展望

本文通过大涡模拟海气耦合模式来探究地形和 风速对小尺度海气相互作用的影响,设置理想立方 体地形,地形长宽为*L*,高为3*L*(其中大气部分高*L*), 与水深*H*之比为*L*/*H*=1/2,在5 m/s背景风下,对比有 无地形的区别,然后保持地形条件不变,改变风速为 5、10和15 m/s,展示不同风速下大气风场和海洋流 场、海气通量以及海洋混合层湍动能收支各项的分 布。主要结论如下:

(1) 地形在大气部分减弱顺风向风速, 增强侧风

向风速,作用高度在0~5L的区域,对垂向影响很小。 在地形斜后方一小块区域风速分量*u*和*v*减小为0,*w*分 量数值变化较为混乱,表明垂向混合剧烈。在海洋部 分水平流速变化不大,在地形后面的一块区域出现 "死水区",在横向上流速影响距离约6L。在海气界面, 加入地形条件后,大气中的净热通量、淡水通量都相 应增大,海洋中则是净热通量和浮力通量减小,淡水 通量(用盐度通量表示)为正表明海面蒸发减少。同时 相比于无地形条件下,在有地形时*K*_m最大值增加1个 数量级,说明地形的存在使上层海洋混合加强。

(2) 随着风速的增加,在大气部分,垂向动能的 分布呈现纵向加深的趋势,水体混合程度加深;在海 气界面处、随风速增大大气中的净热通量、淡水通量 和浮力通量相应增大、由于地形存在、在高度为1L处 浮力通量陡然减小后恢复正常变化趋势;海洋中随 水深由浅至深净热通量、淡水通量和浮力通量逐渐增 大、且随风速增大各项值也相应增大、但在近海面处、 5和10 m/s地转风条件下, 其三个通量的数值接近, 当风速为15 m/s时净热通量和淡水通量相较于前者 数值大小增加2倍, 浮力通量增加近3倍, 大风条件下 加剧了各通量在海表的交换;海洋混合层中湍流动 能收支也响应风速的变化、其中剪切项、Stokes剪切、 耗散项随着风速增大而增加,在区域-0.2L~0变化明 显、由于海洋模式受到大气风速的驱动、所以在近海 表面处几项值达到最大、之后随深度增加逐渐减弱。 同时在上层海洋传输项和剪切项来平衡耗散项。随着 风速的增大、总体上 K_m 值也增大、风速为15 m/s时 K_m 最大值为 $0.33 \text{ m}^2/\text{s}$, 是风速为5 m/s条件下 K_m 最大值 的两倍。风速不同K_m值达到最大值的深度基本一致, 为-0.8L。

本文实现了基于大涡模拟的海气耦合模式,对 于海洋和大气之间通量交换等相互作用过程的研究 有重要的参考意义。使用耦合模式充分考虑海洋部分 与大气部分的协同作用,探究地形与风速的影响,模 拟结果与真实情况更接近,从而为真实海洋中岛屿 存在处的海洋动力研究以及风电场等工程建设过程 提供指导。但海洋混合层受风速影响存在两个重要湍 流过程:波浪破碎和 Langmuir 环流。波浪破碎在海 面附近产生大量的小尺度湍流,而由风驱动的表面 流切变与 Stokes 漂移的相互作用产生 Langmuir 环流, 这两者对于海洋混合层有较大影响。Noh 等(2004)对 海洋混合层进行了波浪破碎和 Langmuir 环流的大涡 模拟,揭示了波浪破碎和 Langmuir 环流在海洋混合 层垂向混合过程中的重要作用。Li 等(2013)使用大涡 模拟研究两者在海表边界层中产生湍流的作用, 模 式结果与从 CBLAST 站点湍流测量分析得出的结论 一致。波浪破碎与 Langmuir 环流均发生在海气边界 上, 影响海气通量交换, 所以未来的工作重点便是在 耦合模式中加入波浪破碎和 Langmuir 环流, 考虑二 者对海气相互作用的影响。

参考文献

- 孙丹译, 李爽, 2020. 基于大涡模拟耦合模式的小尺度海气相 互作用研究[J]. 海洋与湖沼, 51(6): 1310-1319.
- 刘紫薇,赵帅康,魏笑然,等,2022. 主流海表风场资料在舟 山群岛近海的性能评估[J]. 海洋与湖沼,53(3): 528-537.
- 李德顺, 董彦斌, 傅学刚, 等, 2021. Bolund 岛对风场流动影响 的数值模拟研究[J]. 液压气动与密封, 41(5): 6-9.
- 吴凡, 2022. 南海上混合层结构表征[D]. 连云港: 江苏海洋大 学: 1-2.
- 陆宗泽, 2018. 风应力对海洋上层垂向混合影响的湍流大涡模 拟[D]. 杭州:浙江大学: 33-34.
- 胡帅,向月,沈晓东,等,2021. 计及气象因素和风速空间相 关性的风电功率预测模型[J]. 电力系统自动化,45(7): 28-36.
- 秦华伟,蔡真,周红伟,等,2014. 舟山特定海域三维水流数 值模拟研究[J]. 机电工程,31(4):541-544.
- BOUSSINESQ J, 1877. Essai sur la théorie des eaux courantes[M]. Paris: Imprimerie nationale, 663-666.
- CAPOTONDI A, WITTENBERG A T, NEWMAN M, et al, 2015. Understanding ENSO diversity [J]. Bulletin of the American Meteorological Society, 96(6): 921-938, doi: 10.1175/ BAMS-D-13-00117.1.
- ESAU I, 2014. Indirect air-sea interactions simulated with a coupled turbulence-resolving model [J]. Ocean Dynamics, 64(5): 689-705.
- FURUICHI N, HIBIYA T, 2015. Assessment of the upper-ocean mixed layer parameterizations using a large eddy simulation model [J]. Journal of Geophysical Research: Oceans, 120(3): 2350-2369, doi: 10.1002/2014JC010665.
- GAO Z, LONG S M, SHI J R, et al, 2023. Indian Ocean mixed layer depth changes under global warming [J]. Frontiers in Climate, 5: 1112713, doi: 10.3389/fclim.2023.1112713.
- GOPALAKRISHNAN S G, ROY S B, AVISSAR R, 2000. An evaluation of the scale at which topographical features affect the convective boundary layer using large eddy simulations
 [J]. Journal of the Atmospheric Sciences, 57(2): 334-351, doi: 10.1175/1520-0469(2000)057<0334:AEOTSA>2.0.CO;2.
- HE J M, SONG C C S, 1997. A numerical study of wind flow around the TTU building and the roof corner vortex [J]. Journal of Wind Engineering and Industrial Aerodynamics, 67/68: 547-558, doi: 10.1016/S0167-6105(97)00099-8.
- JIA W T, SUN J L, ZHANG W M, et al, 2023. The effect of boreal summer intraseasonal oscillation on mixed layer and upper ocean temperature over the South China Sea [J]. Journal of Ocean University of China, 22(2): 285-296.

- LARGE W G, MCWILLIAMS J C, DONEY S C, 1994. Oceanic vertical mixing: a review and a model with a nonlocal boundary layer parameterization [J]. Reviews of Geophysics, 32(4): 363-403, doi: 10.1029/94RG01872.
- LI S, LI M, GERBI G P, et al, 2013. Roles of breaking waves and Langmuir circulation in the surface boundary layer of a coastal ocean [J]. Journal of Geophysical Research: Oceans, 118(10): 5173-5187, doi: 10.1002/jgrc.20387.
- LU Z Z, FAN W, LI S, *et al*, 2018. Large-eddy simulation of the influence of a wavy lower boundary on the turbulence kinetic energy budget redistribution [J]. Journal of Oceanology and Limnology, 36(4): 1178-1188.
- MCCLAIN C R, 2009. A decade of satellite ocean color observations [J]. Annual Review of Marine Science, 1: 19-42, doi: 10.1146/annurev.marine.010908.163650.
- MELLOR G L, YAMADA T, 1982. Development of a turbulence closure model for geophysical fluid problems [J]. Reviews of Geophysics, 20(4): 851-875, doi: 10.1029/RG020i004p00851.
- MENÉNDEZ-VICENTE C, LÓPEZ-QUEROL S, BHATTACHARYA S, et al, 2023. Numerical study on the effects of scour on monopile foundations for offshore wind turbines: the case of Robin Rigg wind farm [J]. Soil Dynamics and Earthquake Engineering, 167: 107803, doi: 10.1016/j.soildyn.2023. 107803.
- NOH Y, MIN H S, RAASCH S, 2004. Large eddy simulation of the ocean mixed layer: the effects of wave breaking and Langmuir circulation [J]. Journal of Physical Oceanography, 34(4): 720-735, doi: 10.1175/1520-0485(2004)034<0720: LESOTO>2.0.CO;2.
- PELLICHERO V, SALLÉE J B, SCHMIDTKO S, et al, 2017. The ocean mixed layer under Southern Ocean sea-ice: seasonal cycle and forcing [J]. Journal of Geophysical Research: Oceans, 122(2): 1608-1633, doi: 10.1002/ 2016JC011970.
- PHILLIPS O M, 1980. The Dynamics of the Upper Ocean [M]. 2nd ed. Cambridge: Cambridge University Press, 331-332.
- REICHL B G, ADCROFT A, GRIFFIES S M, et al, 2022. A potential energy analysis of ocean surface mixed layers [J]. Journal of Geophysical Research: Oceans, 127(7): e2021JC018140, doi: 10.1029/2021JC018140.
- ROUAULT M, REASON C J C, LUTJEHARMS J R E, et al, 2003. Underestimation of latent and sensible heat fluxes

above the Agulhas Current in NCEP and ECMWF analyses [J]. Journal of Climate, 16(4): 776-782, doi: 10.1175/1520-0442(2003)016<0776:UOLASH>2.0.CO;2.

- SHAH K B, FERZIGER J H, 1997. A fluid mechanicians view of wind engineering: large eddy simulation of flow past a cubic obstacle [J]. Journal of Wind Engineering and Industrial Aerodynamics, 67/68: 211-224, doi: 10.1016/S0167-6105 (97)00074-3.
- SKYLLINGSTAD E D, SMYTH W D, CRAWFORD G B, 2000. Resonant wind-driven mixing in the ocean boundary layer [J]. Journal of Physical Oceanography, 30(8): 1866-1890, doi: 10.1175/1520-0485(2000)030<1866:RWDMIT>2.0.CO;2.
- STEINHORN I, 1991. Salt flux and evaporation [J]. Journal of Physical Oceanography, 21(11): 1681-1683, doi: 10.1175/ 1520-0485(1991)021<1681:SFAE>2.0.CO;2.
- SULLIVAN P P, MCWILLIAMS J C, 2010. Dynamics of winds and currents coupled to surface waves [J]. Annual Review of Fluid Mechanics, 42(1): 19-42, doi: 10.1146/annurevfluid-121108-145541.
- SYED A H, MANN J, PLATIS A, et al, 2023. Turbulence structures and entrainment length scales in large offshore wind farms [J]. Wind Energy Science, 8: 125-139, doi: 10. 5194/wes-8-125-2023.
- UMLAUF L, BURCHARD H, 2003. A generic length-scale equation for geophysical turbulence models [J]. Journal of Marine Research, 61(2): 235-265, doi: 10.1357/002224003322005087.
- VON STORCH J S, LÜSCHOW V, 2023. Wind power input to ocean near-inertial waves diagnosed from a 5-km global coupled atmosphere-ocean general circulation model [J]. Journal of Geophysical Research: Oceans, 128(2): e2022JC019111, doi: 10.1029/2022JC019111.
- WALKO R L, COTTON W R, PIELKE R A, 1992. Large-eddy simulations of the effects of hilly terrain on the convective boundary layer [J]. Boundary-Layer Meteorology, 58(1/2): 133-150.
- WILCOX D C, 1988. Reassessment of the scale-determining equation for advanced turbulence models [J]. AIAA Journal, 26(11): 1299-1310, doi: 10.2514/3.10041.
- WOOD N, 2000. Wind flow over complex terrain: a historical perspective and the prospect for large-eddy modelling [J]. Boundary-Layer Meteorology, 96(1/2): 11-32.

LARGE EDDY SIMULATION OF AIR-SEA INTERACTION UNDER THE INFLUENCE OF TOPOGRAPHY AND WIND SPEED

YE Can, CHENG Ze-Yi, GAO Yu, SONG Jin-Bao, LI Shuang (Ocean College, Zhejiang University, Zhoushan 316021, China)

Abstract When water flows through ocean terrain, vertical mixing and a large amount of turbulent may occur due to water flow instability. Aiming at the issue that the traditional air-sea coupling model lacks of discussing the impact of ocean topography and wind speed on air-sea interaction on turbulent scale, the Parallelized Large Eddy Simulation Model (PALM) was used to introduce an ideal cube topography under background wind field of 5 m/s. The impact of topography was simulated under three wind speeds of 5, 10, and 15 m/s. In the simulation, the side length of the cube was 1L and the height was 3L of which the height above water surface was 1L, and the ratio of L and water depth H was 1/2. The impact of wind speed on small-scale air-sea interactions was discussed. Results show that topography could weaken the downwind velocity in the atmosphere, enhances the crosswind velocity, and affect the altitude range of $0 \sim 5L$, while the impact on the vertical direction is small. Under no-topography conditions, the turbulent vertical eddy viscosity coefficient K_m reached the maximum value of 0.024 m²/s at -0.3L water depth without topography, while the maximum value of 0.16 m²/s at -0.8Lwith topography. The presence of topography enhanced the mixing of the upper ocean and increased the maximum value of $K_{\rm m}$ by one order of magnitude. As the wind speed increases, all the net heat flux, freshwater flux, and buoyancy flux in the ocean and atmosphere increased accordingly. At near the sea surface level, the values of the three fluxes under 5 m/s and 10 m/s wind speeds are similar, while at 15 m/s, the net heat flux and freshwater flux increased by two times compared to the former, and the buoyancy flux increased by nearly three times, indicating that strong winds could intensify the exchange of various fluxes at the sea surface. In addition, the turbulent kinetic energy budget in the mixed layer of the ocean responded to the changes of wind speed. The shear term, the Stokes shear term, and the dissipation term increased with the wind speed increase. The variation was significant in the region of $-0.2L\sim0$, and the values of shear term, transmission term, pressure term and dissipation term reached the maximum near the sea surface. Meanwhile, the dissipation term was balanced by the transfer term and shear term. As the wind speed increased, the depth at which $K_{\rm m}$ reached its maximum value was -0.8L in overall.

Key words large eddy simulation; topography and wind speed; air-sea flux; turbulent kinetic energy budget