重金属 Cu、Pb 对泥鳅(*Misgurnus anguillicaudatus*)卵细胞凋亡 及 DNA 损伤的 SCGE 试验^{*}

唐建勋¹ 程樟顺² 郑荣泉³ 陶晓敏² 刘忠良¹ 赵 4^{1}

(1. 金华职业技术学院农业与生物工程学院 金华 321007; 2. 金华职业技术学院制药与材料工程学院金华 321007; 3. 浙江师范大学化学与生命科学学院 金华 321004)

提要 采用室内暴露试验方法,以单细胞凝胶电泳技术(SCGE)检测,研究了 Cu、Pb 不同浓度梯度 与不同暴露时间联合染毒对泥鳅卵细胞 DNA 的损伤。结果表明,各 Cu、Pb 浓度组 DNA 平均迁移 长度增加,与阴性对照组比较差异有显著性(P<0.05)。此外,随着 Cu、Pb 染毒剂量的增加,各试验 组 DNA 的平均迁移长度逐渐增加,在试验浓度梯度范围内(Cu 0.01mg/L+Pb 0.05mg/L、Cu 0.10mg/L+ Pb 0.50mg/L、Cu 0.25mg/L+Pb 0.75mg/L),存在较为显著的剂量-效应关系(P<0.05),但未见明显的时 间-效应关系(P>0.05)。Cu、Pb 可引起泥鳅卵细胞凋亡和 DNA 损伤,卵细胞的不同损伤水平可望作 为较为理想的水环境基因毒性指标。

关键词 Cu, Pb, 泥鳅, 卵细胞, SCGE, DNA 损伤 中图分类号 X171.5

Cu 为生物体必需的一种微量元素, 许多关键的 酶和转录因子都需要Cu以发挥活性作用,但Cu超出 一定的数量时会对生物体造成不良的影响(Gupte et al, 2009; Turski et al, 2009); Pb 则为生物体所非必需 的一种微量元素。在当今经济社会迅猛发展的过程中、 Cu和 Pb 作为工农业生产的原材料而被广泛使用,导 致目前 Cu、Pb 等重金属成为水环境的主要污染物之 一。Cu 与 Pb 进入水体后, 通过有机体的生物放大 (biological amplification)作用, 在食物链各营养级有 机体内蓄积,使生物的种类和数量、群落组成及其结 构、生长繁殖以及遗传特性发生变化(孔繁翔, 2001)。 过去人们对 Cu、Pb 等重金属毒性的评价多采用理化 方法、生化分析、LD₅₀测定等,但这些单一的指标难 以反映重金属污染对水生动物的总体效应。单细胞凝 胶电泳技术(single cell gel eletrophoresis, SCGE)是近 些年来国内外用于各种动物细胞 DNA 损伤检测的一 种较为成熟的技术、与传统的 DNA 损伤检测方法相 比, SCGE 具有简便、快速、灵敏等一系列特点, 适合 于各种动物体内外不同类型的细胞试验(宋春英等, 2007; 张春红等, 2011; 陈忻等, 2007; 葛亚明等, 2007; 胡晓磐等, 2005)。本文采用单细胞凝胶电泳技 术即彗星试验, 以在我国水环境中广泛分布的泥鳅 (*Misgurnus anguillicaudatus*)为试验动物, 研究 Cu 与 Pb 对泥鳅卵细胞凋亡和 DNA 的损伤效应, 旨在筛选 水环境中基因毒剂指标, 进一步阐明 Cu 与 Pb 的毒理 学作用机制, 以及为水环境污染评价等提供更多的 参考依据。

- 1 材料与方法
- 1.1 试剂与仪器

硫酸铜(CuSO₄·5H₂O,上海试剂总厂),醋酸铅 (CH₃COO₂Pb·3H₂O,上海试剂四厂),均为分析纯, 使用前各配制成质量浓度为 1000mg/L 的母液;正常 熔点琼脂糖、低熔点琼脂糖(Biotech 公司); Triton

^{*} 浙江省自然科学基金资助项目, LY12C03006 号。唐建勋, 副教授, 硕士, E-mail: jhtjxun@163.com 收稿日期: 2012-05-16, 收修改稿日期: 2012-06-25

X-100(进口分装); 溴化乙锭(Sigma 公司)。水平电泳 槽和 DYY-6B 型电泳仪(北京六一仪器厂); 荧光倒置 显微镜(CKX-41 型, OLYMPUS, 日本)。

1.2 试验动物

用作试验的 2 龄泥鳅(♀)购自金华市农产品市场 (水库水源养殖),平均体长(13±2.9)cm,平均体重 (14±0.28)g,于试验前暂养 5d,期间活动正常,无病 无伤,死亡率低于 5%。试验过程中每隔 2d 更换少量 与容器重金属浓度相同的溶液;试验期间不投饲料, 以微型电动充气泵日增氧 4—6h。

1.3 试验设计

采用室内暴露试验方法;暴露装置为 40cm× 30cm×45cm 的玻璃水族箱,各盛曝气 2d 以上的自来 水 20L;试验期间水质参数为:水温 8—13℃,pH 6.2— 6.4, DO 5.3—6.1mg/L,平均硬度为 2.67mmol/L,平 均碱度为 2.59mmol/L。试验设置 1 个对照组,3 个不 同浓度梯度 Cu、Pb 处理组。处理组 Cu、Pb 浓度按 照国家《渔业水质标准》(GB11607-89)分别以 1、10、 25 倍设定,进行联合毒性试验。选择规格趋于一致的 泥鳅随机分组,每水族箱放置 12 尾,各设 3 个平行 样。暴露试验以 20d 为一个周期。

1.4 试验方法

1.4.1 样品的处理 分别于第 5、10、20d 将泥鳅 解剖并挖取卵巢, 取泥鳅卵细胞(每尾 100—120 粒), 加入羊血清, 置放于 4℃冰箱中保存; 经 2000r/min 离 心 10min 后, 弃去上清液, 提取卵细胞。

1.4.2 SCGE 试验 凝胶电泳胶板的制作、卵细胞 的裂解以及电泳和中和等参照相关文献(徐西长等, 2005; Collins *et al*, 2008)。先在载玻片上涂抹一薄层 0.6%常熔点琼脂糖制备成常熔点胶板;之后在常熔 点胶板上铺设混有泥鳅卵细胞的 0.6%低熔点琼脂糖; 置放于 4℃冰箱中固化 10—30min,制备成用于单细 胞凝胶电泳的低熔点胶板。 将上述制成的胶板浸入预冷的碱性裂解液 (205mol/L NaCl, 100mml/L Na₂-EDTA, 10mmol/L Tris, pH 10,临用前添加 10%的二甲基亚酚和 1%的 Triton X-100)中,于 4℃裂解 1—1.5h,使卵细胞充分裂解, DNA 趋于松散状态。

从裂解液中取出低熔点载玻片胶板,在蒸馏水中 洗去过多的盐2次,每次5min;再用预冷的PBS缓冲 液漂洗胶板3次,每次5min,置于水平电泳槽内,加 入碱性电泳液(1mmol/L Na₂-EDTA, 300mmol/L NaOH, pH>13)并使液面高于胶板2mm,使卵细胞DNA避光 解旋30min,待到DNA充分展开,然后于25V(有效 电泳长度1V/cm)、300mA,室温下电泳30min。

电泳完毕,取出胶板,用中和缓冲液(用蒸馏水 稀释)漂洗3次,每次5min,再行自然干燥。

1.4.3 染色、镜检和图像分析 在暗室中往胶板上 滴加 GV 染色剂(20μg/L) 50—60μl, 染色 4min 成像; 参照相关方法(陈忻等, 2007; 党炳俊等, 2011), 用蒸 馏水冲洗胶板后立即进行荧光倒置显微镜观察; 根 据 DNA 损伤后彗星尾部的形状及长度预制彗星图谱 (图 1)。将标准图谱分为4个级别, 即0级: 无尾部, 仅 见一明亮圆点; 1—3 级示不同程度 DNA 损伤后的彗 星图像。卵细胞 DNA 损伤的程度逐渐加重, 则彗星 尾部逐渐拉长变大, 彗星头部逐渐缩小且荧光强度 减弱。

根据预制的彗星图谱将每个样品中 200 个泥鳅 卵细胞的彗星尾部进行分级,统计样品中各不同级 别彗星的分布情况;计算样品中的彗星率,即呈现 1—3 级彗星尾部卵细胞占总卵细胞的比例;利用 Comet A 1.0 软件对彗星长度进行测量;计算各样品 彗星的荧光强度 *AU*(Arbitrary units)值: *AU* = 各级 *AU* 单位×(各级卵细胞数/总卵细胞数)。每个样品 *AU* 值的计算为: DNA 彗星尾部级别 0—3 级被分别规定 为 *AU* 单位 0、100、200、300。

图 1 标准彗星分级图谱 Fig.1 Standard comet image of different grades 注: a 为 0 级, b 为 1 级, c 为 2 级, d 为 3 级

1.5 统计分析

泥鳅卵细胞 Cu、Pb 不同浓度梯度溶液暴露试验 的处理重复3次,以*X*²检验进行卵细胞彗星率的统计 分析,采用 *t* 检验进行 *AU* 和慧尾长度的统计分析。

2 结果与分析

从图 2 中可以看出, 经彗星试验后对照组的泥鳅 卵细胞核 DNA 完整, 无彗尾出现, 而 Cu 和 Pb 分别 为: Cu 0.01mg/L+Pb 0.05mg/L、Cu 0.10mg/L+Pb 0.50mg/L 以及 Cu 0.25mg/L+Pb 0.75mg/L 时, 处理 5d、10d、20d 后, 泥鳅卵细胞凋亡现象逐渐加重, 大 量卵细胞出现较为明显的凋亡特征。同时, 卵细胞核中 DNA 受到损伤, 多数卵细胞核发生彗星拖尾的现象。

随着溶液 Cu、Pb 浓度的增加, 泥鳅卵细胞发生 周亡的数量增多, 卵细胞核彗星率也随之上升, 彗尾 荧光强度(AU 值)相对加大, 这表明各试验组泥鳅卵 细胞 DNA 的平均迁移长度逐渐增加, DNA 损伤程度 明显提高(表 1)。统计结果分析显示, 各处理组与 阴性对照组之间存在着显著差异(P<0.05), 其中, 以 Cu 0.10mg/L+Pb 0.50mg/L 浓度组以及 Cu 0.25mg/ L+Pb 0.75mg/L 浓度组对卵细胞的损伤尤为严重, 呈 现出较为显著的剂量-效应关系(P<0.05)。然而, 当 Cu+Pb 浓度继续加大时(从 Cu 0.10mg/L+Pb 0.50mg/L 到 Cu 0.25mg/L+ Pb 0.75mg/L), 卵细胞 DNA 的受损 程度并非呈叠加的关系, 而是随 Cu+Pb 剂量的增加 相对减轻。

从表1还可看出,在同一Cu+Pb浓度组中,泥鳅 卵细胞的彗星率、彗尾荧光强度及彗尾长度并未随时 间的延续而增加,该现象表明时间-效应关系并不显 著(*P*>0.05)。

3 讨论

Cu 与 Pb 是水环境中常见的重金属污染物, 可对 水生动物体产生直接危害或在其皮肤、鳃以及其它组 织器官包括性腺中蓄积, 从而导致潜在的危害(Allen, 1995; 唐建勋等, 2010; 杨丽华等, 2003; 王银秋等, 2003)。此外, Cu、Pb 等重金属还作用于动物体组织 细胞的 DNA, 从而导致不同类型生物细胞的基因毒 性效应(周新文等, 2001; 项黎新等, 2001)。本试验的 结果显示, 随着溶液 Cu 和 Pb 浓度的增加, 泥鳅卵细 胞凋亡及其 DNA 的损伤相对加重, 说明在一定的试 验条件下, Cu 和 Pb 可引起泥鳅卵细胞的凋亡和不同 程度的 DNA 损伤, 并对泥鳅具有遗传毒性作用。在 本试验中还发现, 就" DNA 的损伤程度"与"彗尾长

图 2 不同 Cu、Pb 处理组 SCGE 的彗星图像

Fig.2SCGE comet assay of loach oocytes treated with different concentration of Cu and Pb<</th>注: a、e、i: Cu 0mg/L+Pb 0mg/L (5d、10d、20d); b、c、d: Cu 0.01mg/L+Pb 0.05mg/L (5d、10d、20d); f、g、h: Cu 0.10mg/L+Pb 0.50mg/L(5d、10d、20d); j、k、l: Cu 0.25mg/L+Pb 0.75mg/L (5d、10d、20d)

表1 不同 Cu、Pb 质量浓度的卵细胞 DNA 损伤评价 Tab.1 Evaluation on DNA damage to the oocytes in different Cu and Pb concentration

Cu/Pb 浓度 (mg/L)	暴露时间 (d)	彗尾分级及卵细胞数(n=200)				彗星率	彗尾荧光	彗尾长度
		0级	1级	2级	3级	(%)	强度(AU)	μm (<i>n</i> =20)
0.00/0.00	5	197	2	1	0	1.5 ^d	2.0 ^a	3.26±2.65ª
	10	193	5	2	0	3.5°	4.5 ^b	3.27±1.94ª
	20	192	6	2	0	4.0 ^c	5.0 ^b	3.32 ± 2.15^{a}
	5	140	37	15	8	30.0^{f}	45.5°	7.25 ± 3.78^{f}
0.01/0.05	10	138	32	22	8	31.0^{f}	50.0^{f}	$7.34{\pm}6.96^{\rm f}$
	20	125	47	19	9	37.5 ^g	56.0 ^g	7.67 ± 2.14^{f}
	5	34	72	47	47	83.0 ^e	153.5 ^h	11.51±4.87 ^e
0.10/0.50	10	38	69	39	54	81.0 ^e	154.5 ^h	11.38±5.13 ^e
	20	31	63	55	51	84.5 ^e	163.0 ^h	11.87±3.99 ^e
	5	35	79	44	42	82.5 ^e	146.6 ^h	13.24±5.67 ^e
0.25/0.75	10	29	68	57	46	85.5 ^e	160.0 ^h	13.33±3.85 ^e
	20	28	70	46	56	86.0 ^e	165.0 ^h	13.87±5.27 ^e

同一列中上标字母不同表示差异显著(P<0.05)

度"这两个评价指标而言,前者更能有效地衡量泥鳅 卵细胞的损伤,后者则在相对较高剂量时才能有效 地反映出其差异,这与以往研究者在其它动物组织 细胞 DNA 检测的类似研究相一致(张遵真等,2001; 范丽君等,2007;张迎梅等,2006)。

重金属对水生动物的毒性作用与它们在其组织 器官中的运转、分布、转化、排泄等代谢有关(胡晓 磐等, 2005)。与此同时,鱼类等水生动物暴露于 Cu、 Pb 等重金属时均能诱导体内的金属硫蛋白(Metallothionein, MT),这些蛋白质在 Cu、Pb 等重金属的解毒 过程中起着重要作用。因此, Cu 和 Pb 对泥鳅卵细胞 的损伤是一个复杂的过程。本次试验并未发现 Cu 和 Pb 对泥鳅卵细胞的损伤存在明显的时间-效应关系, 这可能与上述原因及 DNA 的损伤修复有关,或是由 于暴露时间的延长,卵细胞核的 DNA 断裂程度较高, 以致在电泳时断片可能丢失(范丽君等, 2007)。

水生动物的生殖细胞作为遗传物质的主要传递 者,其 DNA 的完整性对于其物种的繁衍和延续的意 义不言而喻,因而在水生动物的遗传育种、种质资源 和生物多样性保护中,对于配子 DNA 的检测显得尤 为重要。迄今为止,国内外有关 Cu、Pb 导致鱼类等 水生动物生殖器官(尤其是卵巢)基因毒性的研究还十 分有限。水生动物卵细胞的 SCGE 试验由于实验条件 相对简便、样品需要量小、分析检测时间短、敏感性 较高,且其生物学变化能较为直接与准确地反映水 环境污染对水生动物的影响,因此对鱼类等水生动 物卵细胞 DNA 的损伤检测有望成为一个较为理想的 水环境基因毒性指标。

参考文献

- 王银秋,张迎梅,赵东芹,2003. 重金属镉、铅、锌对泥鳅和泥
 鳅的毒性. 甘肃科学学报,15(1):35—38
- 孔繁翔, 2001. 环境生物学. 北京: 高等教育出版社, 77-80
- 杨丽华,方展强,郑文彪,2003,重金属对鲫鱼的急性毒性及 安全浓度评价.华南师范大学学报(自然科学版),2:101— 106
- 宋春英,杨建一,高宝珍,2007. 单细胞凝胶电泳技术在生殖 细胞 DNA 损伤检测中的应用. 生殖医学杂志,16(4):293— 296
- 张迎梅, 王叶菁, 虞闰六等, 2006. 重金属 Cd²⁺、Pb²⁺和 Zn²⁺ 对泥鳅 DNA 损伤的研究. 水生生物学报, 30(4): 399— 403
- 张春红, 林欣大, 2011. 单细胞凝胶电泳检测 DNA 损伤的最新 进展. 核农学报, 2(6): 1230—1234
- 张遵真, 衡正昌, 廖 艳等, 2001. 彗星试验检测间接诱变剂 对小鼠睾丸细胞 DNA 损伤. 癌变 ・畸变 ・突变, 13(1): 4— 7
- 陈 忻,西田浩志,小西徹也,2007. 单细胞凝胶电泳技术检 测小鼠成纤维细胞 DNA 的氧化损伤及修复.西安交通大 学学报(医学版),28(1): 25—27
- 范丽君,周忠良,陈东华等,2007. HgCl₂与 CdCl₂对河蟹精子 DNA 损伤的单细胞凝胶电泳检测研究.华东师范大学学 报(自然科学版),4:95—100
- 周新文,朱国念,孙锦荷,2001. Cu、Zn、Pu、Cd 对鲫鱼 (Carassius auratus)组织 DNA 毒性的研究. 核农学报, 15(3):167—173
- 项黎新, 邵健忠, 孟 真, 2001. 六种重金属离子胁迫诱导鱼 类细胞凋亡的研究. 生物化学与生物物理进展, 28(6): 866— 869

- 胡晓磐,周建华,时夕金,2005.利用单细胞凝胶电泳技术研 究镉对鲫鱼淋巴细胞 DNA 的损伤.农业环境科学学报, 24(1):43—45
- 党炳俊,王 君,杜启艳等,2011. 单细胞凝胶电泳检测百草 枯对大鳞副泥鳅血细胞 DNA 的损伤. 水生态学杂志,32(5): 105—108
- 徐西长, 丁福红, 李 军, 2005. 单细胞凝胶电泳用于检测低 温保存的真鲷(*Pagrosomus major*)精子 DNA 损伤. 海洋与 湖沼, 36(3): 221—225
- 唐建勋, 邢承华, 刘忠良等, 2010. 重金属 Cu、Pb 在泥鳅 (*Misgurnus anguillicaudatus*)卵巢的蓄积特性及其对卵细 胞发育的影响. 海洋与湖沼, 41(3): 386—390
- 葛亚明, 宁红梅, 李敬玺等, 2007. 单细胞凝胶电泳技术在临

床兽医学中的应用. 动物医学进展, 28(12): 77—80

- Allen P, 1995. Soft-tissue accumulation of lead in the blue Tilapia, *Oreochromis zcureus* (Steindachner) and the modifying effects of cadmium and mercury. Biological Trace Element Research, 50(3): 193—208
- Collins A R, Osooz A A, Brunborg G et al, 2008. The come assay topical issues. Mutagenesis, 23(3): 143–151
- Gupte A, Mumper R J, 2009. Elevated copper and oxidative stress in cancer cells as a target for cancer treatment. Cancer Treatment Review, 35(1): 32-46
- Turski M L, Thiele D J, 2009. New roles for copper metabolism in cell proliferation, signaling and disease. Journal of Biological Chemistry, 284(2): 717—721

SCGE TEST OF OOCYTES APOPTOSIS AND DNA DAMAGE ON LOACHES MISGURNUS ANGUILLICAUDATUS BY HEAVY METAL Cu AND Pb

TANG Jian-Xun¹, CHENG Zhang-Shun², ZHENG Rong-Quan³, TAO Xiao-Min², LIU Zhong-Liang¹, ZHAO Hua¹

(1. Department of Agricultural and Bio-Engineering, Jinhua Polytechnic, Jinhua, 321007; 2. Department of Pharmacy and Material-Engineering, Jinhua Polytechnic, Jinhua, 321007; 3. College of Chemistry and Life Science, Zhejiang Normal University, Jinhua, 321004)

Abstract With the method of single cell gel electrophoresis (SCGE), the test studied the DNA damage to the loach oocytes, which suffered different concentration of joint attacking of Cu and Pb with various exposure time and doses. The results showed that the average migration length of the DNA increased in each concentration group that was treated by both Cu and Pb. The significant differences appeared as compared with the negative control group (P<0.05). In addition, with the contamination doses enhanced, the average migration length of DNA increased gradually in each treatment group. It was obvious that the relationship of dose-effect existed (P<0.05), but there is no distinct relationship of time-effect (P>0.05) in the gradient range of concentration (Cu 0.01mg/L + Pb 0.05mg/L, Cu 0.10mg/L + Pb 0.50mg/L, Cu 0.25mg/L + Pb 0.75mg/L). As a conclusion, the joint toxicity of Cu and Pb can cause apoptosis and DNA damage to the oocytes and the level of damage will be ideal index for water environment genetic toxicity.

Key words Cu, Pb, Misgurnus anguillicaudatus, Oocyte, SCGE, DNA damage