基于 OFES 模式数据的北赤道流分叉研究^{*}

康 $霖^{1,2,3}$ 陈永利¹ 王 凡¹ 李 琦⁴ 罗 亮³

(1. 中国科学院海洋研究所海洋环流与波动重点实验室 青岛 266071; 2. 中国科学院研究生院 北京 100049;
3. 中国南海研究院 海口 571100; 4. 广州海洋地质调查局 广州 510760)

提要 利用 1957—2006 共 50 年高分辨率的长时间序列海洋模式 OFES(OGCM for the Earth Simulator)数据,对北赤道流(NEC)的分叉规律及其与 ENSO 循环的关系进行了分析。结果表明:(1) NEC 分叉纬度具有明显的季节和年际变化,周期主要呈现为 3—6 个月的季节内振荡和 2 年、2—7 年左右 ENSO 尺度周期振荡以及 10 年以上的年代际变化。在季节尺度上,分叉位置春季偏南,秋季 偏北,并且分叉纬度随深度的增加向北移动,其北移幅度冬季最大,夏季最小。而在年际变化尺度上, NEC 分叉纬度具有较强的年际变化信号,与 ENSO 循环密切相关, El Niño 年分叉位置偏北, La Niña 年分叉位置偏南。(2)NEC 分叉纬度的变化与北太平洋 0—30°N 之间的纬向风应力旋度积分零线位置 密切相关,零线的南北偏移导致了分叉位置的改变,在不同深度上,零线位置对分叉纬度改变的影响时间不同,表层需 1 个月,而 500 m 深度则需 4 个月左右。(3)NEC 分叉影响着黑潮(KC)与(棉兰老 流)MC 的流量分配率,其年际异常变化与冷、暖 ENSO 事件发生密切相关,当 El Niño 发生时,KC 流量分配率减少,MC 流量分配率增加;La Niña 年情况则相反。

关键词 OFES 海洋模式; 北赤道流; 分叉纬度; ENSO 循环; 流量分配率 中图分类号 P731.21

北太平洋低纬度西边界流的结构异常复杂,它 是热带太平洋年际变化的重要过程,也是热带与副 热带海洋之间年际变化信号传递的关键环节。周慧等 (2006)曾对这一区域的环流结构进行过总体概括,而 其中北赤道流(NEC)又是连接热带、副热带两个环流 圈的重要因素。北赤道流又称为信风流,与北半球信 风带对应的是西向的北赤道流。这是一支相对比较稳 定的由信风所引起的风生漂流,同时又是北半球气 旋式环流圈(热带环流圈)以及反气旋式环流圈(副热 带环流圈)的一个组成部分。它的流幅约为10个纬距, 在垂直方向上,分布在深度在 500m 以上的上层海洋 中,其平均流速为0.25—0.75m/s,是一支高温,高盐, 高水色及透明度大的海流。由于受到地形等因素的影 响,它在菲律宾沿岸发生分叉,在西边界形成向北的 黑潮和向南的棉兰老流。早期,人们对于 NEC 分叉 的研究主要还是基于一次或者几次的观测资料来进 行估算。Nitani(1972)根据 1934—1968 年的几个航次 获得的水文观测资料认为,NEC 的分叉位置大约在 11°—14°N 之间,而且分叉点的位置随着深度的增加 有向北移动的趋势。Toole 等(1990)利用 1987 年 9 月 与 1988 年 4 月的中美联合调查的水文资料,分析了 太平洋边界海域的水团分布,得出其分叉纬度在 13°N 附近。从上个世纪 90 年代开始,随着观测资料 的丰富以及数值模式的发展,对 NEC 分叉的研究逐渐 增加。李丽娟等(2005)利用 WOCE 浮标资料对 NEC 表层流速及其分叉点位置进行了统计,发现北赤道 流表层分叉点主要位于 11°—14.7°N,并且具有明显 的年际变化特征。何映辉等(2009)对北赤道流分叉点 位置及其对北赤道流水体输送相关的热量和盐量输 运的分配进行了研究,并且讨论了分叉点位置对于

通讯作者: 陈永利, 研究员, Email: ylchen@qdio.ac.cn 收稿日期: 2011-08-31, 收修改稿日期: 2012-05-30

^{*} 中国科学院知识创新工程重要方向项目, KZCX2-YW-Q11-02 号; 国家重点基础研究发展计划项目, 2007CB4118021 号; 国家自然科学重点基金, 40890152。康霖, Email: kanglingucas@yahoo.com.cn

黑潮入侵南海的影响。之所以对北赤道流分叉点如此 重视,是因为在整个太平洋海域中,NEC 的分叉起着 举足轻重的作用。NEC 的分叉位置对于热带太平洋 西边界流系水体输运的变化及在黑潮(KC)和棉兰老 流(MC)之间水体输运的分配中起着举足轻重的作 用。但是,不同学者在计算分叉位置时,对于 NEC 分 叉纬度定义还存在分歧: 一方面是纬向宽度的选取 不同;另一方面,垂向深度以及模式计算中风场资料 的不同也使得到的 NEC 分叉纬度不同, 但均是以经 向速度为零来确定的。模式研究发现、选择不同的纬 向宽度对分叉纬度影响不大, 而表面风场的年际变 化对 NEC 影响较大。此外、动力计算中所选速度零 面的不同,也会对 NEC 分叉纬度造成影响。对于 NEC 分叉的季节性变化, Qiu 和 Lukas(1996)运用线性, 随 时间变化的 Sverdrup 理论和高分辨率的非线性约化 重力模式,首次给出了北赤道流分叉纬度(NBL)的季 节变化解析解。他们认为、在季节尺度上、分叉纬度于 2月份最偏南, 10月份最偏北, 不同经度所产生的波 会以不同的位相到达西边界、导致了位相不同而相 互抵消, 使得对 NEC 的分叉的整体影响比纬向风应 力旋度零线的移动幅度小的多。根据 Qu 和 Lukas(2003)的研究表明,表层分叉点的平均位置在 14.2°N, 分叉点 6 月份偏南, 11 月份偏北, 而随着深 度的不断加深、分叉点的位置在 1000m 深度可以达 到 20°N 左右。Kim 等(2004)根据 OFES 数值模式的 结果则表明,在表层,分叉纬度5月份最偏南,9月份 最偏北,他们提出菲律宾沿岸的气旋式风应力引起 的海洋上层热含量负异常、导致了北太平洋热带海 洋流涡北移,因此 NEC 分叉向北移动。利用高分辨 率的卫星高度计资料, Wang 和 Hu(2006)的研究表明 NEC 的表层分叉 6 月份最偏南, 12 月份最偏北。根据 历史观测和数值模拟结果,基本上遵循这样的规律, 即 NEC 在春、夏季向南移动、而在秋、冬季向北移 动。但是、分叉位置究竟是春季还是夏季到达最南端、 以及是秋季还是冬季达到最北端, 各观测和数值模 拟结果尚不统一。到目前为止对于 NEC 分叉位置比 较一致的结论是, NEC 分叉位置随着深度增加而向北 移动(Godfrey 1968; Qu et al, 1998), 在表层大约位于 13°N 附近, 500m 层在 18°N 附近, 而到了 800m 层则 达到 20°N 附近。但是、目前关于 NEC 分叉的具体位 置和变化规律以及其与 ENSO 循环的联系, 通过模式 和分析观测资料的研究结果仍有所差异。因此、本文将 利用高分辨率的海洋模式对 NEC 分叉进行研究。

1 模式和数据

本文采用的数据为日本地球模拟器模拟计算得 到的长时间序列的涡解高精度海洋模式(OGCM for the Earth Simulator, OFES)数据。该模式基于 GFDL/ NOAA(Geophysical Fluid Dynamics Laboratory/National Oceanic and Atmospheric Administration)的 MOM3 (Modular Ocean Model)模式,并改进为并行计算。模 式的计算区域为 75°S—75°N, 几乎覆盖除北极海域 外的全球区域。模式的水平空间分辨率为 0.1°、垂直 方向上分为 54 层, 每层的厚度参考真实海洋的温跃 层厚度, 随深度增加而逐渐变大, 从表层的 5m 水深 厚度到最底层的330m水深厚度,最大水深为6065m。 模式的地形采用南安普顿海洋中心 OCCAM 计划测 得的 1/30°的地形测量数据(由 GFDL/NOAA 提供), 并采用 partial cell 方法将地形平滑的与真实地形非常 相近。动量方程中的水平湍流扩散项采用双调和算子 以抑制水平网格尺度的误差。垂直混合采用 KPP 边 界层混合方案。月平均风应力采用 1950-1999 年的 NCEP/NCAR 的再分析数据,表面热通量也是利用 NCEP/NCAR 的再分析数据的月平均输出结果,并采 用 Rosati and Miyakoda 的公式计算得到, 温盐资料采 用 World Ocean Atlas 1998(WOA 98)的结果。

2 分叉纬度的季节变化

我们确定北赤道流分叉纬度方法为:将经向流 速在水平方向上插值到 0.25°经度×0.25°纬度网格, 计算沿西边界4个经度带内的平均经向流速,平均流 速为零的纬度即确定为分叉点纬度。同时,为了准确 地说明海洋上层分叉纬度的变化情况,我们于 500m 以浅的水层对分叉纬度进行研究,并且以 2.5m 水深 处的分叉纬度的平均值作为 NEC 近表层分叉纬度。 由此我们得到了 1957—2006 年北赤道流分叉的时间 序列,以此来研究分析 NEC 分叉的分布特征和季节、 年际变化规律。

图 1 为 0—500m 气候年平均和月平均经向流速 和 NEC 分叉纬度随深度变化的分布图。从年平均图 上可以看到,表层分叉大约发生在 13.9°N,随着深度 的增加,分叉点向北移动,500m 深度上分叉点延伸到 大约 15.1°N。Kim 等(2004)利用 OFES 模式资料计算 得到的年平均北赤道流分叉纬度从表层的 14.3°N 移 动到 500m 处的 16.6°N,比我们的计算结果偏北,这 种差异可能来自所使用资料的时间段不同:他们使用 的是 1982—1998 年的 17 年的资料,而我们使用的是

1957—2006 年长达 50 年的资料。NEC 分叉气候月平 均图显示,在全年尺度上,分叉点随着深度的增加向 北移动。冬季,分叉点随深度北移幅度最大;夏季,分 叉点随深度北移幅度最小。在表层,3月份时分叉点 最靠南,大约在13°N处;8月份时分叉点最靠北,在 15.2°N处。而在近表层100m处(图2),年平均分叉纬

图 2 近表层(100m 平均)NEC 分叉纬度的季节变化 Fig. 2 Seasonal variation of NBL at subsurface (100 meters depth)

度为 13.6°N; 其中 5 月份分叉纬度最靠南, 到达 13.1°N; 分叉纬度最北则出现在 10 月份, 到达 14.3°N。在深层上, 分叉点向北移动, 而在大约 500m 深度上, 11 月份时分叉点最靠北, 在 17.8°N 左右。这 些统计结果与前人的研究成果(Qiu and Lukas, 1996; Qu *et al*, 2003; Wang *et al*, 2006)在有些具体月份上有 所差异, 但总体结果基本一致, 都反映了春夏季偏 南、 秋冬季偏北的特征。

在季节尺度内, NEC 分叉位置春夏季节偏南, 秋 冬季节偏北, NEC 分叉的季节变化可能主要与局地的 Ekman 抽吸有关, 冬季的东北季风和夏季的西南季 风是引起 NEC 分叉纬度季节性变化的最直接强迫。 冬季, 当东北季风盛行时, 强 Ekman 抽吸在菲律宾海 的大部分海域产生气旋式环流, 在西边界附近该环 流的南分支导致 NEC 分叉出现于较高纬度上。夏季 情况则恰恰相反, 西南季风盛行时, 局地 Ekman 抽吸 达到季节极小值, 产生反气旋式环流, 其北向分支使 得 NEC 分叉位于最南端(Qu *et al*, 2003)。Kim 等 (2004)通过分解平均密度场发现, NEC 分叉的季节变 化主要受前两个垂直斜压模态影响。而这两个垂直斜 压模态的分布则与季风引起的局地 Ekman 抽吸以及 向西传播的 Rossby 波相关。

NEC 分叉与北太平洋 0°—30°N 之间的风应力旋 度也密切相关(Qiu, 1996)我们利用 NCEP 再分析风场 资料,计算了该区域内 120°E—80°W 之间的纬向风 应力旋度积分(图略),并将风应力旋度零线位置 (NCL)与 NEC 分叉纬度异常变化进行对比(图 3),可 以明显看到,在季节时间尺度上,NEC 分叉纬度与风 应力旋度零线的位置的变化是一致的,NBL 受 NCL 控制非常明显,二者的相关关系非常密切。而值得注 意的是,在不同深度上,其影响时间有明显差异,呈 现 NBL 变化对 NCL 的响应时间随深度增大的趋势。 在表层,NCL 作用于 NBL 的时间大约为1个月左右, 而在水深 500m 处,则需要四个月左右。由此可见,北

Fig. 3 Seasonal variation of NBL(solid) and the zero line of wind stress curl(NCL dash) Lead=1、2、3、4 分别代表 NCL 季节超前 NBL 1、2、3、4 太平洋 0°—30°N 区间的风应力旋度纬向积分零线的 纬度决定了 NEC 分叉的位置。

3 分叉纬度的年际变化

为了更好地对分叉纬度的年际变化进行分析, 我们对 NEC 分叉纬度做了年平均计算、并且将其与 NCL 的年平均值进行对比,同时,为了说明它们与 ENSO 循环的关系,还将它们与 Niño 3.4 指数进行了 对比(图 4)。通过对比可以发现、在年际时间尺度上、 三者具有很好的同位相关系。尤其在一些强的 El Niño 年份、如(1982/83、1986/87、1997/98、2002/2003)等。 NCL 都出现了极大的正异常, 表征此时风应力旋度 零线向北偏移、而相应的 NBL 也处于极大的正异常 (偏北);相反,在一些强的La Niña年份,如(1970/71、 1974/75、1984/85、1999/2000)等, NCL 都出现了极小 值, 表征风应力旋度零线向南移动, 而 NBL 也相应 的处于极大的负异常(偏南)。也就是说 NBL 变化与 NCL 密切相关, NCL 控制着 NBL 的变化。这一过程 与 ENSO 循环相联系, 是 ENSO 循环所引起的。分叉 纬度表现出较强的年际变化信号。在 El Niño 年分叉 位置偏北, 而在 La Niña 年则偏南。对各个深度分叉 纬度进行小数谱分析的结果显示(图 5), 分叉纬度在 各个深度上的变化频谱都比较宽、季节、季节内和年 际周期信号都很强烈, 表现为 6、9 个月的季节内变

化, 准2年振荡、2--7年的 ENSO 周期, 而且还具有 10年以上的年代际变化, 其中以 2-7 年 ENSO 周期 最为显著。如果对分叉纬度以及 Niño 指数进行季节 平均, 消除掉季节内信号, 可以发现, 在各个深度上, NBL 与 Niño 3.4 指数有很好的对应关系:均在落后 Niño 3.4指数 3—5个季节左右达到最大的正相关,在 超前 1—3 个季节左右达到最大的负相关(图 6)。同时, 对于 NBL 与 Niño 指数的相关性, 随着深度的变化, 时间的滞后越来越长,而与之相对应的是它们的相 关程度也越来越高。其中在 5m 的深度上, NBL 滞后 Niño 指数 1-2 个季时有最大正相关,相关系数为 0.39, 而在 500m 深度上, NBL 滞后 Niño 指数 4-5 个 季时的最大正相关系数达到 0.46。根据图 2 可知, NCL 在季节尺度上,从海表面5m一直到500m深度上,分 别超前 NBL1-4 个月,反应在季节尺度上,也不超 过2个季度。因此、在 NCL 与 Niño 指数的季节尺度 对应关系上, NBL 与 NCL 基本一致, 并无太大变化 (图略)。因此,无论在季节还是年际时间尺度上,NBL 和 NCL 都有很好的对应关系。

4 对西边界流经向流量分配率(qkc, qmc) 的影响

NEC, KC, MC 共同组成了 NMK 系统, NBL 的这种变化就必然会对西边界流南、北经向的分配率产生

Fig. 4 Annual variation of NBL(blue), zero line of wind stress curl(red), and Nino 3.4 index(green)

影响。为了更好地探讨 KC 和 MC 两者之间的变化关系, 根据前人的研究结果¹⁾, 我们将 KC 和 MC 的逐 月流量分别除以 NEC 的流量, 得到两个时间序列的 比值,分别表示北赤道流在经向向北、向南输运的分 配率,用 qkc(黑潮流量分配率)和 qmc(棉兰老流量分 配率)来表示,这样做的目的相当于消除了 KC 和 MC

1) 李琦, 2009. 北太平洋低纬度西边界流的时空特征和变异规律研究. 北京: 中国科学院研究生院硕士学位论文

当中由于 NEC 变化信号而产生的影响。计算结果表 明, qkc 和 qmc 均具有明显的季节变化规律, 两者呈 反位相变化。其中 qkc 春季 4—6 月份向北的输运最 大, 而秋季 9—11 月份最小; qmc 在 5 月份向南输运 最低,10月份输运量最大。这也与图2的结果相吻合、 表明了 qkc 和 qmc 在季节上与分叉纬度 NBL 具有不 同的对应关系: 夏季 NBL 偏南, 导致 qkc 增大, qmc 减小;而冬季 NBL 偏北,导致 qkc 减小, qmc 增大。 由于在年际尺度上 NBL 主要受到 ENSO 循环的影响, 而 NBL 又是影响 qkc 和 qmc 的主要因素,因此无论 是 qkc 还是 qmc, 都具有明显的 2—7 年的 ENSO 周 期,这与前面 NBL 的周期分布比较类似。也就是说, 无论是 NBL 还是 qkc 和 qmc, 在年际时间尺度上都呈 现出 2—7 年的 ENSO 周期。不同的是, 由于 qkc 和 qmc 的反位相关系,因此,在 ENSO 不同位相期间, 两者将会表现出明显的反向变化。对于 NBL 与 qkc 以及 qmc 之间的关系(图 7、图 8), 可以看出, 在 ENSO 时间尺度上, NBL 与 qmc 呈正相关关系, 并且 随着深度的变化、它们二者之间的相关系数越来越 高,在表层可以达到 0.48, 而在 500m 深度,则可以 达到 0.62。而 qkc 则与之呈反位相关系。随着深度的 变化, 其表层和 500m 深度相关系数分别为-0.39 和

-0.56。可以看出, qkc 和 qmc 在 ENSO 时间尺度上是 一种完全相反的变化规律。如 1982/83、1986/87、 1997/98、2002/03 年等, NBL 都出现了极大的正值, 表 明分叉点向北偏移, 同时, qkc 也处于极小值, 而相对 应的 qmc 则处于极大值。而在 1970/71、1974/75、 1984/85、1999/2000 年等, 情况则正好相反。这表明, 当 ENSO 暖事件发生时, NBL 分叉纬度向北偏移, 导 致 qmc 增大, qkc 减小, 而在 ENSO 冷事件时, 则正好 相反。qkc 和 qmc 的这种对应关系更加表明了 NMK 系统与 ENSO 循环密切相关。

5 结论

在本文中,我们重点分析了北赤道流分叉纬度 的季节变化和年际变化,并讨论了分叉纬度与 ENSO 循环的关系,结果表明: NEC 分叉纬度具有明显的季 节和年际变化规律。周期主要包括为 3—6 个月的季 节内振荡和 2 年、2—7 年左右 ENSO 尺度周期振荡 以及 10 年以上的年代际变化。在季节尺度上,分叉 位置春季偏南,秋季偏北,在表层,3月份分叉点最靠 南,大约在 13°N 处;8月份分叉点最靠北,在 15.2°N 处,并且分叉纬度随深度的增加向北移动,其北移幅 度冬季最大,夏季最小。而在年际变化尺度上,NEC

图 7 在 ENSO 时间尺度内, NBL(实线)与 qkc(虚线)的年际变化 Fig. 7 Annual varitation of NBL(solid) and qkc(dash in ENSO Time Scale)

图 8 在 ENSO 时间尺度内, NBL(实线)与 qmc(虚线)的年际对比 Fig. 8 Annual variation of NBL(solid line) and qmc(dash line) in ENSO Time Scale

分叉纬度具有较强的年际变化信号、与 ENSO 循环密 切相关, El Niño 年分叉位置偏北, 平均分叉纬度在 13.9°N 处, La Niña 年分叉位置偏南, 平均分叉纬度在 12.7°N 处, 两者相差约 1.2 个纬度。NEC 分叉纬度的 这种变化与北太平洋 0—30°N 之间的纬向风应力旋 度积分零线位置密切相关、零线的南北偏移导致了 分叉位置的改变, 在不同深度上, 零线位置对分叉纬 度改变的影响时间不一样、表层需 1 个月、而 500m 深度则需 4 个月左右。同时, NBL 的这种变化也会导 致流量分配率 qkc 和 qmc 也产生类似的季节和年际变 化信号。具体表现为: KC 与 MC 流量分配率之间为 强的负相关关系。在季节时间尺度上, qkc 在 5 月份 向北输送最大, 而在 10 月份则最小, qmc 则在春季南 向输送最小,而在秋冬季节最大。而在年际时间尺度 上, 其年际异常变化与冷、暖 ENSO 事件发生密切相 关,当 El Niño 发生时, KC 流量分配率减少, MC 流量 分配率增加; La Niña 年则正好相反。而无论是季节还 是年际时间尺度上的这种变化、都是由分叉纬度 NBL 来决定的。NBL 与 qkc 呈反位相关系, 而与 qmc 则是正相关。

但是,我们也发现,分叉纬度对于不同 ENSO 位 相的响应是不同的,造成这种现象的原因可能与 ENSO 事件的非线性不对称性有关,因此,在今后的 工作中,将会进一步研究由于ENSO事件非线性不对称性对NMC系统以及分叉纬度所造成的影响。

参考文献

- 何映晖,蔡树群,王盛安,2009. 北赤道流分叉点及南海北部 环流的研究进展. 海洋学研究,27(3):74—84
- 李丽娟, 刘秦玉, 刘伟, 2005. 太平洋北赤道流表层流速及分 叉点位置. 中国海洋大学学报, 35(3): 370—374
- 周慧, 许建平, 郭佩芳等, 2006. 北太平洋西边界流研究综述. 海洋学研究, 24(2): 49—59
- Nitani H, 1972. Beginning of the Kuroshio. In: Stommel H and Yoshida K eds. Kuroshio, Physical Aspects of the Japan Current, Seattle: University of Washington Press, 129–163
- Toole J M, Millard R C, Wang Z *et al*, 1990. Observations of the Pacific North Equatorial Current Bifurcation at the Philippine Coast. J Phys Oceanogr, 20: 307–318
- Qiu B, Lukas R, 1996. Seasonal and interannual variability of the North Equatorial Current, the Mindanao Current, and the Kuroshio along the Pacific western boundary. J Geophys Res, 101(C5): 12315—12330
- Qu T D, Lukas R, 2003. The bifurcation of the North Equatorial Current in the Pacific. J Phys Oceanogr, 33: 5–18
- Qu T, Mitsudera H, Yamagata T, 1998. On the western boundary currents in the Philippine Sea. J Geophys Res, 103(C4): 7537-7548
- Gordon A L, 1986. Inter-Ocean Exchange of Thermocline Water. J Geophys Res, 91(C4): 5037—5046

Kim Y Y, Qu T, Jensen T *et al*, 2004. Seasonal and interannual variations of the North Equatorial Current bifurcation in a high-resolution OGCM. J Geophys Res, 109:C03040

ANALYSIS ON THE NORTH EQUATORIAL CURRENT BIFURCATION USING OFES OCEAN MODEL DATA

KANG Lin^{1,2,3}, CHEN Yong-Li¹, WANG Fan¹, LI Qi⁴, LUO Liang³

(1. Key Laboratory of Ocean Circulation and Wave Studies, Institute of Oceanology, Chinese Academy of Sciences,

Qingdao, 266071; 2. Graduate University of Chinese Academy of Sciences, Beijing, 100049; 3. National Institute for

South China Sea Studies, Haikou, 571100; 4. Institute of Marine Geological Survey, Guangzhou, 510760)

Abstract Spatial and temporal characteristics of North Equatorial Current (NEC) and its relationship with ENSO cycles were analyzed using a 50-year output from a high eddy-resolving numerical model OFES (OGCM for Earth Simulator). Results show that: (1) The NEC bifurcation latitude (NBL) varies seasonally in 3—6-month period, interannually in 2a or 2—7a period, and interdecadally in >10-year period. Seasonally, NBL moves southward in spring and northward in autumn, also moves northward as the depth increases. Interannually, changes in NBL are closely related with ENSO cycle. The bifurcation latitude moves northward in El Niño event, while moves southward in La Niña event. (2) NBL can be determined at the zero line of zonal wind stress curl between 0—30°N in the North Pacific, and the temporal point varies with depth for about one month at surface that increases gradually to four months at bottom. (3) The distributions of Kuroshio (KC) and Mindanao Current (MC) are affected by NBL and correlated with the ENSO cycle. During El Niño period, the distribution of KC transport volume from the Equatorial Current is smaller than that of the MC, and vice versa during La Niña.

Key words OFES(OGCM for Earth Simulator) ocean model; North Equatorial Current; bifurcation latitude; ENSO cycle; transport distribution rates

Wang Q, Hu D, 2006. Bifurcation of the North Equatorial Current derived from altimetry in the Pacific Ocean. Journal of Hydrodynamics, 18(5): 620–626