对虾传染性皮下及造血组织坏死病毒编码 蛋白的相互作用研究^{*}

陈沈雪 魏永伟 苗 亮 陈 炯

(宁波大学海洋学院 生物化学与分子生物学实验室 宁波 315211)

摘要 采用 Matchmaker 酵母双杂交系统,将对虾传染性皮下及造血组织坏死病毒(Infection hypodermal and hematopoietic necrosis virus, IHHNV)编码蛋白 NS1、NS2 和 CP 序列分别构建到酵母 猎物载体 pGADT7 和诱饵载体 pGBKT7 上,分别转化至酵母 AH109 以检测重组猎物载体和诱饵载 体的自激活作用及对宿主的毒性作用,发现无自激活作用和毒性作用,随后将重组猎物载体和诱饵 载体两两共转至酵母 AH109 中,涂布于 SD/-Leu/-Trp 固体培养基上,再点种至 SD/-Ade/-His/-Leu/-Trp/X-α-gal 固体培养基以鉴定编码蛋白间的相互作用。表型鉴定结果显示,只有共转化有 pGADT7-CP/pGBKT7-CP 的酵母重组子能够在 SD/-Ade/-His/-Leu/-Trp/X-α-gal 上生长并显蓝,而其 它重组子均不能在其上生长,表明病毒的 CP 能够自身互作,而其他编码蛋白间无相互作用。为了进 一步研究病毒 CP 自身互作的作用位点,分别从 CP 的 N 端和 C 端截短若干个氨基酸序列,结果发现 CP 的自身互作是高度敏感的,任何较少氨基酸序列的缺失都将导致其自身互作的丧失。本研究为深 入探讨病毒的组装机制和致病机理奠定了理论基础。

关键词 传染性皮下及造血组织坏死病毒;编码蛋白;相互作用;自身互作;酵母双杂交 中图分类号 S945.4 doi: 10.11693/hyhz20150900233

传染性皮下及造血组织坏死病毒(Infection hypodermal and hematopoietic necrosis virus, IHHNV) 是感染对虾的一种重要病原,首次发现于美国夏威 夷地区的南美蓝对虾(*Litopenaeus stylirostris*), IHHNV 感染可引起南美蓝对虾幼虾 90%的死亡(Tang *et al*, 2000; Tang *et al*, 2001; Encinas-García *et al*, 2015)。 IHHNV 亦可感染南美白对虾(*Litopenaeus vannamei*), 但不引起对虾的死亡,而引起慢性矮小残缺综合征 (Runt Deformity Syndrome, RDS)(Hsieh *et al*, 2006; Dhar *et al*, 2007, Lightner, 2011), 患病对虾生长缓慢, 导致其产量和质量急剧下降,给对虾养殖业造成巨 大的经济损失(Galván-Alvarez *et al*, 2012; Silva *et al*, 2014; Encinas-García *et al*, 2015)。

IHHNV 是单链线性 DNA 病毒, 无囊膜, 为二十

面体,直径为 22—23 nm,属于细小病毒科 (Parvoviridae)、浓核病毒亚科(Densovirinae),是目前 已知最小的对虾病毒(Lightner, 1999; Mendoza-Cano *et al*, 2014; Silva *et al*, 2014; Shen *et al*, 2015)。IHHNV 基因组全长约 3.9—4 kb, 含有 3 个开放阅读框(Open Reading Frame, ORF), ORF1和ORF2分别编码非结构 蛋白 1 和 2 (nonstructural protein 1, NS1; nonstructural protein 2, NS2), ORF3 编码病毒的衣壳蛋白(capsid protein, CP)。NS1、NS2和CP分别含666个氨基酸 (75.77 kDa), 343个氨基酸(42.11 kDa)和329个氨基酸 (37.48 kDa) (Shike *et al*, 2000; Vega-Heredia *et al*, 2012)。Tang 等(2003)研究认为 NS1可能参与调控病 毒转录及复制过程中的酶活性; Geng 等(2012)研究发 现 NS2 可与对虾肌动蛋白相互作用,并在病毒感染

通讯作者: 陈炯, 博士生导师, 研究员, E-mail: jchen1975@163.com 收稿日期: 2015-09-06, 收修改稿日期: 2015-11-13

^{*} 国家高技术研究发展计划(863 计划)项目, 2012AA020101 号;浙江省重大科技专项计划项目, 2013C03045-1 号;宁波市自然科学基金项目, 2014A610182 号。陈沈雪,硕士研究生, E-mail: donglinchen@163.com

过程中起着重要作用; Hou 等(2009)将 CP 进行原核表 达后,发现该重组蛋白能够自我组装成病毒样颗粒 (virus-like particles, VLPs)。除上述报道外,目前针对 IHHNV 编码蛋白的相关基础研究鲜有报道。病毒编 码蛋白间的相互作用在病毒生命周期中发挥重要作 用,能够直接影响病毒复制和侵染,因此,研究病毒 编码蛋白间的相互作用有助于深入理解病毒感染过 程和病毒与宿主间的相互作用(Guo *et al*, 2001; Lian *et al*, 2014)。然而,目前尚未有 IHHNV 编码蛋白间相 互作用展开相关研究的报道。本研究构建了 IHHNV 编码的三种蛋白 NS1、NS2 和 CP 的酵母双杂交载体, 研究 3 个编码蛋白间的相互作用情况,以期为深入研 究 IHHNV 的组装机制和致病机理研究奠定基础。

1 材料与方法

1.1 材料

大肠杆菌 TG1、酵母菌株 AH109, 载体 pGADT7、 pGBKT7、 pGADT7-T、 pGBKT7-53、 pGBKT7-lam 由本实验室保存。SD/-Leu、SD/-Trp、SD/-Ade/-Leu、 SD/-His/-Leu 、 SD/-Ade/-Trp 、 SD/-His/-Trp 、 SD/-Leu/-Trp、SD/-Ade/-His/-Leu/-Trp、Minimal SD Base、X-α-gal 购自 Clontech 公司; PCR 相关试剂、 pMD19-T Vector Cloning Kit、Nde I、BamH I 等购自 TaKaRa 公司; GEL Extraction Kit 和 Plasmid Mini Kit I 购自 Omega 公司; 引物由英潍捷基(上海)贸易有限公 司合成; 序列由上海华大基因进行测定。

1.2 方法

1.2.1 PCR 扩增 IHHNV NS1、NS2、CP 序列 根据本实验室克隆的 IHHNV 的基因组全长序列 (KP733862)设计引物(见表 1),以本实验室提取的 IHHNV Wenzhou 株基因组为模板进行 PCR 扩增。反应条件为: 94 预变性 2 min, 94 30 s, 60 退火 30 s, 72 延伸 2 min, 共 35 个循环,最后 72 延伸 10 min。参照 GEL Extraction Kit 回收 PCR 产物,并将其克隆至 pMD19-T 载体。将重组载体命名为 pMD19-NS1、 pMD19-NS2、 pMD19-CP。

表 1 本研究用到的寡核苷酸引物 Tab 1 The oligonucleotide primers used in this study

引物名称	引物序列(5'—3')	酶切位点	产物长度(bp)		
pGAD/BKT7-NS1(+)	C <u>CATATG</u> ATGGCCAAGGACATACTGCAT	Nde I	2001		
pGAD/BKT7-NS1(-)	G <u>GGATCC</u> TTATGTGCATCCCTCCTGGAT	BamH I			
pGAD/BKT7-NS2(+)	C <u>CATATG</u> ATGTCAACGGACAGTGTCAAC	Nde I	1092		
pGAD/BKT7-NS2(-)	G <u>GGATCC</u> CTACTGCGTCTTCGTCTCTT	BamH I			
pGAD/BKT7-CP(+)	C <u>CATATG</u> ATGTGCGCCGATTCAACAAG	Nde I	990		
pGAD/BKT7-CP(-)	G <u>GGATC</u> CTTAGTTAGTATGCATAATATAACA	BamH I			
pGBKT7-CP151(+)	C <u>CATATG</u> ATGCAAACAAGAAGATACTTCG	Nde I	840		
pGBKT7-CP301(+)	C <u>CATATG</u> ATGGTAAAATCAATGATGAAGAC	Nde I	690		
pGBKT7-CP451(+)	C <u>CATATG</u> ATGATATTTAAGGATACTACTGG	Nde I	540		
pGBKT7-CP601(+)	C <u>CATATG</u> ATGGAACAAATGCGAACCGG	Nde I	390		
pGBKT7-CP837(-)	G <u>GGATCC</u> TCAAAGTTCGTCTCCATTTGG	BamH I	840		
pGBKT7-CP687(-)	G <u>GGATCC</u> CTATCCGGTTGTTGGTATTTC	BamH I	690		
pGBKT7-CP537(-)	G <u>GGATCC</u> CTATTGGGGGATTTTGTATCCAT	BamH I	540		
pGBKT7-CP387(-)	G <u>GGATCC</u> CTAGTCTTTCATAAGGGGTAC	BamH I	390		

下划线为酶切位点

1.2.2 猎物载体及诱饵载体的构建及鉴定 参照 Plasmid Mini Kit I 精抽重组质粒,用 Nde I 和 BamH I 进行双酶切,并用同样的酶双酶切 pGADT7 和 pGBKT7。回收酶切产物并进行连接,构建酵母猎物 载体 pGADT7-NS1、pGADT7-NS2、pGADT7-CP, 诱饵载体 pGBKT7-NS1、pGBKT7-NS2、pGBKT7-CP, 并转化大肠杆菌 TG1,涂布于含有氨苄霉素(100 µg/mL) 或卡那霉素(50 μg/mL)的LB平板。挑选单菌落经PCR 初步验证,再用 Nde I和 BamH I进行双酶切验证后, 将阳性克隆送至上海华大基因科技有限公司进行测 序。

1.2.3 猎物蛋白及诱饵蛋白对酵母 AH109 的毒性检测用灭菌的牙签挑取含有重组猎物载体或诱饵

载体的酵母 AH109 阳性克隆至 50 mL SD/-Leu/

Amp (20μg/ml)或 SD/-Trp/Kan (20 μg/mL)液体培养基 中, 30 , 230 r/min 培养 24 h 后,检测其 OD 值。

1.2.4 猎物蛋白及诱饵蛋白自激活检测 将 AH109/pGADT7-NS1、AH109/pGADT7-NS2、AH109/ pGADT7-CP 菌液涂布于 SD/-Leu/X-α-gal、SD/-His/-Leu/X-α-gal、SD/-Ade/-Leu/X-α-gal、AH109/pGBKT7-NS1、AH109/pGBKT7-NS2、AH09/pGBKT7-CP 菌液 涂布于 SD/-Trp/X-α-gal、SD/-His/-Trp/X-α-gal、SD/-Ade/-Trp/X-α-gal 平板, 30 倒置培养 3—5 d, 观察其 生长情况和颜色变化。

1.2.5 猎物载体及诱饵载体共转化酵母 酵母猎物载体及诱饵载体精抽后,根据 LiAc 法共转化至酵母 AH109中,涂布于 SD/-Leu/-Trp 固体培养基,30 倒置培养 3—4 d。随机挑取 6 个单菌落至 SD/-Leu/-Trp 液体培养基,30,230 r/min 培养 24 h。 经菌液 PCR 验证后,点种至 SD/-Ade/-His/-Leu/-Trp/X-α-gal 固体培养基,倒置培养 3—5 d,并观察其 生长及颜色变化。

1.2.6 IHHNV CP 自身作用区域的鉴定 参照方法 1.2.1和1.2.2,根据 IHHNV的 CP 序列设计引物(见表 1),以本实验室提取的 IHHNV Wenzhou 株基因组为模板进行 PCR 扩增。切胶回收目的片段,并分别克隆至 pMD19-T载体,经 Nde I和 BamH I 双酶切后,连接到经相同酶切的 pGBKT7载体,构建 CP 缺失诱饵载体 pGBKT7-CP151(+)、pGBKT7-CP301(+)、pGBKT7-CP451(+)、pGBKT7-CP601(+)、pGBKT7-CP387(-)、pGBKT7-CP537(-)、pGBKT7-CP687(-)、pGBKT7-CP537(-)、防后,PCR 和双酶切验证重组 CP 缺失诱饵载体,经测序无误后,再分别与猎物载体pGADT7-CP 共转化至酵母 AH109中,涂布于SD/-Leu/-Trp 平板,并进一步点种于 SD/-Ade/-His/-Leu/-Trp/X-α-gal 平板,观察其生长及颜色变化。

2 结果

2.1 IHHNV 编码蛋白序列的扩增

以本实验室提取的 IHHNV Wenzhou 株基因组为 模板进行 PCR 扩增 NS1、NS2、CP 序列,得到约 2 kb、 1.1 kb、1 kb 的片段(图 1),与预期目的片段大小相 符合。

2.2 猎物载体及诱饵载体的鉴定

重组猎物载体及诱饵载体经 PCR 及 Nde I 和 BamH I 双酶切分析,结果表明 NS1、NS2、CP 已成 功插入到 pGADT7(图 2A)和 pGBKT7 载体(图 2B)。

1

2

М

图 1 IHHNV NS1、NS2、CP 基因的 PCR 扩增 Fig.1 PCR amplification of IHHNV NS1, NS2 and CP M: DNA 分子量标准; 1: NS1 扩增产物; 2: NS2 扩增产物; 3: CP 扩 增产物

测序结果显示,目的片段已正确插入到猎物载体和 诱饵载体,NS1、NS2、CP 序列无任何碱基的缺失或 突变。

2.3 猎物蛋白及诱饵蛋白对酵母 AH109 的毒性检测

挑取 AH109/pGADT7-NS1、AH109/pGADT7-NS2、AH109/pGADT7-CP 单克隆于 50 mL SD/-Leu/ Amp (20 µg/mL)培养基中, pGBKT7-NS1、pGBKT7-NS2、pGBKT7-CP 于 SD/-Trp/Kan (20 µg/ml)培养基 中, 30℃振荡培养 24 h, 测得菌液 OD₆₀₀ 分别为 0.83、 1.02、1.16,均大于 0.8, 表明猎物蛋白及诱饵蛋白对 酵母 AH109 无毒性作用,可用于进一步实验的展开。

2.4 猎物蛋白及诱饵蛋白的自激活检测

将 AH109/pGADT7-NS1、AH109/pGADT7-NS2、 AH109/pGADT7-CP 涂布于 SD/-Leu/X-α-gal、SD/-His/-Leu/X-α-gal、SD/-Ade/-Leu/X-α-gal、观察到其均 能在 SD/-Leu/X-α-gal 平板上生长但不显蓝(图 3A), 而在 SD/-His/-Leu/X-α-gal 和 SD/-Ade/-Leu/X-α-gal 平板均不能生长(图 3B 和 3C);将 AH109/pGBKT7-NS1、AH109/pGBKT7-NS2、AH109/pGBKT7-CP 涂 布于 SD/-Trp/X-α-gal、SD/-His/-Trp/X-α-gal 和 SD/-Ade/-Trp/X-α-gal 平板上,观察到其能在 SD/-Trp/Xα-gal 平板上生长但不显蓝(图 3D),在 SD/-His/-Trp/ X-α-gal 和 SD/-Ade/-Trp/X-α-gal 平板均不能生长(图 3E 和 3F)。结果表明,该重组猎物载体及诱饵载体表

3

图 2 重组猎物载体及诱饵载体双酶切及 PCR 鉴定

Fig.2 Digestion and PCR identification of recombined prey vectors and bait vectors A. 重组猎物载体双酶切及 PCR 鉴定, M: DNA 分子量标准; 1: pGADT7-NS1; 2: pGADT7-NS1 双酶切; 3: pGADT7-NS1 的 PCR 检测; 4: pGADT7-NS2; 5: pGADT7-NS2 双酶切; 6: pGADT7-NS2 的 PCR 检测; 7: pGADT7-CP; 8: pGADT7-CP 双酶切; 9: pGADT7-CP 的 PCR 检测。 B. 重组诱饵载体双酶切及 PCR 鉴定, M: DNA 分子量标准; 1: pGBKT7-NS1; 2: pGBKT7-NS1 双酶切; 3: pGBKT7-NS1 的 PCR 检测; 4: pGBKT7-NS2; 5: pGBKT7-NS2 双酶切; 6: pGBKT7-NS2 的 PCR 检测; 7: pGBKT7-CP; 8: pGBKT7-CP 双酶切; 9: pGBKT7-CP 的 PCR 检测

图 3 猎物蛋白和诱饵蛋白自激活作用检测

Fig.3 Self-activation analysis of prey proteins and bait proteins AH109/pGADT7-NS1(1)、AH109/pGADT7-NS2(2)、AH109/pGADT7-CP(3)在SD/-Leu/X-α-gal(A)、SD/-His/-Leu/X-α-gal(B)、 SD/-Ade/-Leu/X-α-gal(C)上生长情况; AH109/pGBKT7-NS1(4)、AH109/pGBKT7-NS2(5)、AH109/pGBKT7-CP(6)在SD/-Trp/X-α-gal(D)、 SD/-His/-Trp/X-α-gal(E)和SD/-Ade/-Trp/X-α-gal(F)上生长情况

达的蛋白无自激活特性,不能自激活 AH109 报告基因 *ADE2、HIS3* 和 *MEL1* 的表达,可应用该酵母双杂 交系统进行 IHHNV 编码的 NS1、NS2 和 CP 蛋白间 相互作用研究。

2.5 编码蛋白间相互作用的鉴定

共转化有 pGADT7-NS1/pGBKT7-NS1、pGADT7-NS1/pGBKT7-NS2、 pGADT7-NS1/pGBKT7-CP、

pGADT7-NS2/pGBKT7-NS1、pGADT7-NS2/pGBKT7-NS2、pGADT7-NS2/pGBKT7-CP、pGADT7-CP/pGBKT7-NS1、pGADT7-CP/pGBKT7-NS2、pGADT7-CP/pGBKT7-CP、pGADT7-T/pGBKT7-lam、pGADT7-T/pGBKT7-53 的酵母重组子 AH109 均能够在 SD-Leu/-Trp 固体 培养基上生长,挑取各酵母重组子点种至 SD/-Ade/-His/-Leu/-Trp/X-α-gal 固体培养基,只有转化有 pGADT7-CP/pGBKT7-CP 的酵母重组子能够在该固体培养基上上生长并显蓝,与阳性对照(共转化有pGADT7-T/pGBKT7-53 的酵母 AH109)生长状况一致,而其它酵母重组子均与阴性对照(共转化有pGADT7-T/pGBKT7-lam 的酵母 AH109)一样不能在该培养基上生长(图 4)。说明 IHHNV 编码蛋白 CP-CP能够相互作用,并激活 AH109 报告基因 *ADE2、HIS3*和 *MEL1*的表达,而其它编码蛋白间不存在相互作用(表 2)。

表 2 酵母双杂交分析 IHHNV 编码蛋白间的相互作用 Tab.2 Yeast two hybrid analysis of the interactions among IHHNV encoding proteins

GAL4-BD		GAL4-AD	
	NS1	NS2	СР
NS1	-	-	-
NS2	-	-	-
СР	-	-	+

"+"代表菌落生长并显蓝;"-"代表未出现菌落生长

2.6 IHHNV CP 自身作用区域的鉴定

为进一步确定 CP 蛋白自身互作的作用位点,分 别对 CP 蛋白的 N 端和 C 端进行逐段缺失,构建新的 CP 缺失型诱饵载体 pGBKT7-CP151(+)、pGBKT7-CP301(+)、pGBKT7-CP451(+)、pGBKT7-CP601(+)、 pGBKT7-CP387(-)、pGBKT7-CP537(-)、pGBKT7-CP687(-)、pGBKT7-CP837(-)(图 5A),并与猎物载 体 pGADT7-CP 共转至酵母 AH109 中,涂布于 SD/-Leu/-Trp 平板,并进一步点种于 SD/-Ade/-His/- Leu/-Trp/X-α-gal 平板。结果显示构建的任何缺失体 均未观察到酵母重组子生长(图 5B), 说明 IHHNV CP 序列任何较小片段的缺失都会导致自身互作的丧失。

图 4 IHHNV 编码蛋白间相互作用鉴定 Fig.4 Identification of the interactions between IHHNV encoding proteins 1: AH109/pGADT7-NS1/pGBKT7-NS1; 2: AH109/pGADT7-NS1/pGBKT7-NS2; 3: AH109/pGADT7-NS1/pGBKT7-CP; 4: AH109/pGADT7-NS2/pGBKT7-NS1; 5: AH109/pGADT7-NS2/pGBKT7-NS2; 6: AH109/pGADT7-NS2/pGBKT7-CP; 7: AH109/pGADT7-CP/pGBKT7-NS1; 8: AH109/pGADT7-CP/pGBKT7-NS2; 9: AH109/pGADT7-CP/pGBKT7-CP; 10: AH109/pGADT7-T/pGBKT7-lam; 11: AH109/pGADT7-T/pGBKT7-53

图 5 IHHNV CP 自身互作作用位点鉴定

Fig.5 Identification of the functional sites of CP for self-interaction A. CP 氨基酸序列截短图谱; B. CP 自身互作位点鉴定, 1: AH109/pGADT7-CP/pGBKT7-CP151; 2: AH109/pGADT7-CP/pGBKT7-CP301; 3: AH109/pGADT7-CP/pGBKT7-CP451; 4: AH109/pGADT7-CP/pGBKT7-CP601; 5: AH109/pGADT7-CP/pGBKT7-CP387; 6: AH109/pGADT7-CP/pGBKT7-CP537; 7: AH109/pGADT7-CP/pGBKT7-CP687; 8: AH109/pGADT7-CP/pGBKT7-CP837; 9: AH109/pGADT7-CP/pGBKT7-CP

3 讨论

酵母双杂交是一种体内鉴定和分析蛋白-蛋白相 互作用的重要技术方法、能够检测蛋白间微弱和短 暂的相互作用。此外、由于蛋白之间的相互作用是在 真核酵母细胞内进行,蛋白质可以其天然折叠状态 存在、能够增加检测的灵敏度和可信度。目前、该技 术已广泛应用于病毒蛋白相互作用的研究。例如、 Tacken等(2003)利用酵母双杂交技术鉴定传染性法氏 囊病毒(Infectious bursal disease virus, IBDV) VP2、 VP3、VP4和 VP5 同型蛋白间的相互作用,并用筛减 突变法进一步确定这些蛋白自身互作的位点: Wang 等(2015)利用酵母双杂交技术鉴定瓜类褪绿黄化病毒 (Cucurbit chlorotic yellows virus, CCYV) 各编码蛋白 间的相互作用,发现P59和P9能够自身互作,进一步 分析其自身互作的作用位点后,发现 P59 的中间区域 (第 173—344 个氨基酸)是自身互作的必要位点,而 P9的3个不同截短位点与全长P9均无相互作用;Lian 等(2014)用酵母双杂交系统发现水稻条纹病毒(Rice stripe virus, RSV)的核蛋白(nucleocapsid protein, NP)N 端第 1—47 个氨基酸是其自身互作所必需的, 并且第 42—47 个氨基酸是该作用最重要的氨基酸残 基。本研究成功构建了 IHHNV 编码的 NS1、NS2 和 CP蛋白酵母猎物载体 pGADT7-NS1、pGADT7-NS2、 pGADT7-CP 和诱饵载体 pGBKT7-NS1、 pGBKT7-NS2、pGBKT7-CP,并且这些重组载体无自激活活性, 不能激活酵母 AH109 下游报告基因的表达。此外, 由 于某些融合蛋白可能对酵母具有一定的毒性作用、 本研究也测定了各酵母重组子在 SD/-Leu/Amp 或 SD/-Trp/Kan 液体培养基中振荡培养 24h 后的吸光值, 结果显示各重组子的 OD₆₀₀ 均大于 0.8, 表明融合蛋 白对酵母 AH109 无毒性作用。

病毒蛋白-蛋白间的相互作用在病毒基因组复制 及病毒粒子的组装等过程中发挥重要的作用(Li *et al*, 2013b)。如风疹病毒(Rubella virus, RV)结构蛋白 CP 能够通过与非结构蛋白 p150 相互作用促进病毒 RNA 的复制(Tzeng *et al*, 2006; Sakata *et al*, 2014); 水稻矮 缩病毒(rice dwarf virus, RDV)非结构蛋白 Pns12 与 Pns11 间存在相互作用,而 Pns6 与 Pns11 间也存在相 互作用,这两组非结构蛋白间的相互作用均能影响 病毒的复制(Chen *et al*, 2015); 轮状病毒(Rotavirus) 非结构蛋白 NSP5 与非结构蛋白 NSP2 的相互作用, 以及结构蛋白 VP1与 NSP5 间强烈的相互作用共同促 进病毒的复制及病毒粒子的形成(Eichwald *et al*, 2004; Arnoldi *et al*, 2007)。本研究对 IHHNV 各编码蛋白间 的相互作用进行研究,结果显示, IHHNV 的结构蛋白 CP 与非结构蛋白间 NS1、NS2 或者非结构蛋白 NS1 与 NS2 间不存在异型相互作用,而只有病毒的结构 蛋白 CP 存在同型相互作用。然而,人们在研究同属 细小病毒科的脊椎动物病毒时发现,非结构蛋白 NS1 能够增强病毒 CP 基因的表达(Shike *et al*, 2000),因 此,细小病毒科的病毒非结构蛋白 NS1 通过何种方 式调控 CP 基因的表达有待进一步研究。

研究病毒衣壳蛋白间的自身互作是开展病毒自 我复制和装配的基础性研究, Hallan 和 Gafni 在研究 番茄黄曲叶病毒(tomato yellow leaf curl virus, TYLCV)全长 CP 和诱变 CP 同型蛋白间的相互作用时, 全长 CP 能够自身互作, 截短的蛋白序列能够与全长 CP 互作、而不与其自身截短的蛋白序列互作、从而 推测 CP-CP 间的相互作用是源于其中一个 CP 的 N 端序列与另一个 CP 的 C 末端序列相互作用(Hallan et al, 2001); Kang 等在研究大豆花叶病毒(sovbean mosaic virus, SMV)编码蛋白间的相互作用时发现 CP 能够自身互作,C末端序列(第170—256 个氨基酸)的 截短会导致其自身互作的丧失,由于预测C末端具有 很强的螺旋结构,研究认为 C 末端参与 CP 的自身互 作能够促进病毒的组装(Kang et al, 2004; Kang et al, 2006)。然而、本研究发现 IHHNV 的 CP 截短后不能 够与全长 CP 发生相互作用, 这表明 CP 的自身互作 是高度敏感的、任何较少氨基酸序列的截短将导致 其自身互作的丧失。Hou 等(2009)在对 IHHNV 的 CP 进行原核表达时、发现 CP 能够自我组装成与天然 IHHNV 病毒粒子相同大小和形状的 VLPs, 因此, 我 们推测 CP-CP 的自身互作参与病毒颗粒的自我组装 过程, 而 CP 部分氨基酸序列的缺失将导致其自我组 装效率的降低。

对虾养殖业是世界经济的重要组成部分,其中 南美白对虾为主要的对虾养殖种类。虽然近几年对虾 养殖产量不断增长,但因对虾疾病造成的经济损失 每年约达10亿美元(Li *et al*, 2013a)。大部分的对虾疾 病是由细菌和病毒引起,而抗生素的使用并不能有 效防治病毒引起的疾病。对虾缺乏脊椎动物所特有的 获得性免疫应答,由于缺乏抗体应答,利用 VLPs 进 行药物传递或进行基因治疗将成为防治对虾病毒感 染的有效方法。近些年研究认为利用 VLPs 传递 siRNA 或 dsRNA 等干扰 RNA (interfering RNA, iRNA)将能够有效抑制对虾病毒的复制(Hou *et al*, 2009),本研究中,IHHNV CP 的自身互作及其自身互作的高度敏感性,将为寻找有效途径防治对虾病毒感染提供指导意义。

参考文献

- Arnoldi F, Campagna M, Eichwald C et al, 2007. Interaction of rotavirus polymerase VP1 with nonstructural protein NSP5 is stronger than that with NSP2. Journal of Virology, 81(5): 2128—2137
- Chen Q, Chen H Y, Jia D S *et al*, 2015. Nonstructural protein Pns12 of rice dwarf virus is a principal regulator for viral replication and infection in its insect vector. Virus Research, 210: 54-61
- Dhar A K, Lakshman D K, Natarajan S et al, 2007. Functional characterization of putative promoter elements from infectious hypodermal and hematopoietic necrosis virus (IHHNV) in shrimp and in insect and fish cell lines. Virus Research, 127(1): 1—8
- Eichwald C, Rodriguez J F, Burrone O R, 2004. Characterization of rotavirus NSP2/NSP5 interactions and the dynamics of viroplasm formation. Journal of General Virology, 85(3): 625–634
- Encinas-García T, Mendoza-Cano F, Enríquez-Espinoza T et al, 2015. An improved validated SYBR green-based real-time quantitative PCR assay for the detection of the *Penaeus* stylirostris densovirus in penaeid shrimp. Journal of Virological Methods, 212: 53—58
- Galván-Alvarez D, Mendoza-Cano F, Hernández-López J *et al*, 2012. Experimental evidence of metabolic disturbance in the white shrimp *Penaeus vannamei* induced by the infectious hypodermal and hematopoietic necrosis virus (IHHNV). Journal of Invertebrate Pathology, 111(1): 60–67
- Geng Y, Xiao X, Yin D S *et al*, 2012. The interaction between viral protein and host actin facilitates the virus infection to host. Gene, 507(2): 139—145
- Guo D, Rajamäki M-L, Saarma M et al, 2001. Towards a protein interaction map of potyviruses: protein interaction matrixes of two potyviruses based on the yeast two-hybrid system. Journal of General Virology, 82(4): 935—939
- Hallan V, Gafni Y, 2001. Tomato yellow leaf curl virus (TYLCV) capsid protein (CP) subunit interactions: implications for viral assembly. Archives of Virology, 146(9): 1765–1773
- Hou L H, Hao W, Xu L M et al, 2009. Expression and self-assembly of virus-like particles of infectious hypodermal and hematopoietic necrosis virus in *Escherichia* coli. Archives of Virology, 154(4): 547–553
- Hsieh C Y, Chuang P C, Chen L C et al, 2006. Infectious hypodermal and haematopoietic necrosis virus (IHHNV) infections in giant freshwater prawn, Macrobrachium rosenbergii. Aquaculture, 258(1—4): 73—79
- Kang S H, Lim W S, Hwang S H et al, 2006. Importance of the C-terminal domain of soybean mosaic virus coat protein for subunit interactions. Journal of General Virology, 87(1): 225—229
- Kang S H, Lim W S, Kim K H, 2004. A protein interaction map of soybean mosaic virus strain G7H based on the yeast two-hybrid system. Molecules & Cells, 18(1): 122–126
- Li F H, Xiang J H, 2013a. Signaling pathways regulating innate immune responses in shrimp. Fish & Shellfish Immunology,

34(4): 973-980

- Li J, Xue J, Zhang H M, *et al*, 2013b. Interactions between the P6 and P5-1 proteins of southern rice black-streaked dwarf fijivirus in yeast and plant cells. Archives of Virology, 158(8): 1649—1659
- Lian S, Cho W K, Jo Y *et al*, 2014. Interaction study of rice stripe virus proteins reveals a region of the nucleocapsid protein (NP) required for NP self-interaction and nuclear localization. Virus Research, 183: 6–14
- Lightner D V, 1999. The penaeid shrimp viruses TSV, IHHNV, WSSV, and YHV. Journal of Applied Aquaculture, 9(2): 27-52
- Lightner D V, 2011. Virus diseases of farmed shrimp in the Western Hemisphere (the Americas): A review. Journal of Invertebrate Pathology, 106(1): 110-130
- Mendoza-Cano F, Enríquez-Espinoza T, Encinas-García T et al, 2014. Prevalence of the infectious hypodermal and hematopoietic necrosis virus in shrimp (*Penaeus vannamei*) broodstock in northwestern Mexico. Preventive Veterinary Medicine, 117(1): 301–304
- Sakata M, Otsuki N, Okamoto K et al, 2014. Short self-interacting N-terminal region of rubella virus capsid protein is essential for cooperative actions of capsid and nonstructural p150 proteins. Journal of Virology, 88(19): 11187—11198
- Shen H X, Zhang W, Shao S H, 2015. Phylogenetic and recombination analysis of genomic sequences of IHHNV. Journal of Basic Microbiology, 55(8): 1048–1052
- Shike H, Dhar A K, Burns J C *et al*, 2000. Infectious hypodermal and hematopoietic necrosis virus of shrimp is related to mosquito brevidensoviruses. Virology, 277(1): 167–177
- Silva D C D, Nunes A R D, Teixeira D I A et al, 2014. Infectious hypodermal and hematopoietic necrosis virus from Brazil: Sequencing, comparative analysis and PCR detection. Virus Research, 189: 136–146
- Tacken M G J, van den Beuken P A J, Peeters B P H et al, 2003.
 Homotypic interactions of the infectious bursal disease virus proteins VP3, pVP2, VP4, and VP5: mapping of the interacting domains. Virology, 312(2): 306—319
- Tang K F J, Durand S V, White B L *et al*, 2000. Postlarvae and juveniles of a selected line of *Penaeus stylirostris* are resistant to infectious hypodermal and hematopoietic necrosis virus infection. Aquaculture, 190(3-4): 203-210
- Tang K F J, Lightner D V, 2001. Detection and quantification of infectious hypodermal and hematopoietic necrosis virus in penaeid shrimp by real-time PCR. Diseases of Aquatic Organisms, 44(2): 79–85
- Tang K F J, Poulos B T, Wang J *et al*, 2003. Geographic variations among infectious hypodermal and hematopoietic necrosis virus (IHHNV) isolates and characteristics of their infection. Diseases of Aquatic Organisms, 53(2): 91–99
- Tzeng W P, Matthews J D, Frey T K, 2006. Analysis of rubella virus capsid protein-mediated enhancement of replicon replication and mutant rescue. Journal of Virology, 80(8): 3966—3974
- Vega-Heredia S, Mendoza-Cano F, Sánchez-Paz A, 2012. The infectious hypodermal and haematopoietic necrosis virus: a brief review of what we do and do not know. Transboundary and Emerging Diseases, 59(2): 95—105
- Wang Z Y, Wang Y Z, Sun H et al, 2015. Two proteins of Cucurbit chlorotic yellows virus, P59 and P9, are self-interacting. Virus Genes, 51(1): 152–155

INTERACTIONS BETWEEN INFECTIOUS HYPODERMAL AND HEMATOPOIETIC NECROSIS VIRUS (IHHNV) ENCODING PROTEINS OF PENAEID SHRIMP

CHEN Shen-Xue, WEI Yong-Wei, MIAO Liang, CHEN Jiong

(Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo 315211, China)

Abstract We cloned the genes of infection hypodermal and hematopoietic necrosis virus (IHHNV) of penaeid shrimp into the prey vectors pGADT7 and bait vectors pGBKT7 of Yeast Two-Hybrid System (Matchmaker). The constructed prey and bait plasmids were co-transformed into yeast strain AH109 to test the self-activation and toxicity. The results show that the recombined prey vectors and bait vectors were not self-activated, and were not toxic to AH109. Subsequently, the recombined prey vectors and bait vectors were co-transformed to AH109 and spread onto SD/-Leu/-Trp mediums, and then spot on SD/-Ade/-His/-Leu/-Trp/X- α -gal. Phenotypic identification showed that the co-transformation of pGADT7-CP and pGBKT7-CP could grow well and turn blue on plate while all others failed, indicating that only CP could interact with itself. A series of study on truncated CPs indicated that CP-CP interaction was extremely sensitive to any modification of CP. This study may provide a theoretical base for future investigations on mechanisms of virus assembly and pathogenesis.

Key words Infectious hypodermal and haematopoietic necrosis virus (IHHNV); encoding proteins; interaction; self-interaction; yeast two-hybrid