点吸收式波浪能俘获装置结构优化方法研究^{*}

(1. 天津大学水利工程仿真与安全国家重点实验室 天津 300072; 2. 国家海洋技术中心 天津 300112)

摘要 根据布设海域波浪能资源特征,对点吸收式波浪能装置结构进行优化,可有效提高装置的 能量俘获效率。本文以威海褚岛北部海域为装置布设目标海域,在对该海域波浪资源特征进行统计 分析的基础上,计算得到装置的直径,同时利用数值软件计算出多组工况下点吸收装置吃水深度和 装置固有周期的对应关系,并利用统计学方法得出装置固有周期随吃水深度的变化规律,进而分析 得出装置在该海域的最佳设计吃水深度,为点吸收波浪能装置结构优化设计提供了新的思路。该方 法对于其他技术类型波浪能装置的结构优化设计同样具有借鉴意义。

关键词 波浪能; 点吸收; 结构优化; 吃水深度 中图分类号 TM614 doi: 10.11693/hyhz20190900179

点吸收式波浪能装置利用自由浮动的浮子随波 浪上下振荡俘获波浪能量,通过浮子连接的液压装 置或机械装置将俘获的波浪能转换机械能,再通过 电机将机械能转换为电能。点吸收式波浪能装置采用 相对简便的锚泊式固定,易于进行从装机功率几千 瓦到几百千瓦的系列化设计,在解决边远海岛、各类 海上功能设施供电问题方面具有广泛的应用前景。

由美国海洋电力技术公司研发的波浪发电浮标 (Power Buoy)为点吸收式波浪能发电装置的典型代 表。目前有单机功率 40kW 和 150kW 两种产品,已基 本实现了产品化。国内,中国科学院广州能源研究所 研制与航标形成一体化结构的 10W、60W、100W 系 列化点吸收波浪能发电装置已初步具备产品化条件 (王立国等,2013;王坤林等,2017;盛松伟等,2017, 2019);山东大学刘延俊等(2017)在点吸收装置的液 压系统、海洋电力技术系统优化等方面取得了丰硕的 研究成果。此外,集美大学、中国海洋大学等科研单 位也在点吸收式波浪能装置的研发方面开展了大量 有益的工作(罗续业等,2014;麻常雷等,2017)。

有关点吸收式波浪能发电装置能量俘获装置的 外形,业内学者已开展了大量的研究工作,分析对 比了长方形、球形、水平圆柱形、垂直圆柱形等多 种外形结构。研究结果表明, 垂直圆柱形对于波浪 能的吸收和转换最为有利(刘秋林, 2016)。本文即针 对垂直圆柱形点吸收式波浪能装置的结构优化方法 开展研究。

1 目标海域波浪资源特征分析

目标海域的波浪资源特征是开展装置外形优化 设计的依据。本文选择威海褚岛北部海域为装置布设 目标海域,并利用布设于该海域的浮标观测数据对 该海域的波浪资源特征进行分析,连续观测时间为 2015 年 1 月 24 日到 12 月 24 日,经统计分析,出现 概率较高的波高和波周期如表 1 所示。

表 1 2015 年有效波高-平均周期频率分布

Tab. I	Effective wave height-average periodic frequency
	distribution in 2015

平均周期(s) 有效波高(m)	2—3	3—4	4—5	5—6	合计
0-0.25	0.57	28.34	5.59	0.46	34.97
0.25-0.5	0.85	20.01	4.08	0.17	25.10
0.5-1.0	0.05	10.29	9.27	0.18	19.79
1.0—1.5	0	0.54	7.32	0.65	8.51
1.5-2.0	0	0	2.30	3.29	5.59
合计	1.46	59.19	28.60	8.86	

 ^{*} 国家重点研发计划海洋环境安全保障专项, 2016YFC1401204 号。王 鑫, 博士研究生, E-mail: wxtjnk022@126.com 通信作者: 李大鸣, 教授, E-mail: lidaming@tju.edu.cn
收稿日期: 2019-09-22、收修改稿日期: 2020-01-19

可见, 该海域全年以 1m 以下的小波浪为主, 波 周期主要集中在 3—5s 之间, 其中以 3—4s 周期波浪 最为集中, 低功率的点吸收式波浪能开发利用技术, 正是适合于该目标海域的波浪资源特点的技术形式。

2 点吸收波浪能装置结构关键技术参数 分析

点吸收式波浪能装置符合弗汝德-克雷洛夫 (Froude-Krylov,简称 F-K)条件,即入射波动场的波 压强分布不因潜体的存在而改变,则作用在潜体上 的波浪力一般表达式如公式(1):

$$F = C \cdot F_k \,, \tag{1}$$

式中, F为作用在潜体上的波浪力, F_k为未受扰动的 入射波压强对浮体的作用力, C为反映附加质量效应 的绕射系数, 通常绕射系数需要通过模型试验给予 确定。

F_k 可分解为入射波作用在整个潜体上的水平作 用力和垂直作用力。对于垂直圆柱俘体,在某一时刻 *t* 浮体承受的波浪力的垂直作用力为 *F_v* (何光宇等, 2015; 杨绍辉等, 2016a, b; Tagliabue *et al*, 2019):

$$F_{v} = C_{v} \frac{\rho g H \pi J_{1}(kR)}{k} \cdot \frac{\cosh k \left(h - d_{t}\right)}{\cosh kh} \cos \omega t , \qquad (2)$$

式中, $J_1(kR)$ 为零一阶第一类贝塞尔函数, 浮体的半 径为 R, 浮体高为 1, 吃水深度为 d_t , 其中 t 为波浪作 用到浮体的时间, 水深为 h, C_v 为垂直绕射系数 1.02, ρ 为海水密度 1.025×10³kg/m³, g为重力加速度 9.8m/s², H为波高, k 为波数。当 t = 0 时, F_v 等于波浪力的振幅:

$$F_{\nu}(t=0) = C_{\nu} \frac{\rho g H \pi J_1(kR)}{k} \cdot \frac{\cosh k \left(h - d_0\right)}{\cosh kh}.$$
 (3)

$$k = \frac{1}{\lambda}, \lambda$$
为波长, 単位为 m;
 $\lambda = \frac{gT^2}{2\pi}, T$ 为波浪周期, 单位为 s。

由波浪力垂直分量的计算公式(2)可见,在特定 海域水深条件下,装置浮子的直径、入水深度两个关 键设计参数是装置获能效率的主要决定因素。

3 确定装置浮子直径

波浪能发电装置一般包含三个能量转换部分: 波浪能俘获系统、机械传动系统、发电机。分析当前 波浪能开发利用技术的研究水平,波浪能俘获系统 的能量转换效率一般约为 40%,机械传动系统的工 作效率可达到 70%,发电机的合理工作效率为 90%, 则当前技术水平下波浪能发电装置的整体能量理想 的转换效率 η 约为:

 $\eta = \eta_1 \cdot \eta_2 \cdot \eta_3 = 0.4 \times 0.7 \times 0.9 = 0.252 = 25.2\%$. (4)

以低装机功率的装置为研究对象,设研究目标 的装机功率为 3kW。发电装置输入端的波浪能功率 *P*_{in}(单位: kW)需要达到:

$$P_{\rm in} = 3/0.252 = 11.9$$
. (5)

利用常用的波浪能量简化公式计算波浪能装置 所处波浪场的波浪功率密度 Pd (单位: kW/m)

$$Pd = 0.5H_{1/3}^2 \overline{T} , (6)$$

其中, $H_{1/3}$ 为波浪的有效波高, \overline{T} 为波浪的平均周期。

根据波浪资源的分析统计结果, 褚岛海域平均 波周期主要分布在 3—5s 的区间内, 以 1m 以下小波 浪为主, 大部分情况下波高不超过 2m。因此选择出 现概率较高的波高和波周期为装置的设计输入, 即 波浪能装置的设计波高为 1m, 波浪平均周期为 4s, 这种波况条件下的波浪能功率密度为:

$$Pd = 0.5 \times 1^2 \times 4 = 2.$$
 (7)

对于水平截面为圆型的垂直圆柱点吸收波浪能 俘获装置来说,装机 3kW 的波浪俘获装置的直径 *D* (单位:m)约为:

$$D = P_{\rm in}/{\rm Pd} = 11.9/2 \approx 5.95$$
, (8)
在此,将D圆整为 6.0m。

4 装置最优吃水深度分析

点吸收波浪能装置是通过装置浮子的垂荡运动 来获取能量,即对于垂荡运动,每个装置都有一个固 有周期,当波浪的周期与该周期相同时,装置的垂荡 运动幅值达到最大,在该条件下,波浪能装置的俘获 效率达到最大。首先要研究得出装置吃水深度与装置 固有周期的对应关系;进而在资源分析的基础上,确 定目标海域出现频率相对较高的波周期,以此作为 装置固有周期的设计目标,并通过固有周期与装置 吃水深度的对应关系计算出装置的最佳吃水深度。本 文对点吸收装置固有周期与装置浮子吃水深度的对 应关系分析借助 AQWA 软件,计算前文分析得出的 6m 直径浮子不同吃水深度对应的装置固有周期,进 而分析得出二者的对应变化关系。

4.1 计算方法验证

利用 AQWA 计算张亮等(2015a)的一个例子,将 本文采用计算方法得出的结果与算例结果进行比较, 以验证本文算法的合理性。 计算为一种圆柱形点吸式波浪能装置,如图1所示。俘获装置的外径为6m,内孔直径为2m,高度为 1.6m,静止状态下吃水深度为0.68m。装置的质量为 17.517t。

图 1 计算的点吸收装置外形尺寸 Fig.1 The calculated overall dimensions of the point absorber

在利用软件建立模型的过程中,将全局坐标系的*x-y*平面与静水面重合,*x*轴与波浪传播的方向平行, 方向与波浪传播方向相反;*z*轴与铅锤方向平行,竖 直向上;坐标原点位于水线面的形心处。模型水下深 度根据考察对象的具体数值进行设定,水线以上的 高度设定为 1.0m。模型的质量按模型的排水量估算, 为保证运动的稳定性,将模型的重心设定在浮心下 面 100mm 处。

在此基础上,利用 ANSYS mesh 模块生成俘获装 置表面网格单元,装置网格划分情况如图 2 所示,最 大单元尺寸设置为 0.2m,共计 9920 个单元,网格类 型采用程序默认设(De O Falcão, 2009; Lopes *et al*, 2009; Penalba *et al*, 2017)。最大允许波频率为 1.14Hz, 计算过程中采用规则波,入射波浪的周期范围为 2.4—5s。初始入水深度 0.5m,俘获装置初始静平衡 状态处于竖直位置。水线面将浮子模型分为上下两部 分,只有水下部分参与水动力绕射计算。

图 2 计算网格 Fig.2 The computational grid

在实际工作过程中, 点吸收装置以垂直方向的 垂荡运动为主, 在导柱的限制下其他方向的往复振 荡和摆动的幅度很小。因此,在计算模型中为限制绕 三个坐标轴的摇摆运动,特别是绕 *y* 轴的摇摆运动, 设置了绕 3 个坐标轴摇摆运动的较大数值的阻尼。

波浪能俘获装置的垂荡运动响应幅值比的计算 结果如图 3 所示。图中,横轴为入射波浪的周期,纵 轴为装置垂荡运动响应幅值比。由图 3 可知,装置在 波周期为 3.1s时的垂荡响应幅值最大,即装置的固有 周期为 3.1s。

图 3 算例装置振荡幅值与周期关系

Fig.3 Relationship between oscillation amplitude and period of numerical example device

文献的计算结果如图 4 所示,该计算结果同样表 明装置在波周期为 3.1s 时垂荡运动响应达到最大,且 对照垂荡运动响应随波浪周期的变化趋势与本文计 算的结果,两者近似相同(张亮等,2015a,b;郑雄波, 2016)。这说明本文建立的计算模型合理可行,应用该 方法进行圆柱型点吸收式装置的波浪能转换特性计 算可有效支撑浮子吃水深度与装置固有周期对应关 系的分析。

图 4 文献中算例的计算结果 Fig.4 The calculation results of numerical examples in literature 注:引自张亮等, 2015a

4.2 分析确定装置的最优吃水深度

考察了初始吃水深度对圆柱形点吸收式波浪能 俘获装置固有周期的影响,计算过程中装置的外径 均为 6m,参照国内点吸收波浪能装置的设计经验, 水面以上部分的高度均取为 1m (林江波, 2006; 史宏 达等,2011,2017)。开展以下9组计算,得到不同浮子 吃水深度下的装置固有周期,计算结果分布要能够 覆盖目标海域波周期主要的分布区间,即 3—5s。计 算工况相关参数如表 2,各工况中装置浮心位置均位 于水下部分的中心,重心位置位于浮心位置正下方, 两者相距 0.1m。计算结果如图 5、表 3 所示。

表 2 装置工况相关参数

Tab.2 The parameters of operation condition for the device						
组别	入水深 度(m)	装置质量 (×10 ⁴ kg)	装置绕	装置绕 <i>z</i> 轴的 转动惯量 [×10 ⁵ (kg·m ²)]		
1	0.5	1.449	0.345	0.652		
2	0.6	1.739	0.422	0.783		
3	0.8	2.319	0.587	1.043		
5	1.6	4.637	1.495	2.087		
6	2.0	5.796	2.162	2.608		
7	2.5	7.245	3.271	3.260		
8	3.0	8.694	4.750	3.912		
9	3.5	1.014	6.674	4.565		

6 5 向应振幅系数 4 3 2 1 × 0∟ 2.0 25 3.0 3.5 4.0 4.5 5.0 5.5 周期 (s)

表 3 装置吃水深度和装置固有周期对应表 Tab.3 Corresponding values between the draft and natural period of the device

period of the defiee					
组别	浮子吃水深度(m)	装置固有周期(s)			
1	0.5	3.3			
2	0.6	3.1			
3	0.8	3.1			
4	1.2	3.3			
5	1.6	3.6			
6	2.0	3.8			
7	2.5	4.1			
8	3	4.3			
9	3.5	4.7			

根据表 3, 利用插值法绘制装置浮子吃水深度和 固有周期对应关系曲线(图 6), 横轴为吃水深度, 纵 轴为固有周期。

图 6 装置浮子吃水深度和固有周期对应关系曲线 Fig.6 Correspondence relation between the draft and natural period of the floater

根据对目标海域波浪能资源特征的分析,该海域全年 3—5s 周期的波浪出现的概率最大,其中以 3—4s 周期波浪最为集中,装置固有周期设计为 4s 可 最大限度的获得波浪能量,根据分析得出的浮子吃 水深度和固有周期的对应关系,可得出在目标海域 波浪能资源条件下,装置的最优吃水深度为 2.44m。

至此,根据目标海域波浪能资源特性,对圆柱形 浮子点吸收波浪能转换装置的外形关键技术参数的 优化设计完成,既直径 6m,固有周期 4s,最优吃水 深度 2.44m。

5 结论

本文在充分掌握目标海域波浪能资源特性的情况下,研究了对点吸收波浪能俘获装置结构进行优化的方法,并重点关注点吸收装置浮子直径和吃水深度的分析和确定方法。通过研究可得出以下结论: 根据弗汝德-克雷洛夫定律分析,在所处水深确定的情况下,点吸收波浪能装置浮子的直径和吃水深度 是其关键参数,是装置能量俘获能力的重要决定因素。对点吸收波浪能装置结构的优化方法研究,即是 对两个参数在目标海域环境条件下最优值的研究确 定。通过计算可以得到浮子吃水深度和浮子固有周期 之间的对应关系;分析装置目标布置海域的波浪资 源特征,可得到出现概率最高,也即"蕴含波浪能量" 最多的波浪周期值,该值即为点吸收装置的设计目 标固有周期,与之对应浮子吃水深度即为装置的最 优吃水深度,最终得出装置外形结构的优化设计方案。该方法可应用于大多数圆柱形点吸收装置的外形 结构优化设计工作。

参考文献

- 王立国, 游亚戈, 张亚群等, 2013. 波浪能发电装置动力摄取 系统研究进展, 机床与液压, 41(1); 165—168, 162
- 王坤林,盛松伟,叶 寅等,2017. 波浪能装置中液压发电系统 Boost 变换机理及控制策略. 电力系统自动化,41(12): 173—178
- 史宏达,曲 娜,曹飞飞等,2017.振荡浮子波能发电装置浮 子运动性能的试验研究.中国海洋大学学报,47(6): 124—130
- 史宏达,刘 栋,刘 臻,2011. 一种新型波能发电装置的运动响应计算. 中国海洋大学学报,41(10):111—116
- 刘延俊, 贺彤彤, 2017. 波浪能利用发展历史与关键技术. 海 洋技术学报, 36(4): 76—81
- 刘秋林,2016. 点吸收浮子阵列的波能转换特性研究.北京: 清华大学博士学位论文,23---67
- 杨绍辉,何宏舟,陈 沪等,2016a. 阵列筏式波浪能发电系统 设计与试验研究. 机械工程学报,52(11):57—62
- 杨绍辉,何宏舟,李 晖等,2016b. 点吸收式波浪能发电技术 的研究现状与展望. 海洋技术学报,35(3): 8—16
- 何光宇,杨绍辉,何宏舟等,2015. 阵列式波浪能发电装置的 水动力分析.水力发电学报,34(2):118—124
- 张 亮,国 威,王树齐,2015a.一种点吸式波浪能装置水动 力性能优化.哈尔滨工业大学学报,47(7):117—121
- 张 亮,国 威,郑雄波,2015b.圆柱浮子垂荡运动性能的 CFD 模拟与流场分析.华中科技大学学报(自然科学版),

43(12): 65-70

- 林江波,2006. 浮子式海浪发电船的动态分析与仿真. 秦皇岛: 燕山大学硕士学位论文,20—35
- 罗续业,夏登文,2014. 海洋可再生能源开发利用战略研究报 告. 北京:海洋出版社,72—81
- 郑雄波, 2016. 两类点吸式波能装置水动力特性研究. 哈尔滨: 哈尔滨工程大学博士学位论文, 42—56
- 盛松伟, 王坤林, 吝红军等, 2019. 100 kW 鹰式波浪能发电装置"万山号"实海况试验. 太阳能学报, 40(3): 709—714
- 盛松伟,张亚群,王坤林等,2017. 波浪能发电装置能量转换 系统多级负载试验.可再生能源,35(2):311—316
- 麻常雷,夏登文,王海峰,2017.国内外海洋能进展及前景展 望研究.北京:海洋出版社,56—70,121—132
- De O Falcão A F, 2009. Wave energy utilization: a review of the technologies. Renewable and Sustainable Energy Reviews, 14(3): 899-918
- Lopes M F P, Hals J, Gomes R P F *et al*, 2009. Experimental and numerical investigation of non-predictive phase-control strategies for a point-absorbing wave energy converter. Ocean Engineering, 36(5): 386–402
- Penalba M, Touzón I, Lopez-Mendia J *et al*, 2017. A numerical study on the hydrodynamic impact of device slenderness and array size in wave energy farms in realistic wave climates. Ocean Engineering, 142: 224–232
- Tagliabue A, Izzo L, Mella M, 2019. Absorbed weak polyelectrolytes: impact of confinement, topology, and chemically specific interactions on ionization, conformation free energy, counterion condensation, and absorption equilibrium. Journal of Polymer Science Part B: Polymer Physics, 57(9): 491-510

THE STRUCTURAL OPTIMIZATION OF POINT ABSORPTION IN WAVE ENERGY CAPTURE DEVICE

WANG Xin^{1, 2}, LI Da-Ming¹, WANG Bing-Zhen², HAN Lin-Sheng²

(1. State Key Laboratory of Hydraulic Engineering Simulation and Safety, Tianjin University, Tianjin 300072, China; 2. National Ocean Technology Center, Tianjin 300112, China)

Abstract According to the characteristics of wave energy resources in a sea area, the energy capture efficiency can be effectively improved by optimizing the structure of the point absorption device. Based on the statistical analysis of the characteristics of wave resources in the north area of Chudao Island, Weihai, Shandong, East China, the diameter of the device, the corresponding relationship between the draft of point absorption device, and the natural period of the device under multiple working conditions were calculated using numerical software, and the variation of the natural period of the device with the draft was understood by using a statistical method. The optimal design draft of the device in the sea area was determined, which provides a new idea for the structural optimization design of the point absorbing wave energy device. This method can also be used for reference in the structural optimization design of other types of wave energy devices.

Key words wave energy; point absorption; structural optimization; draft