高效液相色谱-串联质谱法同时测定海洋沉积物 中 27 种有机磷酸酯^{*}

(1. 陕西科技大学环境科学与工程学院 陕西西安 710021; 2. 咸阳市生态环境环境局 陕西咸阳 712099)

摘要 应用广泛且具有毒性的有机磷酸酯(organophosphate esters, OPEs)类阻燃剂,通过水、气输 送等多种途径进入海洋环境,可能会导致人类和海洋生物面临潜在的健康风险。因此,建立高效可靠 的分析方法对于揭示 OPEs 在海洋环境中的赋存状况,评估其生态风险具有重要的科学意义。文章建 立了同时测定沉积物中 27 种 OPEs 的超声提取、固相萃取(SPE)净化以及高效液相色谱-串联质谱 (HPLC-MS/MS)检测的分析方法。结果表明: 30 mL 乙酸乙酯(EA)和乙腈(ACN)混合溶剂(体积比为 3 : 7) 的提取效果明显优于单独使用甲醇(MeOH)、二氯甲烷(DCM)、EA 和 ACN;用 5 mL EA 经 LC-C18 固相萃取小柱洗脱两次回收率最好;以 MeOH 和含 0.002 5%甲酸的水溶液作为流动相时,质谱离子 丰度最高。27种 OPEs 的线性范围为 5~500 ng/g (*R*²>0.99),方法检出限(MDL)范围为 0.004~1.250 ng/g, 定量限(LOQ)为 0.01~4.17 ng/g。三个加标水平(低、中、高)基质加标样品的平均回收率在 45%~130% 之间,相对标准偏差(RSD)最高 11.0%,表明此方法可靠,精密度和灵敏度较高。采用优化的方法分 析我国长江口、杭州湾入海口以及东海和黄海交界处海域表层沉积物中 OPEs 的含量,共检出了 21 种 OPEs,浓度范围为 9.83~48.70 ng/g,平均浓度为 28.40 ng/g。该方法检测结果高效准确,可用于海 洋沉积物中 27 种 OPEs 的同时测定。

关键词 有机磷酸酯; 高效液相色谱-串联质谱; 超声萃取; 固相萃取; 沉积物 中图分类号 O65 doi: 10.11693/hyhz20220200030

由于溴代阻燃剂,尤其是多溴联苯醚已被全球 逐步禁用,作为其主要替代品的有机磷阻燃剂 (OPFRs)生产和使用水平大大提高,其中有机磷酸酯 (organophosphate esters, OPEs)是使用最广泛的 OPFRs (Van der Veen *et al*, 2012; 耿存珍等, 2016)。目 前 OPEs 被应用于塑料、纺织、电子机械、建筑家居 等多个领域,多用作阻燃剂或增塑剂,混凝土、漆、 液压油以及地板抛光剂中的抗磨剂和消泡剂,也在 湿法冶金中起到非离子萃取剂的作用(Peverly *et al*, 2015; Xing *et al*, 2018; Zou *et al*, 2018)。OPEs 与聚合 物产品并非以化学键结合,溶解、挥发或人为磨损破 坏等物理因素,都可能使其脱离材料进入环境,进而 通过地表径流、水汽交换和大气干湿沉降远距离输 送(Ma et al, 2017; Ren et al, 2019; Zeng et al, 2020)。 OPEs 已普遍存在于空气(郭志明等, 2016; Rauert et al, 2018; Na et al, 2020)、土壤及植物(印红玲等, 2016; Campo et al, 2017; 邓旭等, 2019)、淡水和海洋水体 (Bollmann et al, 2012; Kim et al, 2018; Xing et al, 2018; 吴迪等, 2019)及沉积物(Ma et al, 2017; Wang et al, 2017; Zhong et al, 2018)等各种环境介质中。由于 OPEs 具有环境持久性且大多数 OPEs 是中至高疏水 的亲脂性化合物, 输入到海水中后倾向于与悬浮颗 粒物结合进而在沉积物中长期积累, 很难得到转化 和降解, 因而沉积物是 OPEs 的重要"汇"(Wang et al, 2017, 2019)。一些研究报道了国内外典型海洋沉积物 中 OPEs 的赋存状况, 地中海西北部表层沉积物中检

 ^{*} 国家自然基金项目, 22076112 号。石 仞, 硕士研究生, E-mail: sren2019@163.com 通信作者: 张 蓬, 博士生导师, 教授, E-mail: zhangpeng4477@sust.edu.cn
 收稿日期: 2022-02-08, 收修改稿日期: 2022-04-07

出的九种 OPEs 的浓度和(Σ_9 OPEs)范围为 13~49 ng/g (Schmidt *et al*, 2021); 我国渤海和黄海表层沉积物中 检出的 Σ_7 OPEs 浓度范围为 8.12~98.00 ng/g(Zhong *et al*, 2017); 韩国沿海及附近港口的表层沉积物中检出 的 Σ_{13} OPEs 浓度范围为 2.18~347 ng/g (Choi *et al*, 2020), 海洋表层沉积物中 OPEs 的残留在几十至几百 ng/g 之间。

底栖生物摄食沉积物颗粒、吸附在沉积物中的 OPEs 会通过食物网产生的生物富集效应和生物放大 效应,进入高营养级猎食者和人类体内(Wang et al. 2019)。已在浮游动植物、双壳类动物和无脊椎动物 等海洋生物体内检测到 OEPs 的存在, 浓度较低在几 至几百 ng/g 之间, 甚至在更高营养级的鱼类和海鸥 等体内以及人类母乳中也有 OPEs 残留, 浓度高达几 十至几千 ng/g (Sundkvist et al, 2010; Wei et al, 2015; Pantelaki et al, 2020)。有毒理学研究发现, OPEs 具有 多种毒性效应, 会对生物和人类健康产生潜在的危 害, 如三(2-氯异丙基)磷酸盐(TCIPP)和三(2-羧乙基) 膦(TCEP)对人体产生致癌性; 三聚磷酸酯(TPHP)和 三丁基磷酸盐(TNBP)具有神经毒性、接触致敏效应、 还会降低生育能力; 三(2-丁氧基乙基)磷酸酯(TBEP) 可降低红细胞胆碱酯酶活性、而磷酸三甲酯(TMP)和 磷酸三乙酯(TEP)则通过激活核受体破坏甲状腺内分 泌系统(Li et al, 2014; Been et al, 2018; Xing et al, 2018; Zeng et al, 2020)。在海洋沉积物中往往存在多 种混合污染物的共同作用, 然而大多数实验室毒理 学研究都集中在个别物质对生物的毒性作用、对此 类联合毒性效应产生的健康风险还关注甚少(Cristale et al, 2013)。显然, 要评估沉积物等复杂环境基质对 生物和人类产生的潜在健康风险,获得其中 OPEs 的 含量水平是首要前提、而建立关于海洋沉积物样品 的分析方法是至关重要的一步。

目前,气相色谱-质谱联用(GC-MS)是环境中 OPEs 检测常用的方法,尽管气相色谱(GC)具有良好 的分离能力,但对复杂环境样品的分析存在选择识 别能力有限和稳定性低等缺陷(Björklund *et al*, 2004; Quintana *et al*, 2008)。有研究发现,聚磷酸酯等分子 量大的 OPEs 不适用于 GC 测定,一些 OPEs 还会出现 拖尾峰,如三苯基氧膦(TPPO)和三(2-丁氧基乙基)磷 酸酯(TBEP)(Rodil *et al*, 2005; Teo *et al*, 2015)。二酯和 单酯类 OPEs 的疏水性、非挥发性和强酸性(解离常数 pK_a 1)比三酯要小得多,在环境中以二价阴离子或

单阴离子的离解状态存在且更具极性, GC-MS 主要 用干非极性物质的检测, 二酯和单酯类 OPEs 则需要 通过衍生化处理后才能测定(Quintana et al, 2008; Reemtsma et al, 2008; Suo et al, 2018)。基于四极杆的 GC-MS 选择离子检测(SIM)和基于离子阱的气相色 谱-串联质谱(GC-MS/MS)检测灵敏度低、且 GC 检测 常用的电子轰击离子源(EI 源)和化学电离离子源(CI 源)难以产生分子离子(Quintana et al, 2008)。高效液 相色谱-串联质谱(HPLC-MS/MS)采用多反应监测 (MRM)-三重四级质谱(QqQ-MS)检测,具有较高的选 择性、抗干扰能力和灵敏度、且电喷雾离子源(ESI源) 能够产生分子离子,也可以产生多电荷离子,因而对 于分子量大的化合物也可分析,适用于复杂基质样 品中 OPEs 的微量分析(Wu et al, 2017; Wang et al, 2020; 闫振飞等, 2020)。目前研究中使用 HPLC-MS/MS 测定复杂基质中 OPEs 的方法多集中于对环 境中常检出的较少种类化合物的分析、因而建立可 以同时测定多种 OPEs 的高效、简便、高灵敏度和低 检出限的分析测定方法十分必要。本文对 HPLC-MS/MS 的色谱和质谱参数以及前处理方法进 行了优化、建立了同时测定海洋沉积物中 27 种 OPEs 的高效分析方法。

1 材料与方法

1.1 仪器与试剂材料

本实验所采用的仪器设备有: Agilent 1260 Infinity II 高效液相色谱和 Agilent 6470 LC/TQ 三重四级杆质 谱仪(美国 Agilent 公司), BSA224S(Max: 220 g, d=0.1 mg)电子天平(赛多利斯科学仪器(北京)有限公 司), KQ-500DB 型数控超声波清洗器(昆山市超声仪 器有限公司), TDZ4-WS 台式低速离心机(湖南赫西仪 器装备有限公司), RE-2000B 型旋转蒸发仪(上海亚荣 生化仪器厂), NAI-DCY-12Y 圆形水浴氮吹仪(上海那 艾精密仪器有限公司)。

固相萃取小柱(solid phase extraction, SPE): Oasis®HLB 6 cc/500 mg (美国 Waters 公司)、 CNWBOND LC-C18 (容积 6 mL/500 mg)和 CNWBOND Si 硅胶 SPE (6 mL/500 mg)(上海安谱实 验科技股份有限公司)。3 种同位素替代标: 氘代磷酸 三苯酯(TPP-d₁₅, 纯度为 98%), 氘代三(2-氯乙基)磷 酸酯(TCEP-d₁₂, 纯度为 98%)和氘代磷酸三丁酯 (TBP-d₂₇, 纯度为 98%~99%)均购自剑桥同位素实验 室(美国); 有机溶剂: 乙腈(ACN)和甲醇(MeOH) (HPLC级,美国 Thermo Fisher Scientific公司),乙酸乙酯(EA)和二氯甲烷(DCM)(色谱纯,美国 Tedia 公司);实验用水为自制 Milli-Q 超纯水(18.24MΩ·cm)。
1.2 仪器条件

采用 Zorbax Eclipse Plus C18 色谱柱(2.1 mm× 150 mm, 3.5-Micron, Agilent), 柱温 25 °C, 进样量 1 μL, 流速 0.35 mL/min。采用带有安捷伦喷射流技术 的大气压电喷雾离子源(ESI with Agilent Jet Steam Technology, ESI-AJS), 在多反应监测(MRM)的正离 子模式下测定, 毛细管(Capillary)电压为 4 000 V(正 离子模式), 喷嘴电压(Nozzle Voltage)为 500 V, 干燥 气(Drying Gas)流速为 5 L/min, 温度为 350 °C, 雾化 气(Nebulizing Gas)压力为 45 psi, 鞘气(Sheath Gas)流 速为 11 L/min, 温度为 250 °C。流动相梯度洗脱程序 和质谱参数如表 1 和表 2 所示。

表1 流动相梯度洗脱程序

Tab.1 gr	adient elution procedure of the mot	pile phases
时间/min	0.002 5%的甲酸水溶液比例/%	甲醇比例/%
0	45	55
0.5	20	80
10	0	100
15	0	100
16	45	55
25	45	55

表 2 目标化合物有机磷酸酯(OPEs)的质谱参数 Tab 2 Mass spectrum parameters of organophosphate esters (OPEs)

140.2	inuss speetrum pa	化空时间	Sanophosphu		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	益 墙能昙
化合物	分子式	床田町回 /min	母离子	子离子	七圳日叶衣巴压 /V	₩J里相上里 /eV
磷酸三甲酯(TMP)	$C_3H_9O_4P$	1.207	141.02	109.1 79.3	111	17 25
磁殻=乙酯(TEP)	C.H. O.P	2 3 1 8	183.00	99.2	61	21
	061115041	2.510	105.00	81.3	01	53
三(2-羧乙基)膦(TCEP)	C ₆ H ₁₂ Cl ₃ O ₄ P	3.318	284.90	98.8	100	25
	0 12 5 1			63.0		25
磷酸三丙酯(TPrP)	$C_9H_{21}O_4P$	4.662	225.12	99.2	81	21
				141.1		5
磷酸三异丙酯(TiPP)	$C_9H_{21}O_4P$	4.960	225.12	99.0 81.0	86	17
				234.9		41
四氯(2-氯乙基)二氯异戊二磷酸(V6)	$C_{13}H_{24}Cl_6O_8P_2$	5.123	582.70	65.0	200	60
本歌二葉形(エロロ)	CUOD	()(2	227.07	214.9	126	29
姆酸二本酯(IPP)	$C_{18}H_{15}O_4P$	6.063	327.07	152.1	136	45
磷酸三氯丙基酯(TCPP)	$C_9H_{18}O_4PCl_3$	6.064	327.00	99.1	136	49
磷酸三(1-氯化异丙基)酯		6 064	227.00	98.9	126	41
(1,2-)TCPP	$C_9\Pi_{18}O_4PCI_3$	0.004	327.00	77.1	150	49
磷酸三(2-氯丙基)酯(2-TCPP)	C ₀ H ₁₀ O ₄ PCl ₂	6 064	327.00	99.0	136	41
	091118041 013	0.001	527.00	77.1	150	45
二(2,3-二溴丙基)磷酸酯	C IL O PDr	6 462	408 70	298.8	170	6
(B(2,3-d)P)	$C_6H_{11}O_4PBr_4$	6.462	498.70	98.9	170	17
				151.9		49
磷酸甲本二酯(CDP)	$C_{19}H_{17}O_4P$	6.638	341.00	91.0	175	45
		6 80 8		99.2		21
%#酸二」酯(IBP)	$C_{12}H_{27}O_4P$	6.795	267.16	155.1	111	9
		<pre>< = 0 <</pre>		98.9		9
磷酸一乙酯(mono&di)	$C_4H_{11}O_4P$	6.796	155.04	58.0	220	60
磷酸-2-丁氢代乙醇酯				299.0		13
(TBEP)	$C_{18}H_{39}O_7P$	7.292	399.24	199.0	126	13
磷酸-13-亚苯基四苯酯(PDP)	C. H. O.P.	7 554	574.90	418.9	200	41
1974 fx - 1, J-エ 今 坐 臼 今 田(NDF)	C301124O8F2	1.554	5/4.90	480.9	200	41
	C II O D	0 1 47	2(0.12	91.0	105	45
二型甲本基啉酸钼(10CP)	$C_{21}H_{21}O_4P$	8.147	369.12	165.0	195	57

						续表
化合物	分子式	保留时间	母离子	子离子	毛细管碎裂电压	碰撞能量
		/min			/V	/eV
二对田茶其碟酸酯(TDCD)	СНОР	8.147	260.12	91.0	200	49
	0211121041		509.12	165.0	200	60
迷惑二词用苯酚(TMTD)	CHOD	0.145	2(0.12	91.0	200	45
姆酸二 间甲本钼(1Μ1Ρ)	$C_{21}H_{21}O_4P$	8.14/	309.12	165.0	200	60
磷酸二苯异辛酯(EHDPP)	C20H27O4P	8 782	363 16	251.0	106	9
	020112/041	0.702	505.10	152.1	100	53
磷酸三正戊酯(TPeP)	CuthanOrb	0.002	309.21	99.0	121	25
MHR _ 17,7 H(11 01)	0151133041	9.092	507.21	81.0	121	60
双酚 A 双(磷酸 ^一 苯酯)(BADP)	CaeHarOoPa	9 989	693 00	336.8	200	37
	03911340812	7.707	075.00	336.9	200	37
三(2,3-二溴丙基)磷酸酯 (TDBPP)	$\mathrm{C_9H_{15}O_4PBr_6}$	9.989	692.58	367.1	265	41
三(2-异丙基苯)磷酸酯(TiPPP)	$C_{27}H_{33}O_4P$	10.872	453.21	327.0 411.0	190	33 17
三(三溴新戊基)磷酸酯		10.004	1010.40	144.9	180	44
(TTBNP)	$C_{15}H_{24}O_4PBr_9$	10.894	1018.40	105.2		92
磷酸异癸酯(DPDP)	CarHayO4P	12 452	391 10	251.0	290	9
	0221131041	12.102	571110	56.9		41
磷酸三辛酯(TEHP)	$C_{24}H_{51}O_4P$	14.080	435.35	99.1	106	13
				82.1		53
TPP-d ₁₅	$C_{18}D_{15}O_4P$	5.985	342.16	81.5	180	60
TCEP-d ₁₂	$C_6 D_{12} C l_3 O_4 P$	6.113	297.03	281.0	131	13
TBP-d ₂₇	$C_{12}D_{27}O_4P$	6.632	294.33	102.0 83.0	121	102 83

注:两个子离子,第一个是定量离子,第二个是定性离子

1.2 样品前处理方法

称取 5 g 冷冻干燥的沉积物样品于离心管,加入 TPP-d₁₅、TCEP-d₁₂和 TBP-d₂₇ 三种替代标各 20 ng。用 30 mL 乙酸乙酯(EA)和乙腈(ACN)混合溶剂(EA/ACN 体积比 3 : 7)超声萃取 30 min,在低速离心机 3 000 r/min 的转速下离心 10 min,循环 2 次,收集两次 所得上清液于鸡心瓶中。将提取液经水浴旋蒸浓缩至 2 mL,加超纯水定容至 10 mL,再用 5 mL EA 过 LC-C18 固相萃取(SPE)小柱洗脱 2 次,然后氮吹至近干, 用 MeOH 溶液经 0.22 μm 滤膜过滤后定容至 0.5 mL。

LC-C18 固相萃取步骤:用 5 mL EA 预处理净化 固定相, 泵抽 3 min 至干, 然后用 5 mL MeOH 和 5 mL 超纯水活化小柱(约 4 mL/min 的流速, 不抽干); 上样溶剂采用 20%的 ACN 水溶液 10 mL, 保持流速 5~8 mL/min, 上样结束后用 10 mL 10%的 MeOH 水溶 液淋洗去除多余杂质, 抽 3 min 至干, 最后用 5 mL EA 洗脱 2 次(流速 1 mL/min), 并收集两次所得洗脱液。

2 结果与讨论

2.1 色谱条件优化 MeOH 和 ACN 为常用的两种液相流动相 (Martínez-Carballo et al, 2007; Luo et al, 2014; 刘娴 静等, 2021)。比较水-MeOH 和水-ACN 两种流动相体 系对 27 种 OPEs 的洗脱能力, 如图 1 所示。虽然一些 OPEs 在水-ACN 体系中的响应强度高于水-MeOH 体 系,但水-MeOH体系中更多种类的 OPEs 得到洗脱分 离。在水-ACN体系中磷酸三氯丙基酯(TCPP)同分异 构体 [包括 TCPP、磷酸三(1-氯化异丙基)酯 [(1,2-)TCPP]和磷酸三(2-氯丙基)酯(2-TCPP)]、磷酸甲 苯二酯(CDP)和磷酸三辛酯(TEHP)没有得到洗脱分 离, 而在水-MeOH 体系中除四氯(2-氯乙基)二氯异戊 二磷酸(V6)以外,其他化合物都实现了较好的洗脱分 离。且有研究证明, ESI 源在正模式下能有效地产生 三酯类 OPEs 的质子化分子离子、 而随后的碰撞诱导 解离(CID)产生碎片离子则依赖于醇的酯化作用,同 样二烷基酯类 OPEs 阴离子的 CID 也会依赖于醇 (Quintana et al, 2008; Reemtsma et al, 2008)。经比较 选择水-MeOH 体系作为两种流动相更为合适。

在 ESI-AJS 源正离子模式下, 流动相中通常加入 挥发性酸作为有机改性剂, 一般选择甲酸, 为目标分 析物提供必要的质子源, 以提高电离效率(Rodil *et al*, 2005; Luo *et al*, 2014)。流动相中的酸性程度影响化合

物生成[M+H]⁺加和离子的效率,进而影响方法的灵 敏度(王九明等,2021)。因此对水流动相中的甲酸添 加量进行优化,比较不同体积分数甲酸的作用效果, 如图 2 所示。现有研究中广泛应用含 0.1%的甲酸作 为改性剂,但其响应效果并不理想。各 OPEs 在含 0.02%甲酸水流动相中的响应强度略高于含 0.01%和 0.03%甲酸水流动相中的响应强度, Xing 等(2018)和 Chen等(2019)在液相分析中用到 0.02%甲酸水溶液作 为水流动相。

当甲酸浓度为 0.002 5%~0.005%体积分数之间时, 各 OPEs 单体的响应强度最高,且此范围内的响应强 度值远大于甲酸含量为 0.02%时的响应强度,其中多

图 2 流动相甲酸添加量对 OPEs 响应强度的影响

Fig.2 Influence of formic acid volume fraction in mobile phase on ions abundance of organophosphate esters (OPEs)

于 1/2 的 OPEs 单体在甲酸含量为 0.002 5%的水流动 相中的响应强度信号更高。表明 OPEs 在 pH 值为 3.3~4.6 的流动相水溶液中电离程度最高,最终确定 在水-MeOH 流动相体系中,以甲酸含量为 0.002 5% 的水溶液作为水流动相,在此 pH 条件下为目标化合 物提供了更好的缓冲能量,也会产生更稳定的分离 和电离效果(Rodil *et al*, 2005)。 2.2 样品前处理条件优化

2.2.1 超声萃取溶剂优化 由于 27 种 OPEs 的辛醇-水分配系数(logKow)和分子量等物理化学特性差异较大,我们初步选择了 MeOH、ACN、EA 和 DCM 作为超声萃取溶剂进行了基质加标回收试验,如图 3 所示。采用硅藻土作为空白基质,使用前硅藻土在马弗炉中以 460 °C 灼烧 6 h 去除其中干扰杂质。

图 3 不同极性超声提取溶剂下 OPEs 的加标回收率

Fig.3 Recoveries of organophosphate esters (OPEs) spiked in blank matrix with different polar extraction solvents

在强极性溶剂 MeOH 提取物中,只有 TMP、 TCPP、磷酸三丁酯(TBP)、磷酸三正戊酯(TPeP)和 TEHP 回收率较高,其他 OPEs 的回收率都低于 75%。 EA、DCM 和 ACN 提取物中,多数 OPEs 的回收率较 高在 80%~125%之间,但 DCM 对动物和人类具有致 癌性(Watanabe *et al*, 2006),世界卫生组织国际癌症 研究机构将其列为 2A 类致癌物。此外, Martínez-Carballo 等(2007)测定了奥地利水生环境中 的9种 OPEs,也报道了 DCM 不适合用于超声提取技 术从沉积物样品中提取 OPEs,故不考虑作为超声提 取溶剂。由于 OPEs 的 logKow 值从-0.65 到 9.49,大 多数为正值,说明 OPEs 的整体上亲脂性大于亲水性, 考虑对 EA 和 ACN 两种中强极性有机溶剂按不同体 积比混合,进一步优化提取效率。

EA和ACN对较亲脂的OPEs回收率相近,但EA的极性为 4.3,对亲水性和极性较强的 TMP、TEP、 磷酸三异丙酯(TiPP)和磷酸三丙酯(TPrP)等回收率略 低于极性为 6.2 的 ACN,故以EA 作为少量组分,ACN 作为大量组分进行混合配比。分别考察 EA 和 ACN 体积配比为 2:8、4:6 和 3:7 三种混合溶剂对 OPEs 的提取效率。结果如图 4 所示,对亲脂性 OPEs, EA/CAN (体积比 3:7)混合溶剂的回收率较高。对亲 水性 OPEs, EA/CAN (体积比 3:7)混合溶剂对卤代 OPEs 中 TCEP ($\log K_{ow}$ =1.44)、 Σ TCPP ($\log K_{ow}$ =2.59) 和 V6 ($\log K_{ow}$ =1.9)的提取效果较有优势,且回收率明 显高于其他两种体积配比,对 TMP ($\log K_{ow}$ =-0.65)、 TEP ($\log K_{ow}$ =0.8)、 TPrP ($\log K_{ow}$ =1.87)和 TiPP ($\log K_{ow}$ =2.12)四种非卤代 OPEs 的提取效果相对差一 些。此外,EA/ACN(体积比 3:7)混合溶剂虽相较于其 他两种体积配比条件下质谱图响应略低,但基线平 稳,出峰更完整,峰形更好,如图 5 所示。

对比图 3 和图 4, 单一有机溶剂 EA 的提取回收 率范围为 10%~125%, 平均回收率为 93.28%, ACN 的 提取回收率范围为 10%~120%, 平均回收率为 90.15%。 EA/ACN(体积比 3:7)混合溶剂的提取回收率范围为 20%~140%, 平均回收率为 105.98%, 因此选择 EA/ACN(体积比 3:7)混合溶剂作为超声提取溶剂。

分别对 20、30 和 40 mL 三种超声溶剂体积的提 取效果进行了对比,如图 6 所示。发现用 30 和 40 mL 超声溶剂体积提取时 OPEs 的回收率整体相近,又有

图 4 EA 和 ACN 不同混合比条件下 OPEs 的加标回收率

图 5 EA/CAN (体积比 4 : 6)(a), EA/CAN (体积比 3 : 7)(b), EA/CAN (体积比 2 : 8)(c)混合溶剂萃取 OPEs 的色谱图对比 Fig.5 Comparison of chromatograms of organophosphate esters (OPEs) extracted by ethyl acetate (EA) / acetonitrile (CAN) (4 : 6, V : V) (a), EA/CAN (3 : 7, V : V) (b), and EA/CAN (2 : 8, V : V) (c) mixed solvents at different volume ratios

Fig.6 Recoveries of organophosphate esters (OPEs) spiked in blank matrix of different volumes of solvent in ultrasonic extraction

TMP、TPrP、TiPP 三种极性较强的亲水性 OPEs 在 40 mL 超声体积提取时回收率极低,而 30 mL 超声体 积提取时回收率达到最佳。考虑到处理效果和节约溶 剂两方面,故选择使用 30 mL 超声体积。

2.2.2 固相萃取(SPE)条件优化 本文在中性条件 下对 CNWBOND LC-C18 SPE (6 mL/500 mg)、 CNWBOND Si 硅胶 SPE (6 mL/500 mg)和 Oasis[®]HLB 6 cc/500 mg 三种 SPE 柱进行比较, 如图 7 所示。Si 硅胶柱的回收率明显是最差的、故不考虑。LC-C18 柱和 HLB 柱对强极性和强亲水性化合物的回收率都 较差、特别是易挥发性化合物 TMP ($\log K_{ow} = -0.65$), 萃取时易挥发损失导致回收率降低(Quintana et al, 2008, Reemtsma et al, 2008), HLB柱为 2.82%, LC-C18 柱为 2.01%。但 LC-C18 柱对较亲水性 OPEs(TEP、 TCEP、TPrP、TiPP 和 TCPP)的洗脱效果优于 HLB 柱。 疏水性化合物易在瓶壁吸附损失而使回收率降低, LC-C18 柱对分子量大于 600 的疏水性 OPEs [双酚 A 双(磷酸二苯酯)(BADP)、三(2,3-二溴丙基)磷酸酯 (TDBPP)和三(三溴新戊基)磷酸酯(TTBNP)等]洗脱效 果差。HLB 柱对强疏水性和非挥发性化合物 TEHP (logKow=9.49)的回收率差(高立红等, 2014; 闫振飞等, 2020)、而 LC-C18 柱对 TEHP 的回收率优于 HLB 柱、 HLB 柱为 8.86%, LC-C18 柱为 45.06%。

总体而言 LC-C18 固相萃取柱洗脱效果最好,回 收率在 40%~150%之间,平均回收率达到 98.58%; HLB

固相萃取柱次之,回收率在 20%~135%之间,平均回收 率为 89.73%; 硅胶柱洗脱效果最差,回收率在 10%~100%之间,平均回收率为 38%。Been 等(2018)基 于回收率和基质效应,评价了不同 SPE 的吸附剂及其 提取条件,得出 C18 柱对 OPEs 的处理效果最好,与本 研究结果一致。综合考虑选择 LC-C18 柱进行洗脱纯化。

进一步优化洗脱体积,分别用 5、6 和 7 mL 的 EA 过 LC-C18 柱洗脱 2 次,如图 8 所示。发现 5 mL 洗脱 体积对目标化合物的回收率略优,但无特别显著的差 异,说明洗脱时间和挥发作用对 LC-C18 柱的洗脱效 果影响不大。同时秉持绿色节约原则,尽量节省试剂 用量,综上选取 5 mL EA 作为 SPE 的洗脱体积。

2.3 方法的线性范围、检出限和定量限结果

配制一系列浓度为 5、10、20、50、100、200 和 500 ng/mL 的七点标准曲线,并进行多次仪器分析, 在(5~500) ng/mL 线性范围内各 OPEs 呈现良好的线 性关系, 线性相关系数(*R*²)均达到 0.99 以上。

方法检出限(method detection limit, MDL)受仪器 的灵敏度、稳定性、全程序空白试验以及波动性的影 响。先确定仪器检出限(3 倍信噪比), 然后重复 7 次 空白样加标实验, 加标量是 3 倍仪器检出限对应浓度, 再以下式计算(白政忠等, 2009; 祝旭初, 2014):

$$c_{\rm MDL} = 2\sqrt{2t_{\rm f}} S_{\rm wb} , \qquad (1)$$

式中, c_{MDL} 为检出浓度; t_f 为 0.05(单侧)显著性水平下, 自由度为f=n-1的 t 值; S_{wb} 为空白批内样本标准偏差。

定量限(limits of quantification, LOQ)定义为10倍 空白标准偏差对应的浓度值,置信水平为90%,约为 3.3 倍 MDL (丁怡等,2009;陈爽等,2014)。该方法测 定 27 种 OPEs 的 MDL 的范围为 0.004 ~1.250 ng/g 之 间,LOQ 范围为 0.01~4.17 ng/g,见表 3。

2.4 方法的准确度和精密度

采用硅藻土作为基质来评价方法的准确度和精

密度,用最佳方案做基质加标实验。在空白基质中分 别加入 OPEs 混合标准,最终硅藻土中 OPEs 的含量 分别为 5、35 和 100 ng/g,每个浓度设置 3 个基质加 标平行样品。三个加标水平下各 OPEs 的平均加标回 收率在 45%~130%,除 TTBNP 在低浓度和中等浓度 加标水平下分别为 25.43%和 30.37%,高浓度加标水 平下 TMP、BADP 和 TDBPP 分别为 37.55%、44.69% 表 3 OPEs 方法线性范围、检出限、定量限 Tab.3 Linear range, method detection limit (MDL) and limits of quantification (LOQ) of organophosphate esters (OPEs)

		method		
	线性范围		检出限	定量限
化合物	パロタ/mL)	R^2	浓度	浓度
	, (iig, iiiii)		/(ng/g)	/(ng/g)
TMP	5~500	0.998 6	0.039	0.13
TEP	5~500	0.999 5	0.039	0.13
TCEP	5~500	0.998 7	0.636	2.12
TPrP	5~500	0.999 4	0.006	0.02
TiPP	5~500	0.998 5	0.014	0.05
V6	5~500	0.999 7	0.090	0.30
TPP	5~500	0.998 6	0.039	0.13
ТСРР	5~500	0.997 4	0.039	0.20
(1,2-)TCPP	5~500	0.997 6	0.172	0.57
2-TCPP	5~500	0.997 5	0.209	0.70
B(2,3-d)P	5~500	0.999 3	0.004	0.01
CDP	5~500	0.999 4	0.023	0.08
TBP	$5\sim 500$	0.997 9	0.355	1.18
mono&di	$5\sim 500$	0.992 9	1.25	4.17
TBEP	5~500	0.999 2	0.039	0.13
RDP	5~500	0.999 5	0.013	0.04
TOCP	5~500	0.997 7	0.116	0.39
TPCP	5~500	0.998 3	0.099	0.33
TMTP	5~500	0.997 6	0.088	0.29
EHDPP	5~500	0.998 5	0.039	0.13
TPeP	5~500	0.998 4	0.073	0.24
BADP	5~500	0.999 2	0.234	0.78
TDBPP	5~500	0.999 2	0.028	0.09
TiPPP	5~500	0.999 1	0.096	0.32
TTBNP	5~500	0.997 1	0.157	0.52
DPDP	5~500	0.999 3	0.039	0.13
TEHP	5~500	0.996 9	0.069	0.23

和 43.01%。相对标准偏差(relative standard deviations, RSD)在 0.03%~11.00%之间, 满足准确度和精密度要 求, 如表 4 所示。

2.5 实际样品检测

采用建立的分析方法对东黄海域 16 个沉积物样 品中 27 种 OPEs 进行测定,样品站位点如图 9 所示。 27 种 OPEs 中只有 V6、TBP、磷酸三间甲苯酯(TMTP)、 三邻甲苯基磷酸酯(TOCP)、三对甲苯基磷酸酯(TPCP) 和 TPeP 没有检出,检出的 21 种 OPEs 浓度范围为 9.83 ng/g (站位 CJ-4)~48.7 ng/g (站位 3100-3),平均浓 度为 28.4 ng/g,各站点 OPEs 的检测浓度值如表 5 所示。

16 个沉积物样品中的 OPEs 包括烷基代、卤代和 芳基代三种取代基类型, 检出的 21 种 OPEs 中烷基

代、卤代和芳基代各 7 种,其中 TEP、磷酸三苯酯(TPP) 和 \sum TCPP 为主要化合物且检出率均为 100%。烷基代 OPEs 对 OPEs 总浓度(\sum OPEs)的贡献率为 52.85%,高 于卤代 OPEs(贡献率为 36.46%)和芳基代 OPEs 仅为 10.68%,如图 10a 所示。从图 10b、10c、10d 和表 5 中得出,东、黄海交界处(如 CJ-样品) \sum TCPP 和 TPP 浓度明显高于其他站位点,可能由于我国最大的 OPEs 生产地之一位于黄海南部的西海岸,年产量 2 万 t,主要产物为 TCPP 和 TDCPP (Zhong *et al*, 2018), 且江苏省南部海岸有冶金、电子、化学和机械等多个 行业(Zhong *et al*, 2017),而 TPP 在电子设

表 4 OPEs 分析方法的准确度和精密度 Tab.4 Accuracy and precision of organophosphate esters

(OPEs) analysis method

	加标水平/(ng/g)											
化合物	5		35		100							
	平均	RSD/	平均回收	RSD/	平均回收	RSD/						
	回收率/%	%	率/%	%	率/%	%						
TMP	45.12	1.02	57.10	1.79	37.55	0.03						
TEP	123.6	3.06	109.4	6.31	115.2	4.35						
TCEP	126.1	3.06	117.9	6.31	112.8	4.35						
TPrP	119.8	3.14	114.1	3.45	103.9	5.38						
TiPP	72.31	4.66	102.4	7.64	113.1	7.60						
TCPP	117.1	7.08	112.0	8.25	97.08	1.35						
V6	107.7	1.77	101.5	3.72	104.5	10.6						
TPP	129.1	4.47	121.0	2.54	118.5	1.21						
(1, 2-)TCPP	119.0	5.52	113.9	6.55	109.8	8.79						
2-TCPP	121.6	5.07	115.5	8.03	104.0	8.67						
B(2,3-d)P	89.08	5.07	84.51	9.56	88.30	5.67						
CDP	128.3	4.95	113.2	6.87	115.2	11.0						
TBP	87.91	1.31	94.44	9.47	86.18	7.37						
TBEP	104.0	7.92	96.30	3.73	96.79	6.68						
RDP	92.26	7.36	82.15	8.32	80.61	4.18						
TMTP	116.4	1.49	105.2	2.39	103.9	5.54						
TOCP	115.4	5.53	103.8	10.7	103.7	5.79						
TPCP	117.2	1.15	103.0	2.67	103.5	6.20						
EHDPP	103.9	8.84	92.28	9.16	88.41	6.22						
TPeP	105.3	2.10	98.43	1.34	94.73	10.9						
BADP	51.64	7.69	51.10	0.48	44.69	1.72						
TDBPP	55.15	9.76	51.27	5.51	43.01	2.06						
DPDP	86.07	2.83	78.91	3.21	71.41	5.77						
TiPPP	60.42	8.18	57.55	1.09	52.45	9.55						
TTBNP	25.43	9.74	30.37	6.34	75.28	3.45						
Mono&di	120.1	7.67	106.7	8.06	55.53	3.30						
TEHP	48.46	1.94	52.47	5.68	50.96	4.84						

注: RSD 表示相对标准偏差

Fig.9 Distribution of sediment sampling stations in the Yellow Sea and East China Sea

表 5	16 个沉积物站点中检出的 OPEs 浓度(单位: ng/g)
itrations of	organophosphate esters (OPEs) detected in 16 sediment station

Tab.5 Concentrations of organophosphate esters (OPEs) detected in 16 sediment stations (unit: ng/g)																
检出化合物	Za-1	Za-2	Za-3	Za-4	3100-1	3100-2	3100-3	3100-4	3100-5	3100-6	CJ-1	CJ-2	CJ-3	CJ-4	CJ-5	CJ-6
TMP	0.039	0.070	0.074	ND	ND	ND	0.050	0.045	ND	ND	ND	ND	ND	ND	ND	ND
TEP	12.400	15.800	17.800	19.800	17.500	22.700	30.100	17.300	21.600	21.300	3.030	0.050	0.067	0.067	0.042	0.049
TCEP	1.520	0.880	2.100	1.430	1.410	0.993	1.400	1.280	1.110	1.280	1.070	1.100	0.789	ND	1.280	1.610
TPrP	0.036	0.047	0.021	0.017	ND	0.011	0.009	0.010	0.013	0.010	0.011	ND	0.006	ND	0.008	0.045
TiPP	0.036	0.047	0.021	ND	ND	ND	ND	ND	ND	0.045						
Mono&di	ND	ND	ND	2.690	ND	ND	2.540	2.660	ND	2.480	ND	4.360	ND	ND	ND	ND
B(2,3-d)P	0.015	0.005	ND	0.014	0.007	0.008	0.008	0.005	0.013	ND	ND	ND	ND	0.012	0.006	ND
CDP	0.126	0.033	0.048	0.087	0.123	0.088	0.088	0.110	0.088	0.088	0.069	0.128	0.066	0.026	0.062	0.067
TBEP	0.125	0.065	0.091	0.110	0.091	0.048	ND	0.050	ND	ND	0.120	0.040	ND	ND	0.047	ND
RDP	0.081	ND	0.022	0.033	ND	0.069	ND	ND	0.062	0.071	ND	ND	ND	0.018	0.027	ND
TEHP	1.520	2.190	3.010	0.969	0.689	0.553	0.329	0.277	4.820	0.630	0.401	0.948	0.142	0.230	0.182	1.490
EHDPP	0.124	0.124	0.145	0.153	0.046	0.154	0.072	0.055	0.108	0.050	0.055	0.150	0.055	0.084	0.077	0.047
ТСРР	4.420	2.380	3.420	3.280	3.610	2.270	5.870	4.980	3.330	5.180	4.37	3.250	2.100	0.541	6.370	6.030
(1,2-) TCPP	2.620	2.030	1.930	2.740	2.250	2.730	2.630	2.770	2.760	2.620	2.54	2.570	2.620	2.570	2.740	1.890
2-TCPP	2.610	2.040	1.920	2.700	2.230	2.720	2.590	2.740	2.730	2.610	2.54	2.570	2.610	2.570	2.730	1.900
TPP	2.650	2.030	1.950	2.750	2.270	2.720	2.630	2.810	2.680	2.630	2.590	2.590	2.650	2.590	2.730	1.880
BADP	ND	ND	ND	ND	ND	0.691	ND	ND	0.694	0.405	ND	0.493	ND	ND	ND	ND
TTBNP	ND	ND	ND	ND	ND	0.421	ND	ND	0.257	0.186	ND	ND	ND	ND	ND	ND
TiPPP	ND	ND	ND	ND	ND	0.449	ND	ND	0.304	0.203	ND	ND	ND	ND	ND	ND
TDBPP	0.151	0.131	0.100	ND	0.084	0.676	0.117	0.105	0.720	0.413	0.208	0.454	ND	0.046	0.063	ND
DPDP	0.056	ND	ND	ND	ND	0.137	ND	ND	0.077	0.079	ND	ND	ND	ND	ND	ND

注: ND 表示未检出

备中用作阻燃剂(Andresen *et al*, 2006)。TEP 在石油 化工副产品 PVC 中用作增塑剂(Van der Veen *et al*, 2012), 故位于长江三角洲的石油化工项目集中区 废液排放导致 TEP 在东海中的含量也很高(如 Za-样品和 3100-样品), 另外长江入海口输入以及杭州 湾与东海海水的混合交换也可能是 TEP 等的潜在 来源。这意味着东海检出的 OPEs 可能是河流输入 和排污口排放所致, 与 Zhong 等(2018)对渤海、黄 海和东海表层沉积物中 OPEs 的研究及 Liao 等 (2020)对渤海和东海沉积物表层、岩芯中 OPEs 的 研究结果一致。

3 结论

(1) 本研究建立了同时测定海洋沉积物中 27 种 OPEs 的方法。改进 HPLC-MS/MS 液相条件, 流动相

为甲醇和含 0.002 5%的甲酸水溶液时,大大提高了 MRM 质谱扫描模式分析目标化合物的仪器响应。又 对沉积物前处理的超声提取和固相萃取条件加以优 化,30 mL ACN/EA (体积比3:7)超声提取,处理液 用5 mL EA 经 LC-C18 固相萃取小柱洗脱,回收率高 且节约了溶剂用量。优化后方法的 MDL 和 LOQ 满 足沉积物中痕量污染物可检出和定量的要求,低、 中、高加标水平下各 OPEs 的平均加标回收率较高, 平行性较好。该方法高效灵敏,可进一步推进到海水 OPEs 检测方法的建立中,为测定海洋水体环境中痕 量 OPEs 提供可靠的技术支撑。

(2) 利用建立好的方法对东黄海 16 个沉积物样 本进行了分析测定,检出的 21 种 OPEs 浓度范围为 9.83~48.7 ng/g,平均浓度为 28.4 ng/g,其中烷基代 OPEs 占比最高(52.85%)。发现东黄海沉积物中 OPEs 主要来源于河流输入和沿岸的点源污染排放,需要进一步加强对东黄海 OPEs 的分布特征和迁移转化规 律方面的研究,为海洋环境中持久性痕量污染物的 控制以及生态风险评估提供有力依据。

参考文献

- 丁怡, 彭程, 2009. 多种方法评估液相色谱方法检出限的初步 探讨[J]. 现代食品科技, 25(11): 1372-1374, 1314.
- 王九明, 陈军辉, 杨建勃, 等, 2021. 固相萃取-液相色谱-串联 质谱法测定海水中软骨藻酸[J]. 色谱, 39(8): 889-895.
- 邓旭,印红玲,何婉玲,等,2019.有机磷酸酯在成都市市/郊 区剖面土壤及农作物中的分布及迁移[J].环境化学,38(3): 679-685.
- 白政忠, 张秋生, 2009. 应关注低浓度药物分析方法检出限 (MDL)的确定[J]. 中国药品标准, 10(6): 405-407.
- 印红玲, 李世平, 叶芝祥, 等, 2016. 成都市土壤中有机磷阻 燃剂的污染特征及来源分析[J]. 环境科学学报, 36(2): 606-613.
- 刘娴静,梁存珍,肖本益,等,2021. 高效液相色谱-串联质谱 法同时检测水体中 26 种药物及个人护理品[J]. 环境化学, 40(2): 549-558.
- 闫振飞,廖伟,冯承莲,等,2020. 典型有机磷酸酯阻燃剂分 析方法研究进展[J]. 生态毒理学报,15(1):94-108.
- 吴迪,印红玲,李世平,等,2019. 成都市锦江表层水和沉积 物中有机磷酸酯的污染特征[J]. 环境科学,40(3): 1245-1251.
- 陈爽,徐接胜,2014.关于检出限的定义、分类及估算方法的 探讨[J]. 广州化工,42(18):137-139.
- 祝旭初,2014. 空白批内标准偏差和方法检出限的计算[J]. 化 学分析计量,23(3):96-98.
- 耿存珍, 段玉双, 王艺璇, 等, 2016. 有机磷系阻燃剂的全球 污染现状[J]. 生态毒理学报, 11(2): 124-133.
- 高立红, 厉文辉, 史亚利, 等, 2014. 有机磷酸酯阻燃剂分析 方法及其污染现状研究进展[J]. 环境化学, 33(10): 1750-1761.
- 郭志明, 刘頔, 申铠君, 等, 2016. 太原市 PM_{2.5} 中有机磷阻燃 剂初步研究: 污染特征及季节变化[J]. 地球与环境, 44(6): 600-604.
- ANDRESEN J, BESTER K, 2006. Elimination of organophosphate ester flame retardants and plasticizers in drinking water purification [J]. Water Research, 40(3): 621-629.
- BEEN F, BASTIAENSEN M, LAI F Y, et al, 2018. Mining the chemical information on urban wastewater: monitoring human exposure to phosphorus flame retardants and plasticizers [J]. Environmental Science & Technology, 52(12): 6996-7005.
- BJÖRKLUND J, ISETUN S, NILSSON U, 2004. Selective determination of organophosphate flame retardants and plasticizers in indoor air by gas chromatography, positive-ion chemical ionization and collision-induced dissociation mass spectrometry [J]. Rapid Communications in Mass Spectrometry, 18(24): 3079-3083.

BOLLMANN U E, MÖLLER A, XIE Z Y, et al, 2012.

Occurrence and fate of organophosphorus flame retardants and plasticizers in coastal and marine surface waters [J]. Water Research, 46(2): 531-538.

- CAMPO J, LORENZO M, CAMMERAAT E L H, *et al*, 2017. Emerging contaminants related to the occurrence of forest fires in the Spanish Mediterranean [J]. Science of the Total Environment, 603-604: 330-339.
- CHEN Y Q, ZHANG Q, LUO T W, *et al*, 2019. Occurrence, distribution and health risk assessment of organophosphate esters in outdoor dust in Nanjing, China: urban vs. rural areas [J]. Chemosphere, 231: 41-50.
- CHOI W, LEE S, LEE H K, *et al*, 2020. Organophosphate flame retardants and plasticizers in sediment and bivalves along the Korean coast: occurrence, geographical distribution, and a potential for bioaccumulation [J]. Marine Pollution Bulletin, 156: 111275.
- CRISTALE J, GARCÍA VÁZQUEZ A, BARATA C, et al, 2013. Priority and emerging flame retardants in rivers: Occurrence in water and sediment, *Daphnia magna* toxicity and risk assessment [J]. Environment International, 59: 232-243.
- KIM U J, KANNAN K, 2018. Occurrence and distribution of organophosphate flame retardants/plasticizers in surface waters, tap water, and rainwater: implications for human exposure [J]. Environmental Science & Technology, 52(10): 5625-5633.
- LI J, YU N Y, ZHANG B B, *et al*, 2014. Occurrence of organophosphate flame retardants in drinking water from China [J]. Water Research, 54: 53-61.
- LIAO C Y, KIM U J, KANNAN K, 2020. Occurrence and distribution of organophosphate esters in sediment from northern Chinese coastal waters [J]. Science of the Total Environment, 704: 135328.
- LUO H Y, XIAN Y P, GUO X D, *et al*, 2014. Dispersive liquid-liquid microextraction combined with ultrahigh performance liquid chromatography/tandem mass spectrometry for determination of organophosphate esters in aqueous samples [J]. The Scientific World Journal, 2014: 162465.
- MA Y X, XIE Z Y, LOHMANN R, *et al*, 2017. Organophosphate ester flame retardants and plasticizers in ocean sediments from the north pacific to the arctic ocean [J]. Environmental Science & Technology, 51(7): 3809-3815.
- MARTÍNEZ-CARBALLO E, GONZÁLEZ-BARREIRO C, SITKA A, *et al*, 2007. Determination of selected organophosphate esters in the aquatic environment of Austria [J]. Science of the Total Environment, 388(1/2/3): 290-299.
- NA G S, HOU C, LI R J, et al, 2020. Occurrence, distribution, air-seawater exchange and atmospheric deposition of organophosphate esters (OPEs) from the Northwestern Pacific to the Arctic Ocean [J]. Marine Pollution Bulletin, 157: 111243.
- PANTELAKI I, VOUTSA D, 2020. Occurrence, analysis and risk assessment of organophosphate esters (OPEs) in biota: a review [J]. Marine Pollution Bulletin, 160: 111547.

- PEVERLY A A, O'SULLIVAN C, LIU L Y, et al, 2015. Chicago's sanitary and ship canal sediment: polycyclic aromatic hydrocarbons, polychlorinated biphenyls, brominated flame retardants, and organophosphate esters [J]. Chemosphere, 134: 380-386.
- QUINTANA J B, RODIL R, REEMTSMA T, *et al*, 2008. Organophosphorus flame retardants and plasticizers in water and air II. Analytical methodology [J]. TrAC Trends in Analytical Chemistry, 27(10): 904-915.
- RAUERT C, SCHUSTER J K, ENG A, et al, 2018. Global atmospheric concentrations of brominated and chlorinated flame retardants and organophosphate esters [J]. Environmental Science & Technology, 52(5): 2777-2789.
- REEMTSMA T, QUINTANA J B, RODIL R, *et al*, 2008. Organophosphorus flame retardants and plasticizers in water and air I. Occurrence and fate [J]. TrAC Trends in Analytical Chemistry, 27(9): 727-737.
- REN G F, CHU X D, ZHANG J, et al, 2019. Organophosphate esters in the water, sediments, surface soils, and tree bark surrounding a manufacturing plant in North China [J]. Environmental Pollution, 246: 374-380.
- RODIL R, QUINTANA J B, REEMTSMA T 2005. Liquid chromatography-tandem mass spectrometry determination of nonionic organophosphorus flame retardants and plasticizers in wastewater samples [J]. Analytical Chemistry, 77(10): 3083-3089.
- SCHMIDT N, CASTRO-JIMÉNEZ J, OURSEL B, et al, 2021. Phthalates and organophosphate esters in surface water, sediments and zooplankton of the NW Mediterranean Sea: exploring links with microplastic abundance and accumulation in the marine food web [J]. Environmental Pollution, 272: 115970.
- SUNDKVIST A M, OLOFSSON U, HAGLUND P, et al, 2010. Organophosphorus flame retardants and plasticizers in marine and fresh water biota and in human milk [J]. Journal of Environmental Monitoring, 12(4): 943-951.
- SUO L L, HUANG W H, ZHU Q Y, et al, 2018. Accelerated solvent extraction coupled to high-performance liquid chromatography-tandem mass spectrometry for simultaneous determination of 11 organophosphorus flame retardants in aquatic products [J]. Journal of the Science of Food and Agriculture, 98(14): 5287-5293.
- TEO T L L, MCDONALD J A, COLEMAN H M, et al, 2015. Analysis of organophosphate flame retardants and plasticisers in water by isotope dilution gas chromatographyelectron ionisation tandem mass spectrometry [J]. Talanta, 143: 114-120.
- VAN DER VEEN I, DE BOER J, 2012. Phosphorus flame

retardants: properties, production, environmental occurrence, toxicity and analysis [J]. Chemosphere, 88(10): 1119-1153.

- WANG Y, WU X W, ZHANG Q N, et al, 2017. Organophosphate esters in sediment cores from coastal Laizhou Bay of the Bohai Sea, China [J]. Science of the Total Environment, 607/608: 103-108.
- WANG X L, ZHONG W J, XIAO B W, et al, 2019. Bioavailability and biomagnification of organophosphate esters in the food web of Taihu Lake, China: impacts of chemical properties and metabolism [J]. Environment International, 125: 25-32.
- WANG X, ZHU Q Q, YAN X T, et al, 2020. A review of organophosphate flame retardants and plasticizers in the environment: analysis, occurrence and risk assessment [J]. Science of the Total Environment, 731: 139071.
- WATANABE K, GUENGERICH F P, 2006. Limited reactivity of formyl chloride with glutathione and relevance to metabolism and toxicity of dichloromethane [J]. Chemical Research in Toxicology, 19(8): 1091-1096.
- WEI G L, LI D Q, ZHUO M N, et al, 2015. Organophosphorus flame retardants and plasticizers: Sources, occurrence, toxicity and human exposure [J]. Environmental Pollution, 196: 29-46.
- WU Z J, LIU J P, PENG Y, 2017. QuEChERS purification prior to stable isotope dilution-ultra-high performance liquid chromatography tandem mass spectrometry to determine organophosphate esters of trace amounts in dairy products [J]. Analytical Methods, 9(15): 2290-2298.
- XING L Q, ZHANG Q, SUN X, et al, 2018. Occurrence, distribution and risk assessment of organophosphate esters in surface water and sediment from a shallow freshwater Lake, China [J]. Science of the Total Environment, 636: 632-640.
- ZENG X Y, XU L, HU Q P, et al, 2020. Occurrence and distribution of organophosphorus flame retardants/plasticizers in coastal sediments from the Taiwan Strait in China [J]. Marine Pollution Bulletin, 151: 110843.
- ZHONG M Y, TANG J H, MI L J, et al, 2017. Occurrence and spatial distribution of organophosphorus flame retardants and plasticizers in the Bohai and Yellow Seas, China [J]. Marine Pollution Bulletin, 121(1/2): 331-338.
- ZHONG M Y, WU H F, MI W Y, et al, 2018. Occurrences and distribution characteristics of organophosphate ester flame retardants and plasticizers in the sediments of the Bohai and Yellow Seas, China [J]. Science of the Total Environment, 615: 1305-1311.
- ZOU Y T, FANG Z, LI Y, et al, 2018. Novel method for in situ monitoring of organophosphorus flame retardants in waters [J]. Analytical Chemistry, 90(16): 10016-10023.

SIMULTANEOUS DETERMINATION OF 27 ORGANOPHOSPHATE ESTERS IN MARINE SEDIMENTS IN HIGH-PERFORMANCE LIQUID CHROMATOGRAPHY-TANDEM MASS SPECTROMETRY

SHI Ren¹, ZHANG Peng¹, CAO Sheng-Kai¹, XING Rong-Guang¹, JI Hao¹, GE Lin-Ke¹, ZHANG Cui-Rong²

(1. School of Environmental Science and Technology, Shaanxi University of Science & Technology, Xi'an 710021, China; 2. Xianyang Ecology and Environment Bureau, Xianyang 712099, China)

Organophosphate esters (OPEs) are a group of widely used flame retardants and highly toxic to organisms. Abstract They enter marine environment via several paths, including water, air transportation etc., which would pose potential risks to human health and marine organisms. Therefore, establishment of an efficient and reliable analysis method is pivotal to reveal the contents of OPEs and assess their ecological risks in a marine environment. A method for simultaneous determination of 27 OPEs in marine sediments was established, and consists of ultrasonic extraction, solid phase extraction (SPE) purification, and high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) analysis. Results indicate that the extraction efficiency of 30 mL mixture solvents, composing by ethyl acetate (EA) and acetonitrile (ACN) (3 : 7, V : V) was obviously better than that those of methanol (MeOH), dichloromethane (DCM), EA, and ACN alone. An aliquot of 5 mL EA was used in eluting target compounds from LC-C18 cartridges twice were the optimized SPE method. The majority of ions abundance peaks were the highest with MeOH and 0.0025% formic acid solution used as the mobile phases. The linear range of 27 OPEs were 5~500 ng/g (R^2 >0.99). The method detection limits and the limits of quantification were 0.004~1.250 ng/g, and 0.01~4.17 ng/g, respectively. The mean recoveries of matrix spiked samples at three spiked levels (low, medium, and high) fall into the range of 45%~130%, and the maximum relative standard deviation was 11.0%. High precision and sensitivity attested to the method was valid and practical. The OPEs concentrations in surface sediments of the Changjiang (Yangtze) River estuary, the mouth of Hangzhou Bay, the junction of the Yellow Sea and East China Sea was analyzed by the optimized method. Twenty-one OPEs were detected, and the concentrations ranged 9.83~48.7 ng/g on average of 28.4 ng/g. The method was efficient and accurate, and can be used for the simultaneous determination of 27 OPEs in marine sediments.

Key words organophosphate esters (OPEs); high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS); ultrasonic extraction; solid phase extraction; sediment