首页 | 期刊简介 | 编委会 | 投稿指南 | 常用下载 | 联系我们 | 期刊订阅 | In English
引用本文:杨联贵,候一筠,谢强,程明华.地球流体中的非线性重力波.海洋与湖沼,1997,28(6):646-651.
【打印本页】   【HTML】   【下载PDF全文】   查看/发表评论  下载PDF阅读器  关闭
←前一篇|后一篇→ 过刊浏览    高级检索
本文已被:浏览 1909次   下载 1404 本文二维码信息
码上扫一扫!
分享到: 微信 更多
地球流体中的非线性重力波
杨联贵, 候一筠, 谢强, 程明华
中国科学院海洋研究所 青岛 266071
摘要:
从地球流体运动浅水模式的非线性方程出发,采用行波分析法给出了平面自治系统,利用相图理论,讨论了行波解的性质,提出了平面非线性系统不存在孤立波的结论;利用K-B平均法,首次获得有限振幅惯性重力波以Rossby数作为控制参量的非线性频散关系。
关键词:  非线性重力波  频散关系
DOI:
分类号:
基金项目:国家自然科学基金!49476276;山东省重点基金!950128;中国科学院重点基金!TZ952-S1-420
附件
NONLINEAR GRAVITY WAVE IN GEOPHYSICAL FLUID
Yang Liangin, Hou Yjun, Xie Qiang, Cheng Minghua
Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071
Abstract:
Variable transformation is used to convert the nonlinear equations governing geophysical fluid’s motion in a shallow model into a plane automous system

F (U,V) = 0

G (U,V) = 0

Phase portrait analysis on the basis of the geometric theory of ordinary differential equations was used to study the travelling wave solution properties. The result indicates that there are no solitary waves in the nonlinear system.

In order to obtain the dispersive relationship of the finite amplitude inertia-gravity wave, Taylor expansion was used in the above system at the equilibrium point (0,0). Using the K-B average method in the expansion yield, the dispersive relationship can be written as (For the equations please see the PDF file.) (Rossby number for inertia-gravity wave). Thus, the dispersive relationship includes Rossby number and the circular frequency σ increases with ε.

Key words:  Nonlinear gravity wave, Dispersive relationship
版权所有 海洋与湖沼 Oceanologia et Limnlolgia Sinica Copyright©2008 All Rights Reserved
主管单位:中国科协技术协会 主办单位:中国海洋湖沼学会
地址:青岛市海军路88号  邮编:266400  电话:0532-82898753  E-mail:ols@qdio.ac.cn
技术支持:北京勤云科技发展有限公司