首页 | 期刊简介 | 编委会 | 投稿指南 | 常用下载 | 联系我们 | 期刊订阅 | In English
引用本文:伍玉梅,何宜军,孟雷.利用卫星资料反演月平均近海面气温和湿度.海洋与湖沼,2008,39(6):546-551.
【打印本页】   【HTML】   【下载PDF全文】   查看/发表评论  下载PDF阅读器  关闭
←前一篇|后一篇→ 过刊浏览    高级检索
本文已被:浏览 2180次   下载 1620 本文二维码信息
码上扫一扫!
分享到: 微信 更多
利用卫星资料反演月平均近海面气温和湿度
伍玉梅1, 何宜军2, 孟雷3
1.中国水产科学研究院渔业资源遥感信息技术重点开放实验室 上海200090;2.中国科学院海洋研究所 青岛266071;3.总参气象水文中心 北京100081
摘要:
为弥补广阔海面上气象参数的观测数据的不足,利用专用成像传感器SSM/I和红外辐射计AVHRR资料进行近海面气温和湿度的反演,首先分析与近海面气温和湿度关系比较密切的几个气象因子及其相关性,并采用神经网络建立近海面气温和湿度与它们之间的关系,利用训练好的网络模型反演月平均近海面气温和湿度,并与TAO和NDBC提供的浮标及观测站的实测数据进行比较,近海面气温和相对湿度的均方根差分别为0.87℃和3.73%。低纬度反演的结果精度较高,达到0.53°C (气温)和2.03%(相对湿度);较大的误差(气温1.06°C、相对湿度3.85%)主要发生在近岸和高纬度区,因为近岸的地形比较复杂,并且很容易受陆地气候的影响;高纬度地区的气候变化比较剧烈,同时目前能得到的高纬度地区的实测资料比较少,这些因素都会影响反演结果的准确度。
关键词:  人工神经网络  近海面气温  湿度  SSM/I  AVHRR
DOI:10.11693/hyhz200806002
分类号:
基金项目:国家863课题基金资助项目,2001AA633060号;中央级公益性科研院所基本科研业务费专项资金(中国水产科学研究院东海水产研究所)资助项目,2007T09号
附件
MONTHLY MEAN NEAR SEA SURFACE AIR TEMPERATURE AND HUMIDITY RETRIEVED FROM SATELLITE DATA
WU Yu-Mei1, HE Yi-Jun2, MENG Lei3
1.Key Laboratory of Fishery Resources Remote Sensing and Information Technology, Chinese Academy of Fishery Sciences, Shanghai, 200090;2.Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071;3.Hydrometeorological Center of the Headquarters of General Staff, Beijing, 100081
Abstract:
Parameters (SST, wind, rain rate, cloud liquid water and atmosphere water vapor) were obtained from SSM/I and AVHRR to retrieve near sea surface air temperature and humidity. An artificial neural network (ANN) was set up and trained using the data from satellites and regional observations. The results of the ANN network were compared with the observational data provided by TAO and NDBC. The root mean square (RMS) of air temperature (TA) and relative humidity (RH) were 0.87°C and 3.73%, respectively. The results estimated in lower latitudes and open oceans were more accurate than those in higher latitude and offshore areas, at 0.53°C and 2.03%, and those in higher latitude and offshore were 1.06°C and 3.85%, for the RMS of TA and RH, respectively. The larger errors shown above were probably due to more continental influence in near shore case, and scarce data and more changeable weather in high latitude case. In future, more in situ data should be collected to improve the algorithm.
Key words:  Artificial neural network, Near sea surface air temperature, Humidity, SSM/I, AVHRR
版权所有 海洋与湖沼 Oceanologia et Limnlolgia Sinica Copyright©2008 All Rights Reserved
主管单位:中国科协技术协会 主办单位:中国海洋湖沼学会
地址:青岛市海军路88号  邮编:266400  电话:0532-82898753  E-mail:ols@qdio.ac.cn
技术支持:北京勤云科技发展有限公司