本文已被:浏览 2446次 下载 2221次 |
码上扫一扫! |
|
白冠破碎空间分布模式的统计推断 |
陈佳,类淑河,管长龙,张冲,陶山山
|
中国海洋大学,中国海洋大学,中国海洋大学,中国海洋大学,中国海洋大学
|
|
摘要: |
长期以来对于白冠破碎的研究并没有涉及到空间分布模式的研究,而白冠空间分布模式分析是海浪破碎统计研究的前提。本文提出利用空间点过程统计分析工具研究白冠空间分布模式,并结合实际白冠破碎观测录像资料,计算观测数据的L-函数和K-函数,与MCMC方法生成的空间齐次Poisson过程模拟包迹进行比较,推断得出我们选择的观测数据其白冠空间分布模式类型为空间齐次Poisson过程。通过实例研究表明:空间点过程统计分析工具适用于白冠破碎研究,具有一定的有效性。 |
关键词: 白冠破碎 空间点过程 K-函数 L-函数 MCMC |
DOI:10.11693/hyhz20121023001 |
分类号: |
基金项目:国家自然科学基金项目(面上项目,重点项目,重大项目) |
附件 |
|
The statistical inference methods of the spatial point pattern of white-cap breaking |
Chen Jia,Lei Shuhe,Guan Changlong,Zhang Chong and Tao Shanshan
|
Ocean University of China,Ocean University of China,Ocean University of China,Ocean University of China,Ocean University of China
|
Abstract: |
For a long time, the research on white-cap breaking did not concern the study of spatial distribution pattern, which is just the premise of the research on the statistical characteristic of breaking waves. Based on spatial point process theory, we introduce it into the breaking study, and come up with using the statistical inference tools of spatial point process to study the spatial distribution model of white-cap breaking. Combined with the practical breaking white-cap images, we calculate the L-function and the K-function of the observed patterns, and use MCMC random simulation test against the null hypothesis about homogeneous Poisson process, making the K-function as the basic statistics for inferring that the spatial point pattern of the observed images we chose is homogeneous Poisson process. The case studies show that the statistical tools of spatial point process can be effectively used for the research of white-cap breaking. |
Key words: white-cap breaking spatial point process K-function L-function MCMC |