首页 | 期刊简介 | 编委会 | 投稿指南 | 常用下载 | 联系我们 | 期刊订阅 | In English
引用本文:于 鑫,曹 亮,南 鸥,赵 博,窦硕增.基于矢耳石形态分析的凤鲚(Coilia mystus) 群体识别研究.海洋与湖沼,2013,44(3):768-774.
【打印本页】   【HTML】   【下载PDF全文】   查看/发表评论  下载PDF阅读器  关闭
←前一篇|后一篇→ 过刊浏览    高级检索
本文已被:浏览 2697次   下载 2406 本文二维码信息
码上扫一扫!
分享到: 微信 更多
基于矢耳石形态分析的凤鲚(Coilia mystus) 群体识别研究
于 鑫1,2, 曹 亮1, 南 鸥1,2, 赵 博1,2, 窦硕增1
1.中国科学院海洋研究所 海洋生态与环境科学重点实验室;2.中国科学院大学
摘要:
以长江口、胶州湾、渤海湾和辽东湾4个地理群体的凤鲚(Coilia mystus)矢耳石样本为研究对象, 采用形状指数和椭圆傅里叶系数分析相结合的方法研究了该4个凤鲚群体的矢耳石形态特征及差异性。方差分析结果表明, 大部分形态变量存在显著的群体差异, 引入协变量(耳石长)之后除形状因子外这种差异依然显著。基于协方差校正的判别分析只保留了耳石重量及9个傅里叶系数用于群体识别, 而非参数检验的判别分析则保留了耳石重量、分形维数、环状度、矩形趋近率、圆度和19个傅里叶系数用于群体识别。相应地, 基于非参检验的凤鲚群体的总体识别成功率(68.2%)明显高于协方差校正的判别分析结果(46.2%), 表明前者比后者更能提高耳石形态分析的群体识别能力。
关键词:  矢耳石  形态分析  群体识别  协方差校正与非参数检验  凤鲚
DOI:10.11693/hyhz201303035035
分类号:
基金项目:国家自然科学基金国际(地区)合作研究项目, 31061160187 号; 国家自然科学基金创新研究群体项目, 41121064 号
附件
STOCK IDENTIFICATION OF COILIA MYSTUS USING OTOLITH SHAPE ANALYSIS
YU Xin1,2, CAO Liang1, NAN Ou1,2, ZHAO Bo1,2, DOU Shuo-Zeng1
1.Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences;2.University of Chinese Academy of Sciences
Abstract:
In this study, the morphology of the sagittal otoliths of Coilia mystus from four stocks along the Chinese coastal waters (Liaodong Bay, Bohai Bay, Jiaozhou Bay and Changjiang River Estuary) were investigated using otolith shape analysis. Shape indices and Fourier coefficients were used as morphological variables and were statistically analyzed by both ANOVA and ANCOVA (otolith length as a covariate) to examine their differences among stocks. The results revealed that most of the morphometric variables of the otoliths examined in the study differed significantly among the four stocks in both statistical analyses. ANCOVA adjustment and nonparametric test were thereafter run to identify the effective variables for stock identification using discriminant function analysis. ANCOVA adjustment identified only otolith weight and 9 Fourier coefficients, whereas nonparametric test could keep more variables (otolith weight, roundness, fractal di-mension, circularity, rectangularity and 19 Fourier coefficients) as the effective morphological variables of otoliths for identifying stocks. Accordingly, classification success (68.2%) of stock identification based on nonparametric test was higher than that (46.2%) based on ANCOVA adjustment, suggesting that the former statistical analysis could show stronger ability of otolith shape analysis to identify the stocks than the latter one.
Key words:  sagittal otolith  morphology analysis  stock identification  ANCOVA adjustment and nonparametric test  Coilia mystus
版权所有 海洋与湖沼 Oceanologia et Limnlolgia Sinica Copyright©2008 All Rights Reserved
主管单位:中国科协技术协会 主办单位:中国海洋湖沼学会
地址:青岛市海军路88号  邮编:266400  电话:0532-82898753  E-mail:ols@qdio.ac.cn
技术支持:北京勤云科技发展有限公司