本文已被:浏览 1497次 下载 1214次 |
码上扫一扫! |
|
海带渣资源化利用及在小球藻培养中的应用研究 |
王铭1,2, 彭敏琳1,3, 许瑾4, 梁翠谊4, 向文洲2,3, 李涛2,3
|
1.贵州民族大学生态环境工程学院 贵州贵阳 550025;2.中国科学院南海海洋研究所 中国科学院热带海洋生物资源与生态重点实验室 广东省海洋药物重点实验室 广东广州 510301;3.南方海洋科学与工程广东省实验室(广州) 广东广州 511458;4.中国科学院广州能源研究所 中国科学院可再生能源与天然气水合物重点实验室 广东广州 510640
|
|
摘要: |
海带渣是海带加工中的固体废弃物,将其资源化利用生产高附加值产品具有重要意义。文章以海带渣为原料,糖化液的总还原糖质量浓度、单糖组成和小球藻培养效果为主要评估指标,探究不同预处理方法对海带渣酶解的影响,以及海带渣资源化利用培养微藻工艺的可行性。结果显示:(1)粗纤维和灰分是海带渣主要组成成分;(2)常温常压稀硫酸预处理海带渣后进行纤维素酶解,糖化液的总还原糖质量浓度由初始(海带渣未进行预处理)2.7 g/L提高到26.3 g/L,在较优糖化工艺条件下(纤维素酶用量50 IU/g,酶解时间36 h,料液比1︰5),糖化液的总还原糖质量浓度达到(53.4±0.3) g/L,总还原糖得率98.9%;(3)糖化液的单糖主要为葡萄糖,质量浓度为48.0 g/L;(4)利用2 g/L糖化液培养小球藻SCSIO-559,其生物量(0.93 g/L)显著高于自养组及2 g/L葡萄糖组,且有利于多不饱和脂肪酸的积累。综上所述,海带渣糖化液对小球藻培养优势明显,具备作为微藻培养有机碳源的潜力。研究旨在为更好地对海带渣资源化利用提供数据支撑,为提高海带渣高值化应用以及在微藻工业应用等方面提供理论依据。 |
关键词: 海带渣 资源化利用 预处理 酶 有机碳源 |
DOI:10.11693/hyhz20210700156 |
分类号:X798 |
基金项目:广东省新能源和可再生能源研究开发与应用开放基金,E039kf0301号;南方海洋科学与工程广东省实验室(广州)人才团队引进重大专项,GML2019ZD0406号;贵州省教育厅青年科技人才成长项目,黔教合KY字[2016]160号;广东省自然科学基金研究团队项目,2016A030312007号。 |
附件 |
|
RESOURCE UTILIZATION OF KELP RESIDUE AND APPLICATION IN CHLORELLA CULTURE |
WANG Ming1,2, PENG Min-Lin1,3, XU Jin4, LIANG Cui-Yi4, XIANG Wen-Zhou2,3, LI Tao2,3
|
1.School of Eco-Environmental Engineering, Guizhou Minzu University, Guiyang 550025, China;2.CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China;3.Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China;4.Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, CAS Key Laboratory of Renewable Energy, Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, China
|
Abstract: |
Kelp residue is a type of solid waste from kelp processing. It is of great significance to utilize it to produce high value-added products. Therefore, kelp residue and was used as raw material and saccharified. The total reducing sugar concentration, monosaccharide composition, and Chlorella cultivation effect of the saccharification liquid were used as the main indexes to evaluate the effects of different pretreatment methods on enzymatic hydrolysis of kelp residue, and the feasibility of kelp residue resource utilization and cultivation of microalgae. The results show that: (1) crude fiber and ash are the main components of kelp residue. (2) After pretreatment with dilute sulfuric acid at room temperature and atmospheric pressure, the total reducing sugar concentration of saccharification solution was increased from 2.7 to 26.3 g/L. Under the optimal saccharification conditions (cellulase dosage 50 IU/g, enzymolysis time 36 h, solid-liquid ratio 1:5), the total reducing sugar concentration of saccharification solution reached (53.4±0.3) g/L, the yield of total reducing sugar was 98.9%. (3) The monosaccharide of saccharification solution included mainly glucose, and its mass concentration was 48.0 g/L. (4) The biomass (0.93 g/L) of Chlorella sp. scsio-559 cultured in 2 g/L saccharification solution was significantly higher than that of autotrophic group and 2 g/L glucose group, which is conducive to the accumulation of polyunsaturated fatty acids. Therefore, the saccharified liquid of kelp residue has obvious advantages for Chlorella cultivation, and is potential to be used as an organic carbon source for microalgae cultivation. This study provided a data support for better resource utilization of kelp residue, and a theoretical basis for improving high value application of kelp residue while reducing production cost and environmental pollution in the microalgae industry. |
Key words: kelp residue resource utilization pretreatment enzyme organic carbon source |