首页 | 期刊简介 | 编委会 | 投稿指南 | 常用下载 | 联系我们 | 期刊订阅 | In English
引用本文:杜星,孙永福,董杰,王青,宋玉鹏,苏志明,张莞君.基于无监督机器学习的胶州湾海底工程环境适宜性综合评价.海洋与湖沼,2022,53(4):972-980.
【打印本页】   【HTML】   【下载PDF全文】   查看/发表评论  下载PDF阅读器  关闭
←前一篇|后一篇→ 过刊浏览    高级检索
本文已被:浏览 801次   下载 855 本文二维码信息
码上扫一扫!
分享到: 微信 更多
基于无监督机器学习的胶州湾海底工程环境适宜性综合评价
杜星1,2, 孙永福3, 董杰4,5, 王青4,5, 宋玉鹏1,2, 苏志明1, 张莞君1
1.自然资源部第一海洋研究所 山东青岛 266061;2.青岛海洋科学与技术试点国家实验室 海洋地质过程与环境功能实验室 山东青岛 266235;3.国家深海基地管理中心 山东青岛 266237;4.青岛地质工程勘察院(青岛地质勘察开发局) 山东青岛 266100;5.自然资源部滨海城市地下空间地质安全重点实验室 山东青岛 266100
摘要:
海岸带工程地质环境的稳定性对于海洋工程的建设安全和沿海经济繁荣十分重要。在胶州湾海域已有地质、水文等数据的基础上,对胶州湾海底工程环境适宜性进行了分区。通过无监督机器学习的谱聚类算法,构建了胶州湾海底工程环境适宜性综合评价模型。结果表明,胶州湾整体工程环境适宜性趋势为北高南低,从北向南依次可分为适宜性高、适宜性较高、适宜性较低和适宜性低四个区域。相关性分析表明,影响胶州湾海域海底工程适宜性的因素从高到低依次为冲淤分布、沉积物类型、坡度、第四系沉积物厚度、水深、海流流速、断裂分布。本研究可为胶州湾工程环境和地质灾害预防提供参考,有助于海洋工程环境稳定和经济安全保障。
关键词:  胶州湾  海底工程  环境适宜性  无监督机器学习  综合评价  谱聚类
DOI:10.11693/hyhz20210900206
分类号:P642.22
基金项目:海洋一所基本科研业务专项,GY0222Q05号;国家自然科学基金项目,42102326号;山东省自然科学基金项目,ZR2020QD073号。
附件
ASSESSMENT AND SUBDIVISION OF ENVIRONMENTAL SUITABILITY FOR SUBMARINE ENGINEERING IN THE JIAOZHOU BAY BY UNSUPERVISED MACHINE LEARNING
DU Xing1,2, SUN Yong-Fu3, DONG Jie4,5, WANG Qing4,5, SONG Yu-Peng1,2, SU Zhi-Ming1, ZHANG Wan-Jun1
1.The First Institute of Oceanography, MNR, Qingdao 266061, China;2.Marine Geology and Environment Laboratory Process, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266235, China;3.National Deep Sea Center, Qingdao 266237, China;4.Qingdao Geo-Engineering Exploration Institute (Qingdao Geological Exploration and Development Bureau), Qingdao 266100, China;5.Key Laboratory of Geological Safety of Coastal Urban Underground Space, Ministry of Natural Resources, Qingdao 266100, China
Abstract:
The stability of the coastal engineering geological environment is essential for the construction safety of marine engineering and the prosperity of the coastal economy. Based on the existing geological and hydrological data in the Jiaozhou Bay waters, Qingdao, China, we divided the environmental suitability of the Jiaozhou Bay subsea engineering. Through the spectral clustering algorithm of unsupervised machine learning, a comprehensive evaluation model for the environmental suitability of Jiaozhou Bay subsea engineering was constructed. The results show that the overall engineering environmental suitability trend of Jiaozhou Bay is high in the north and low in the south. From north to south, it can be divided into four zones from high suitability to low suitability. Correlation analysis shows that the factors affecting the suitability of seabed engineering in Jiaozhou Bay are, from high to low, silting distribution, sediment type, slope, Quaternary sediment thickness, water depth, current velocity, and fault distribution. This study can provide reference for Jiaozhou Bay engineering environment and geological disaster prevention, and contribute to the environmental stability and economic security of marine engineering.
Key words:  Jiaozhou Bay  submarine engineering  geo-environmental suitability  unsupervised machine learning  comprehensive evaluation  spectral clustering
版权所有 海洋与湖沼 Oceanologia et Limnlolgia Sinica Copyright©2008 All Rights Reserved
主管单位:中国科协技术协会 主办单位:中国海洋湖沼学会
地址:青岛市海军路88号  邮编:266400  电话:0532-82898753  E-mail:ols@qdio.ac.cn
技术支持:北京勤云科技发展有限公司