首页 | 期刊简介 | 编委会 | 投稿指南 | 常用下载 | 联系我们 | 期刊订阅 | In English
引用本文:高宇,李爽,郝鹏,宋金宝.基于ST-ConvLSTM的南海海表面CO2分压的空间和时间序列预测.海洋与湖沼,2023,54(6):1573-1585.
【打印本页】   【HTML】   【下载PDF全文】   查看/发表评论  下载PDF阅读器  关闭
←前一篇|后一篇→ 过刊浏览    高级检索
本文已被:浏览 430次   下载 619 本文二维码信息
码上扫一扫!
分享到: 微信 更多
基于ST-ConvLSTM的南海海表面CO2分压的空间和时间序列预测
高宇, 李爽, 郝鹏, 宋金宝
浙江大学海洋学院 浙江舟山 316021
摘要:
海表面二氧化碳分压(pCO2)的未来变化趋势, 对统计评估全球碳收支以及理解全球气候变化背景下的海洋酸化现象至关重要。目前传统的海面pCO2预测方法大部分基于有限的实测数据, 然而实测数据存在着时间和地理方面的制约, 且计算成本较高。近年来, 随着时空观测数据的爆炸性增长, 基于深度学习的数据驱动模型在海表面pCO2预测方面中表现出良好的潜力。然而, 由于多种环境因素与海表面pCO2之间的关系错综复杂, 到目前为止尚无十分简单有效的相关模型来对海表面pCO2进行预测。为应对这一挑战, 利用时空卷积长短时记忆神经网络(ST-ConvLSTM)模型, 通过海面温度(sea surface temperature, SST)、海面盐度(sea surface salinity, SSS)、叶绿素a浓度(chl a)和海面pCO2数据, 预测南海的海面pCO2, 并将2019年1~12月的数据作为测试集对模型的表现进行了验证。结果显示, ST-ConvLSTM模型的预测因子均方根误差、平均绝对误差和决定系数分别为0.981 Pa、0.711 Pa和0.997。对比卷积LSTM (ConvLSTM)、随机森林和广义回归神经网络(generalized regression neural network, GRNN)三种方法, 证实本文所提出的方法在解决南海pCO2预测问题上是可靠的。
关键词:  ST-ConvLSTM模型  中国南海  海表面二氧化碳分压  深度学习
DOI:10.11693/hyhz20230300074
分类号:
基金项目:国家自然科学基金项目,41830533号
附件
SPATIAL AND TEMPORAL PREDICTION OF PCO2 IN THE SOUTH CHINA SEA BASED ON ST-CONVLSTM
GAO Yu, LI Shuang, HAO Peng, SONG Jin-Bao
Ocean College, Zhejiang University, Zhoushan 316021, China
Abstract:
Understanding the future trends in the partial pressure of carbon dioxide (pCO2) at sea surface is crucial to assess statistically the global carbon balance and ocean acidification in the context of global climate change. Most of the current traditional sea surface pCO2 prediction methods are based on limited real-world data, and require temporal and geographical constraints on the real-world data and high computational costs. In recent years, with the explosive growth of spatiotemporal observational data, data-driven models based on deep learning have shown good potential in sea surface pCO2 prediction. However, due to the complex relationship between multiple environmental factors and sea surface pCO2, there is no simple and effective relevant model in this regard so far. We deveveloped a spatio-temporal convolutional long and short-term memory neural network (ST-ConvLSTM) model to predict sea surface pCO2 in the South China Sea from sea surface temperature (SST), sea surface salinity (SSS), chlorophyll a concentration (chl a), and sea surface pCO2 data, and the model was validated using data from January to December 2019 as test set. Results show that the prediction factors, and Root Mean Square Error, Mean Absolute Error and Coefficient of Determination of the model are 0.981 Pa, 0.711 Pa, and 0.997, respectively. Among three methods of convolutional LSTM (ConvLSTM), random forest, and generalized regression neural network (GRNN), our method is most reliable in the pCO2 prediction in the South China Sea.
Key words:  ST-ConvLSTM  the South China Sea  sea surface pCO2 prediction  deep learning
版权所有 海洋与湖沼 Oceanologia et Limnlolgia Sinica Copyright©2008 All Rights Reserved
主管单位:中国科协技术协会 主办单位:中国海洋湖沼学会
地址:青岛市海军路88号  邮编:266400  电话:0532-82898753  E-mail:ols@qdio.ac.cn
技术支持:北京勤云科技发展有限公司