大菱鲆胃质子泵(H⁺/K⁺ATPase)与消化机能 发生的关系*

良^{1,2} 徐世宏¹ 肖志忠¹ 马道远¹ 帆^{1,2} 沢 林 赵春彦^{1,2} 肖永双¹ 武宁宁³ 刘清华 杢 军 (1. 中国科学院海洋研究所生物技术中心 青岛 266071; 2. 中国科学院大学 北京 100049; 3. 青岛市渔业技术推广站 青岛 266071)

胃质子泵(H⁺/K⁺ ATPase)是胃酸分泌的关键酶。本试验采用 RACE 和 PCR 方法从大菱鲆的 提要 胃组织中提取 RNA 克隆得到了 H⁺/K⁺ ATPase α亚基 cDNA 全长序列。结果表明:大菱鲆 H⁺/K⁺ ATPase α亚基序列全长 3467 bp, 开放阅读框为 2964 bp, 编码 988 个氨基酸。与 GenBank 上其它物种比对 发现, 大菱鲆 H^+/K^+ ATPase α 亚基与斑鳜同源性最高, 为 89%。进化树分析发现, H^+/K^+ ATPase 在进 化上具有物种特异性。 经 RT-PCR 和荧光定量 PCR 检测,大菱鲆 H⁺/K⁺ ATPase 在胚胎孵化后 22d 开 始表达、晚于大菱鲆胃腺出现的时间(16 d)、说明大菱鲆胃腺的发育完成并不代表胃功能的完善。另 外, 大菱鲆 H⁺/K⁺ ATPase 除了在胃中大量表达之外, 在食道中的表达量也很高。结合组织学观察, 作者认为、大菱鲆 H⁺/K⁺ ATPase 在食道中大量表达是因为在发育上食道是胃的前体、因此保留了分 泌 H⁺/K⁺ ATPase 的能力。同时通过整体原位杂交试验表明: 大菱鲆 H⁺/K⁺ ATPase 会首先在食道的 末端和胃的贲门处表达。本研究为进一步了解海水鱼类的消化机制提供了理论基础。 关键词

大菱鲆;胃质子泵;组织表达;消化

中图分类号 Q953 doi: 10.11693/20130306001

胃质子泵,又称为胃 H^+/K^+ ATP 酶 (H^+/K^+) ATPase)、是胃酸分泌的关键性酶、它通过水解 ATP 酶为离子转运提供能量,完成 H⁺、K⁺离子转运和胃 酸的分泌(Chow et al, 1995)。H⁺/K⁺ ATPase 首先在上 世纪 70 年代, 由 Forte 等人在牛蛙的胃粘膜分离出来 (Prinz et al, 1992)。后来证明 H⁺/K⁺ ATPase 具有跨膜 运输质子的作用、从而为胃酸分泌机理的研究奠定 了基础(vanDriel et al, 1995; Forte et al, 1996)。

质子泵分为 α 、 β 两个亚单位。 α 亚基在胞质内 外形成多个回褶,因此形成了胞质区、膜区和胞质外 区三个功能区域。α亚基含有 ATP 结合位点、酰基磷 酸化位点等,是质子泵的催化亚基,起催化和转运 H⁺、K⁺的功能(Kakei et al, 1995; Asano et al, 1997; Besancon et al, 1997)。β亚基只含有一个跨膜区域,是 质子泵的辅助亚基、主要起稳定 α 亚基和辅助泌酸的 功能(Horisberger et al, 1991; Tyagarajan et al, 1996; CourtoisCoutry et al, 1997)。另外, 研究表明 H⁺/K⁺ ATPase 的正常分泌对于维持壁细胞的结构和发育也 起到重要的作用。Spicer 等通过基因打靶技术培养的 H^+/K^+ ATPase α 亚基缺失的小鼠出现胃酸分泌减少, 胃粘膜细胞变形, 微绒毛和管泡消失, 线粒体异常等 症状(Spicer et al, 2000)。Scarff 等发现 H⁺/K⁺ ATPase β 亚基缺失的小鼠会出现胃酸分泌减少,微管和管泡 的结构紊乱等特征(Scarff et al, 1999)。

目前, 对于 H⁺/K⁺ ATPase 的研究主要集中在哺 乳动物中,在海水鱼类中关于 H⁺/K⁺ ATPase 还比较

^{*}现代农业产业技术体系建设专项资金, nycytx-50 号。迟良, E-mail: xueao8427@gmail.com 通讯作者: 李军, E-mail: junli@qdio.ac.cn, 刘清华, E-mail: qinghualiu@qdio.ac.cn 收稿日期: 2013-03-16, 收修改稿日期: 2013-07-05

少。因为鱼类在消化过程中会受到温度,酸碱度及海水不断稀释、中和的影响,所以海水鱼类的消化过程较陆生动物更为复杂。因此,研究 H⁺/K⁺ ATPase 对了 解海水鱼类的消化机制重要的意义。

大菱鲆(*Scophthalmus maximus*)属鲆科(Bothidae)、 菱鲆属(*Scophthalmus*),自然分布于东北大西洋沿岸, 因其肉质鲜美,营养丰富,适应水温低,现在已成为我 国北方重要的海水养殖种类。研究大菱鲆的消化机制对 优化饵料结构,合理投饵,提高苗种成活率都具有重要 的意义。因此,本文以大菱鲆为材料研究 H⁺/K⁺ ATPase 的时空表达模式及其与消化机能发生的关系,以期为 研究大菱鲆乃至海水鱼类的消化机理提供理论基础。

1 材料与方法

1.1 实验材料

实验所用大菱鲆鱼苗及成鱼取自山东烟台东方 海洋科技股份有限公司。采用腹部挤压法获得若干亲 鱼成熟的卵子和精液,并采用人工受精获得受精卵。 将质量较好的浮性卵移入孵化网箱中进行孵化,孵 化时水温为(14 ± 0.5) °C。将初孵化仔鱼转至水泥池 中培育,水泥池面积 25m²培养密度 125 尾每升。培 育条件:水温调整为 18—19 °C,溶氧 7.0—8.5 mg/L, 盐度 30—32, pH 7.7—8.0。4 至 19 日龄,仔鱼投喂轮 虫(*Brachionus plicatilis*)13 至 35 日龄,投喂卤虫 (*Artemia* nauplii)。从 27 日龄起开始投喂配合饵料。

分别取个时期胚胎(2 细胞期, 8 细胞期, 囊胚期, 原肠期, 心跳期)及仔稚幼鱼(初孵为仔鱼, 鳞片出现 为稚鱼, 鳞片铺满全身为幼鱼), 孵化后在每天投喂 前取样, 分两批分别投入液氮及 Bouin's 液中固定保 存,分别用于 RNA 提取和组织切片研究。另外,取1 龄成鱼的腮、心脏、食管、胃、肠、肝脏、脾、肾、 肌肉、卵巢等组织保存于液氮中,用于提取 RNA。用 于原位杂交实验的仔稚鱼每天投喂前取样,4%多聚 甲醛固定 24h,梯度甲醇脱水,置于 100%甲醇中 -20°C 长期保存。

1.2 RNA 的提取和 cNDA 第一链的合成

胚胎、仔稚幼鱼及不同组织的样品约 100 mg, 使用购于 BioFlux 公司的 Simply P Total RNA Extration Kit 试剂盒提取总 RNA。提取的总 RNA 经 分光光度计检测及甲醛变性电泳检测后, 使用北京 全式金生物技术有限公司生产的 Transcript Fist-Strand Cdna Synthesis Supermix 试剂盒反转录合 成 cDNA 第一链。

1.3 大菱鲆 H⁺/K⁺ ATPase α 亚基 cDNA 全长的克隆

根据 GenBank 中已公布的 H⁺/K⁺ ATPase α 亚基 的基因序列,通过比对在保守区域设计引物 *HK1* F 和 *HK1* R (表 1),使用 TransTaq HiFi DNA 聚合酶(全 式金北京)扩增大菱鲆 H⁺/K⁺ ATPase α 亚基的保守片 段。反应体系: 0.25 µL TransTaq HiFi DNA Polymerase, 5 mM dNTPs,上下游引物分别为 0.2µL, 2.5 µL 10 × *TransTaq* HiFi Buffer, 2µL cDNA 模版 和 17.25 µL ddH₂O 补至 25µL。PCR 反应条件: 94°C 预变性 5min; 94°C 30s, 54 30s, 72°C 90s, 30 个循环,最后 72°C 延 伸 8 min。对扩增产物使用凝胶回收试剂盒进行回收, 将回收的 PCR 产物与 pMT-18T 连接后,转化大肠杆 菌 <u>*E.coli*</u> DH5 α 中,然后送至北京华大基因公司进行 测序。根据测序结果设计大菱鲆 H⁺/K⁺ ATPase α 亚基 RACE 引物 GSP1(3'RACE)和 GSP2 (5'RACE)。

Tab.1 Primers used for gene amplification by PCK		
引物	引物序列	退火温度(°C)
HK1	F: 5'ANGGCAGYGARACAGTGGARG 3'	54
	R: 5' GTTYTTGGTCAGTGTGTASGC3'	
GSP1	5' AAGTCAACAAGAGGGACGCCCGAGCC 3'	68
GSP2	5' CCCAGACGCTGACAACTCTCCACAATAATC 3'	68
НК2	F: 5' AGTGATGAGTTGGATGACGCAC 3'	60
	R: 5' ATAAGCCAGAGAAACAGAGGGG 3'	
НК3	F: 5' GCAGAAACTGATTATTGTGGAGAG 3'	60
	R: 5' TAAGAGCTGGAAGACTATGGCAC 3'	
β-actin	F: 5'GAAGATGACCCAGATCATGTTTG3'	58
	R: 5'AGCAGTGGTGGTGGAAGGAGTAG3'	

表 1 试验中所需的引物序列

F: 上游引物; R: 下游引物

RACE 反应过程使用 SMARTTM RACE cDNA Amplication Kit(Clontech)进行,根据说明书要求进操 作。RACE PCR 反应体系: 5 mM dNTPs, 2.5 µL 10×Universal Primer A Mix(UPM), 5µM Gene Specific Primer, 1.25 µL RACE-ready cDNA, 0.5 µL HiFi TransTaq, 2.5 µL 10 × *TransTaq* HiFi Buffer,加水至 25 µL。RACE 反应条件: 94°C 预变性 5min, 94°C 30s, 68°C 45s, 72°C 90s,最后 72°C 延伸 5min, 36 个循 环。PCR 产物经 1%的琼脂糖检测后,使用琼脂糖凝 胶回收试剂盒回收,连接至 pMT-18T载体后,转化大 肠杆菌 <u>E.coli</u> DH5 α 中,LB 培养基培养过夜后,挑选 阳性克隆送至上海美吉生物医药科技有限公司测序。

1.4 大菱鲆 H⁺/K⁺ ATPase α 亚基的表达模式分析

根据已获得的大菱鲆 H^+/K^+ ATPase α 亚基的 cDNA 全长序列设计引物 HK2 F 和 HK2 R 和一对特 异的内参引物 β-actinF 和 β-actinR 进行 RT-PCR 检 测大菱鲆 H⁺/K⁺ ATPase 的时空表达情况。分别提取 大菱鲆胚胎、仔稚幼鱼及成鱼鳃、食管、心脏、肝、 脾、胃、肠、肾、肌肉和卵巢 10 个组织的总 RNA, 经 反转录后用于 RT-PCR 检测和荧光定量 PCR 检测, 定量检测引物为 HK3F 和 HK3R。 RT-PCR 的总反 应体系为 25 µL, 其中 ddH₂O 15.25 µL, 10×PCR buffer 2.5 µL, dNTPs 4 µL, 上、下游引物(10 µmol/L) 各 1 μL, Taq 酶 0.25 μL, cDNA 模板 1 μL。反应条件 为 4°C 预变性 5 min; 94°C 变性 40 s、60°C 退火 30 s、 72°C 延伸 2 min, 26 个循环。荧光定量反应体系为 25 µL, SYBR Primix Ex TaqTM II(2×), 12.5 µL, 上下 游引物(10 μmol/L)分别为 1 μL, cDNA 模版 2 μL, ddH₂O, 8.5 μL。反应条件为: 95°C 30 s; 95°C 5 s; 60°C 30 s, 40 个循环。

1.5 整体原位杂交

根据已获得的大菱鲆 H⁺/K⁺ ATPase α 亚基的序 列设计特异性地高辛标记的反义探针(上游: 5' AGTGATGAGTTGGATGACGCAC 3'; 下游: 5' ATA AGCCAGAGAAACAGAGGGG 3)进行整体原位杂 交。探针的制备使用 Roche 探针标记试剂盒完成。按 照其说明书操作。取 4%多聚甲醛固定的 22 日龄的大 菱鲆幼鱼, 经梯度甲醇脱水。将幼鱼的内脏团剥离, 梯度甲醇复水。10 μ g/ml 蛋白酶 K 进行消化 2h, 4% 多聚甲醛在固定 20 min。移去固定液, 1×PBST 清洗 6 次, 每次 10 min。然后预杂交液中 60°C 预杂交 2h, 在 含有 10ng/ μ L 探针的杂交液中 60°C 杂交过夜。多余 的探针经 50% SSCT/50%甲酰胺、2×SSCT、0.2×SSCT 洗涤后, 使用 2%的脱脂奶粉封闭 2h。经染色缓冲液 平衡后, 与抗体杂交 4°C 过夜。实验结果使用 Nikon YS-100 显微镜观察拍片记录。

1.6 组织学观察

大菱鲆幼鱼 Bouin's 液固定 24h, 70%乙醇保存。 切片时使用乙醇梯度脱水, 二甲苯透明, 石蜡包埋进 行连续切片, 切片厚度 8µm, HE 染色, 在 Nikon YS-100 显微镜下观察拍片记录。

1.7 序列分析和数据统计分析

测序结果使用 DNASTAR Lasergene v7 和 MEGA 4.0 进行结构和进化树分析。利用 SPSS13.0 软件对荧 光定量 PCR 结果进行显著性检验, P < 0.05 表示具有 显著性差异, 描述性统计量用平均值±标准差表示。

2 结果

2.1 大菱鲆 H⁺/K⁺ ATPase α 亚基 cDNA 全长序列分析

大菱鲆 H⁺/K⁺ ATPase α 亚基 cDNA 全长 3467bp, 包含 5'UTR 175 bp, 3'UTR 329 bp 和 ORF 2964 bp, 编码 988 个氨基酸,前 30 个氨基酸为信号肽(图 1)。 通过与 GenBank 上已公布的 H⁺/K⁺ ATPase α 亚基比 对发现大菱鲆 H⁺/K⁺ ATPase 亚基与斑鳜 (*Siniperca chautsi*) H⁺/K⁺ ATPase α 亚基序列同源性最高,达 89%。

大菱鲆 H⁺/K⁺ ATPase α 亚基蛋白序列具有 10 个 跨膜结构域, 蛋白磷酸化位点 DKTGTLT (图 1)

 大菱鲆 H⁺/K⁺ ATPase α 亚基的序列比对及进化 树构建

根据大菱鲆 H⁺/K⁺ ATPase α 亚基的氨基酸序列, 与 GenBank 公布的 H⁺/K⁺ ATPase α 亚基氨基酸序列, 使用 MEGA4.0 构建了大菱鲆 H⁺/K⁺ ATPase 与其它物 种的 Neighbor-joining 系统进化树(图 2),结果表明: H⁺/K⁺ ATPase 的进化关系具有物种特异性,哺乳动 物、禽类、两栖类及鱼类分别聚为一类。

 2.3 大菱鲆 H⁺/K⁺ ATPase 在大菱鲆发育不同时期表 达分析

以大菱鲆 β -actin 基因为内参基因,检测了大菱 鲆 H⁺/K⁺ ATPase 基因在仔稚幼鱼不同发育时期及各 组织的表达情况。结果显示,大菱鲆 H⁺/K⁺ ATPase 直 至孵化后 22d 才开始表达(图 3a)。荧光定量结果显示, 大菱鲆 H⁺/K⁺ ATPase 基因的表达在呈现指数性的增长 (图 3b)。另外,通过整体原位杂交技术显示大菱鲆的 H⁺/K⁺ ATPase 首先在消化道的食道和胃的贲门区开始 表达,然后再逐渐扩散到整个胃区(图 3c)。

图 1 大菱鲆 H⁺/K⁺ ATPase α 亚基 cDNA 及其氨基酸序列

Fig.1 cDNA sequence and deduced amino acid sequence of H⁺/K⁺ ATPase α subunit gene from turbot (*Scophthalmus maximus*) *代表终止密码子; 方框内代表信号肽; 阴影代表磷酸化位点

同时通过检测 RT-PCR 及荧光定量 PCR 检测大菱鲆成鱼各组织 H⁺/K⁺ ATPase 的表达情况,结果显示:大菱 鲆 H⁺/K⁺ ATPase 主要在食道和胃中表 达,在卵巢中也检测到了 H⁺/K⁺ ATPase 的微量表达(图 4a, 图 4b)。

2.4 大菱鲆消化道的发育过程

为了能够更好地了解大菱鲆的消 化机理,作者对大菱鲆仔鱼消化道进 行了组织切片观察,结果发现胚胎孵 化后第一天(1 day post hatching, 1 dph) 大菱鲆的食管为一条细长的管状。2 dph 时,食道粘膜上皮由单层立方上皮 细胞组成,3dph 由单层立方上皮细胞

Fig.2 The Neighbor-joining tree of H⁺/K⁺ ATPase using MEGA 4.0

图 3a 大菱鲆 H⁺/K⁺ ATPase 在发育不同时期的 mRNA 表达 Fig.3a Expression of H⁺/K⁺ ATPase of development stages by RT-PCR

M: Maker; 4cells:四细胞; gastrula: 原肠胚; heart: 心跳期

图 3b 大菱鲆 H⁺/K⁺ ATPase 在发育不同时期的 mRNA 的 定量分析

Fig.3b Expression of H⁺/K⁺ ATPase of development stages by quantitative real-time PCR M: Maker

图 3c H⁺/K⁺ ATPase mRNA 在大菱鲆消化道中的分布 Fig.3c Development and distribution of H⁺/K⁺ ATPase mRNA in turbot digestive tract by *whole in situ hybridization* of antisense probe es: 食道; st:胃

变为复层扁平上皮,8 dph 出现杯状细胞(图 5a—c)。
大菱鲆胃的发育较食管的分化稍晚,初孵仔鱼的胃没有分化。2 dph,胃原基开始膨大,食管在接近胃体处的复层扁平上皮逐渐转变为单层柱状上皮。
3 dph,胃粘膜逐渐出现褶皱,胃与食管的分化明显。
8 dph 可分化为贲门区、基底区和幽门区(图 5d—f)。

图 4a H^+/K^+ ATPase 在大菱鲆不同组织的表达情况

Fig.4a Expression of H^+/K^+ ATPase mRNA in tissues of adult turbot. M: Maker

M: Maker; gill:鰓; esophagus:食道; heart:心脏; spleen:脾; liver: 肝脏; stomach:胃; gut:肠; kidney: 肾; muscle:肌肉; ovary:卵巢

图 4b H⁺/K⁺ ATPase 在大菱鲆不同组织的相对表达量 Fig.4b The relative expression in different tissues of H⁺/K⁺ ATPase from turbot gill: 鳃; esophagus:食道; heart:心脏; spleen:脾; liver:肝脏; stomach:胃; gut:肠; kidney: 肾; muscle:肌肉; ovary:卵巢

16 dph 胃腺出现。通过组织切片观察证明,大菱鲆的 胃是由食道的末端膨大分化而来的。

3 讨论

 α 亚基含有 ATP 结合位点、酰基化位点和离子识 别位点等,在稳定 H⁺/K⁺ ATPase 酶的结构,行使功能 等方面起到重要的作用(Besancon *et al*, 1997; Asano *et al*, 1998)。因此本研究使用 RACE 技术克隆了大菱 鲆的 H⁺/K⁺ ATPase α 亚基,全长 3467 bp,与 GenBank 已公布的 H⁺/K⁺ ATPase α 亚基序列比对发现,与斑鳜 的同源性最高达 89%,其次与牙鲷(*Diplodus sargus*)、 美洲鲽(*Pleuronectes americanus*)分别为 88%和 87%。 通过进化树分析发现 H⁺/K⁺ ATPase 在进化上具有物 种特异性,哺乳类、鸟类、两栖类和鱼类分别聚为一 类,作者认为这可能与物种的食物来源相关。

胃腺的出现通常是认为胃的功能完善的标志 (Infante *et al*, 2001; Wu *et al*, 2009)。H⁺/K⁺ ATPase 动

图 5 大菱鲆食道和胃的组织发育

Fig.5 Development of esophagus and stomach in turbot a—c: 食道的发育; d—f: 胃的发育。a: 2 日龄仔鱼, 食道由一层简单立方上皮构成; b: 3 日龄仔鱼食道; c:8 日龄仔鱼的食道,粘膜层(*)和杯状细胞出现(箭头); d: 2 日龄, 食道的末端出现膨胀; Ee8 日龄仔鱼, 出现贲门部、基底部和幽门部; f: 20 日龄仔鱼, 出现丰富的胃腺。标尺= 80µm。

M: 肌肉; S: 胃; E:: 食道; Y: 卵黄; P: 胰腺; L: 肝; BP: 口咽腔; SB: 膘; CS: 贲门; PS: 幽门; I: 肠; GG: 食道是胃的前体因 胃腺

物体内主要起到提供酸性环境激活胃蛋白酶的作用。 因此总是与胃的消化功能联系在一起(Kageyama, 2002)。作者通过 RT-PCR 技术检测到大菱鲆 H⁺/K⁺ ATPase 在胚胎孵化后 22d 开始表达,结合作者关于 大菱鲆胃蛋白酶原的实验、作者认为大菱鲆的胃行 使酸性消化功能至少要在 22d 胃蛋白酶原与 H⁺/K⁺ ATPase 基因开始表达之后,因此胃的消化功能的完 善未必与胃的组织结构完善一致。

 H^+/K^+ ATPase 主要在生物体胃中起到提供酸性 环境辅助消化的作用(Scarff et al, 1999; Spicer et al, 2000)。但在其它的组织中 H⁺/K⁺ ATPase 也具有其它 的辅助功能。Altman 等报道了 H⁺/K⁺ ATPase 在有胃 病的病人的喉部和下颌腺中会起到保护粘膜的作用 (Altman et al, 2011)。Kraut 等研究发现在大鼠的肾脏 也有 H⁺/K⁺ ATPase 的 mRNA 表达, 他们认为 H⁺/K⁺ ATPase 在肾脏中能够起到平衡体液中的离子和酸碱 平衡的作用(Kraut et al, 1994, 1997, 2001)。Choe 等在 黃 貂 鱼 (Dasyatis sabina) 的 鳃 中 检 测 到 了 H^+/K^+ ATPase 的表达、他们认为鳃中的 H⁺/K⁺ ATPase 能够 让黄貂鱼更加适应海水的环境(Choe et al, 2004)。在 本研究中、通过 RT-PCR 和荧光定量 PCR 检测、大菱 鲆的 H^+/K^+ ATPase 不仅在胃中表达, 在食道中的表 达量也很高, 另外在卵巢中也检测到 H^+/K^+ ATPase H^+/K^+ ATPase 的能力。另外, 通过整体原位杂交实验 也证明大菱鲆的 H⁺/K⁺ ATPase 首先在胃的贲门部和 食管的末端开始表达。这也从另一个方面证明了作者 的观点。

献 文

- Altman K W, Kinoshita Y, Tan M et al, 2011. Western blot confirmation of the H⁺/K⁺-ATPase proton pump in the human larynx and submandibular gland. Otolaryngology- head and neck surgery: official journal of American Academy of Otolaryngology-Head and Neck Surgery, 145(5): 783-788
- Asano S, Hoshina S, Nakaie Y et al, 1998. Functional expression of putative H^+-K^+ -ATPase from guinea pig distal colon. American Journal of Physiology-Cell Physiology, 275(3): C669-C674
- Asano S, Matsuda S, Tega Y et al, 1997. Mutational analysis of putative SCH 28080 binding sites of the gastric H⁺, K⁺-ATPase. Journal of Biological Chemistry, 272(28): 17668-17674
- Besancon M, Simon A, Sachs G et al, 1997. Sites of reaction of the gastric H, K-ATPase with extracytoplasmic thiol reagents. Journal of Biological Chemistry, 272(36): 22438-22446
- Choe K P, Verlander J W, Wingo C S et al, 2004. A putative H⁺-K⁺-ATPase in the Atlantic stingray, Dasyatis sabina: primary sequence and expression in gills. American Journal of Physiology-Regulatory Integrative and Comparative Physiology, 287(4): R981-R991

复扁平上皮转化为

来。因此作者认为,

H⁺/K⁺ ATPase 在大

菱鲆的食道中的高

度表达可能是因为

此保留了分泌

- Chow D C, Forte J G, 1995. Functional-significance of the beta-subunit for heterodimeric P-type ATPases. Journal of Experimental Biology, 198(1): 1–17
- CourtoisCoutry N, Roush D, Rajendran V *et al*, 1997. A tyrosine-based signal targets H/K-ATPase to a regulated compartment and is required for the cessation of gastric acid secretion. Cell, 90(3): 501–510
- Forte J G, Yao X B, 1996. The membrane-recruitmentand-recycling hypothesis of gastric HCl secretion. Trends in Cell Biol, 6(2): 45-48
- Horisberger J D, Jaunin P, Reuben M A et al, 1991. The H, K-ATPase beta-subunit of NA, K-pumps. Journal of Biological Chemistry, 266(29): 19131—19134
- Infante J L Z, Cahu C L, 2001. Ontogeny of the gastrointestinal tract of marine fish larvae. Comparative Biochemistry and Physiology C-Toxicology & Pharmacology, 130(4): 477–487
- Kageyama T, 2002. Pepsinogens, progastricsins, and prochymosins: structure, function, evolution, and development. Cellular and Molecular Life Sciences, 59(2): 288–306
- Kakei N, Ichinose M, Tatematsu M et al, 1995. Effects of long-termomeprazole treatment on adult-rat gastric-mucosaenancement of the epithelial-cell proliferation and suppression of its differentiation. Biochemical and Biophysical Research Communications, 214(3): 861—868
- Kraut J A, Helander K G, Helander H F et al, 2001. Detection and localization of H⁺-K⁺-ATPase isoforms in human kidney.
 American Journal of Physiology-Renal Physiology, 281(4): F763—F768

- Kraut J A, Hiura J, Besancon M et al, 1997. Effect of hypokalemia on the abundance of HK alpha(1) and HK alpha(2) protein in the rat kidney. American Journal of Physiology-Renal Physiology, 272(6): F744—F750
- Kraut J A, Hiura J, Scott D *et al*, 1994. Isolation of an H^+/K^+ -ATPase from the rat kidney. Journal of the American Society of Nephrology, 5(3): 290–290
- Prinz C, Kajimura M, Scott D *et al*, 1992. Acid-secretion and the H, K-ATPase of stomach. Yale Journal of Biology and Medicine, 65(6): 577—596
- Scarff K L, Judd L M, Toh B et al, 1999. Gastric H⁺, K⁺-adenosine triphosphatase beta subunit is required for normal function, development, and membrane structure of mouse parietal cells. Gastroenterology, 117(3): 605–618
- Spicer Z, Miller M L, Andringa A et al, 2000. Stomachs of mice lacking the gastric H, K-ATPase alpha-subunit have achlorhydria, abnormal parietal cells, and ciliated metaplasia. Journal of Biological Chemistry, 275(28): 21555–21565
- Tyagarajan K, Townsend R R, Forte J G, 1996. The beta-subunit of the rabbit H, K-ATPase: A glycoprotein with all terminal lactosamine units capped with alpha-linked galactose residues. Biochemistry, 35(10): 3238—3246
- vanDriel I R, Callaghan J M, 1995. Proton and potassium transport by H⁺/K⁺-ATPases. Clinical Experimental Pharmacology and Physiology, 22(12): 952–960
- Wu T, Sun L-C, Du C-H et al, 2009. Identification of pepsinogens and pepsins from the stomach of European eel (Anguilla anguilla). Food Chemistry, 115(1): 137–142

ACID DIGESTION IN TURBOT SCOPHTHALMUS MAXIMUS BASED ON H⁺/K⁺ ATPase

CHI Liang^{1, 2}, XU Shi-Hong¹, XIAO Zhi-Zhong¹, MA Dao-Yuan¹, LIN Fan^{1, 2}, ZHAO Chun-Yan^{1, 2}, XIAO Yong-Shuang¹, WU Ning-Ning³, LIU Qing-Hua¹, LI Jun¹

(1. Center of Biotechnology R&D, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; 2. University of Chinese Academy of Sciences, Beijing 100049, China; 3. Qingdao Fishery Technique Promotion Station, Qingdao 266071, China)

Abstract Gastric proton pump (H^+/K^+ ATPase) is a key enzyme involved in gastric acid secretion. We isolated a full-length cDNA sequence of α subunit of H^+/K^+ ATPase from gastric tissue of turbot *Scophthalmus maximus* through RT-PCR and RACE (Rapid amplification of cDNA ends). Results indicate that H^+/K^+ ATPase cDNA was 3467 bp from which 988 amino acids were deduced. The nucleotied sequence of α subunit of H^+/K^+ ATPase shared high homology with *Siniperca chautsi* (89%). Phylogenetic analysis showed that H^+/K^+ ATPase was species-specific in evolution. The initial transcripts H^+/K^+ ATPase were detected in 22 days post hatching (dph), after gastric glands (16 dph) were formed. This suggested that the morphologic development of gastric glands was not synchronous with their functional development. In addition, H^+/K^+ ATPase mRNAs were expressed highly in esophagus. We surmised that the turbot stomach was reduced to a dilatation of esophagus, and that esophagus retained its ability to express pepsinogen. The distribution of *tPGA* and *tPGC* transcripts in the turbot was investigated using *in-situ* hybridization. The results show that *tPGA* and *tPGC mRNA* were first detected in the esophagus and cardiac region of the stomach. This study provided a basis for understanding the digestive mechanisms in teleost.

Key words Scophthalmus maximus; H⁺/K⁺ ATPase; expression analysis; digestion