海水中液-固界面的台阶型动力学曲线

I. 动力学曲线之台阶的消长和变化规律*

刘莲生 张正斌 蔡卫君 潘 纲 杜恒清 (青岛海洋大学, 266003)

提要 对海水中 Zn(II), Cu(II), Cd(II) 与高岭石、伊利石和蒙脱石等粘土矿物;无 定形水合氧化铁、α-FeOOH 等铁的水合氧化物; δ-MnO₂, γ-MnOOH,水锰矿等锰的水合氧 化物等 30 个左右实验体系的液-固界面台阶型动力学曲线进行了系统的实验测定和全面的条 件研究。在实验测定上提出两种方法、互为校核。对动力学曲线之台阶的消长和变化规律作 了系统研究,确定主要影响因素是: 金属离子初始浓度、固体交换剂量、体系的 pH 值和温度, 以及搅拌速度等。

关键词 液-固界面 台阶型动力学曲线

在海水中微量重金属与固体粒子间液-固界面的化学动力学研究中,一般所得的交换 或吸附的动力学曲线都是单调增加的光滑曲线(张正斌等,1985,1989)。Sparks等(1984) 测定土壤中 K-Ca 交换的动力学曲线,似属"台阶型"的曲线,但未作评论。 王晓蓉等、 Streat 等也曾测得有"台阶"的动力学曲线,可惜他们也迴避了"台阶"型动力学曲线问 题^{1,2)}。 1989 年 Karlson 等(1989)报道加利福尼亚土壤中硒挥发的动力学曲线,为"两拐 点三台阶"型曲线,但文中未作系统条件试验、机理探讨和定量解释。

刘莲生等(1986)、张正斌等(1991)实验研究海水中 Cu(II)-固体粒子(粘土矿物,水合 氧化物,黄河口沉积物等)相互作用动力学时,发现和首次报道了新型"台阶型"动力学曲 线,并作了初步的但较细致的研究。但是,对动力学曲线之"台阶"的消长和变化规律、台阶 的产生机制,以及进一步的理论模型和定量模拟研究等未作探讨。最近潘纲和杜恒清的学 位论文³在刘莲生等(1986)的基础上,在实验上归纳出动力学曲线之台阶的消长和变化规 律以及影响因素,并进而提出了新的理论模型。本文先报道实验结果。

1 台阶型动力学曲线的实验测定

1.1 主要试剂和仪器

3)同1)和2)。

^{*} 国家自然科学基金(48970275号)和国家教委博士点基金资助项目。 收稿日期:1991年1月4日;接收日期1991年10月25日。

¹⁾ 潘纲,1989,海水中重金属元素与悬浮颗粒间液-固界面动力学研究。青岛海洋大学,海洋化学硕士论文,216页。

社恒清,1990。海水中微量重金属离子-固体粒子分级交换动力学研究。青岛海洋大学,海洋化学硕士论文, 205页。

1.1.1 主要试剂 蒙脱石、伊利石、高岭石、针铁矿、无定形氧化铁、δ-MnO₂,γ-MnOOH、水锰矿等均按文献方法(Zhang Zhengbin et al., 1985)制得。 取 60—100 目粒子备用。

海水,取青岛市麦岛涨潮时海水,采水后用 0.45µm 滤膜过滤。 盐度 31.50,氯度 17.437,比重 1.023。

Zn²⁺标准溶液用 G. R. ZnCl₂ 或高纯锌(99.9%以上)溶于高纯盐酸而得,应用二次蒸馏水配制,为1000mg/L,备用。

1.1.2 主要仪器 P-E3030型原子吸收分光光度计(美国 P-E 公司)。pHM84 型酸度计 (丹麦产),pH4-B 型酸度计(上海雷磁仪器厂),两者用各自的配套复合 pH 电极。JP-2 型 示波极谱仪(中国成都仪器厂)。使用三电极法,工作电极是滴汞电极,参比电极是甘汞电 极,辅助电极是铂电极,采用二次导数法,实验装置见本实验室报告 (Pan Gang, 1990)。 双套大型恒温槽(±0.01℃)、GS-12型电子恒速搅拌器(上海医疗器械专用机械厂),FG-531 型手握非接角式数字转速表。 恒温和恒搅拌速率是研究液-固界面交换动力学实验 的基本条件。本实验的搅拌速率控制在 400±2r/min。

1.2 实验方法和步骤

1.2.1 加样 在 5 000ml 四口玻璃反应器中,加入 V_1 ml 的海水和一定量的固体交换剂。将反应器置于恒温槽中,装配搅拌器、复合 pH 电极、加样取样装置和精密温度计。搅拌浸泡 24h 预平衡,同时调 pH 到一定值,水槽恒温在一定温度(例如 18,25,35℃ 等)。将装有 V_2 ml 海水的锥形瓶和装有 V_3 ml 标准 Zn^{2+} 溶液的锥形瓶置于恒温槽中恒温之。准备工作就绪后则开始加样反应,将 V_3 ml 标准液加到 V_1 悬浮液中,记录加入一半的时间为反应起始时间,然后迅速用 V_2 ml 海水 (与 V_1 和 V_3 的 pH 值相同)冲洗标准液瓶,并入反应器中。 $V_1 + V_2 + V_3 = 3000$ ml。以上加样过程约 3—4s 内完成。

1.2.2 取样 加样完毕,立即准备快速、准确和定时的取样,开始阶段的时间间隔越小越好,一定时间后时间间隔可渐大些。取样 10ml,注人过滤器中,通过 0.45μm 滤膜真空 抽滤分离(需 3-5s),整个取样分离过程约 6-10s。

1.2.3 淋洗 将已与溶液分离的固体交换剂用 10ml 1:9 的盐酸: 海水液分 5 次淋洗。 将淋洗液依次盛入洗净烘干的测量杯中,供分析测定用。

1.2.4 测定 用 JP-2 示波极谱三电极二阶导数法测定,或用 P-E 3030 型原子吸收分 光光度计测定(张正斌等,1985)。

实验中注意取样均匀,滤膜空白分析满足实验要求,台阶型动力学曲线的重现性好。 2 台阶型动力学曲线之台阶的消长和变化规律

对海水中重金属(Cu(II), Zn(II), Cd(II))和粘土矿物(高岭石、伊利石、蒙脱石), 水合金属氧化物(无定形水合氧化铁、针铁矿、赤铁矿、水锰矿、r-MnOOH、δ-MnO2等), 黄河口沉积物等30个左右实验体系,测定了上百条动力学曲线。鉴于 Cu(II)体系的动 力学曲线之台阶的消长和变化规律已有初步报道(张正斌、刘莲生,1991;张正斌,1993), 故本文以 Zn(II)体系为主(重点以 Zn(II)-针铁矿体系为例)作较系统的报道和讨论。

2.1 金属离子初始浓度

金属离子 Zn(II) 初始浓度对锌 (II)-针铁矿 (Zn(II)-a-FeOOH) 体系动力学曲线

的台阶消长和变化规律的影响如图 la 所示。 由图 la 可见随着 Zn(II) 初始浓度由 5 \rightarrow 10 \rightarrow 15 \rightarrow 20 \rightarrow 30mg/L, 动力学曲线的台阶数由 l \rightarrow 2 \rightarrow 3 \rightarrow 4。图 lb 的 Cd(II)- γ -MnOOH 体系的结果类同。

以上结果与液-固界面反应分级常数 ℋ_i(张正斌等,1985,1989)的级数 i 由 1→2→ 3 相一致,与文献(张正斌和刘莲生,1985)中产生分级(i = 1,2,3 等)的离子/配位子交 换的条件一致。可见台阶型动力学曲线是液-固界面分级离子/配位子交换反应的一种实 验反映。

2.2 固体交换剂量

在金属离子初始浓度不变化条件下改变固体交换剂量,即改变"固液比",对 Zn(II)α-FeOOH体系动力学曲线之台阶消长的影响如图 2 所示,可见随固液比的增大而曲线之 台阶数目减少,曲线中拐点的位置滞后。这是容易解释的。已知固体界面是不均匀的,界 面作用基团的活性大小不同。当"固液比"较大时,固体交换剂量较多,溶液中金属离子相

2 期

Fig. 2 Effect of the quantity of solid exchanger on growth and decline of the plateau type kinetic curves for the Zn(II)-α-FeOOH system

25℃, pH = 8.00, 金属离子初始浓度 20×10⁻³g/L。

图 3 体系 pH 值对锌(II)-针铁矿体系动力 学曲线之台阶消长的影响

Fig. 3 Effect of pH values [on growth and decline of . The plateau type kinetic curves for the Zn(II)-α-FeOOH system

25℃, 金属离子初始浓度 20×10⁻³g/L, 固体交 换剂 lg。

对较少,这时金属离子一般仅与高活性的基团作用;当固液比变小时,固体量相对较少,溶 液中的金属离子在固体表面除与活性高的基团作用外,也开始与较低活性的基团反应,结 果在动力学曲线上出现了"台阶"。随着固液比的不断变小,体系中出现与不同活性基团 的分级离子/配位子交换作用,动力学曲线出现 i = 1,2,3,....台阶。 固液比或固体 交换剂量的变化,与溶液中金属初始浓度的变化产生相同的结果。

2.3 体系 pH 值

图 3 表示体系 pH 值对锌(II)-针铁矿体系动力学曲线之台阶消长的影响。可见随 pH 值增大,台阶数目增多,这也表明体系 pH 值增大使液-固界面的分级离子/配位子交换能力增大。固体粒子(粘土矿物、水合氧化物等)的界面上存在大量的羟基,是两性基团,随 pH 值由小到大,分别以一R-OH¹/₂,一R-OH 和一R-O⁻状态存在,显然以第

三种存在形式与 Zn(II) 反应活性最高,结果有大的交换量。在交换量大的情况下,就可 能发生分级离子/配位子交换作用,结果产生台阶型的动力学曲线。

2.4 体系温度

体系温度对锌(II)-针铁矿体系动力学曲线的台阶消长的影响如图 4 所示。 一般说 来温度对扩散和化学反应速率的影响均很大,大多数反应的反应速率随温度上升而加速, 图 4 亦不例外。随温度增高,台阶高度、台阶位置和台阶数目均有明显变化。

综上所述,影响化学动力学曲线之台阶消长变化的主要因素是:溶液中金属离子初始浓度、固体交换剂量或固液比、体系的 pH 值和体系温度。此外,搅拌速度等因子亦起重要作用,但在实验中已将其条件固定,未作可变因素讨论。随着上述四个主要因素的变化,动力学曲线之台阶消长变化的共同规律是:当固体交换剂量相对地少,溶液中金属离子相对地多,在交换量大的条件下,就可能发生分级离子/配位子交换作用,即在活性较的交换位置上反应后,还可能进一步在活性较低的交换位置上逐级地发生交换反应,结果出现了"台阶型"动力学曲线。基于上述观点,我们将在本系列论文之 II 中提出"液膜扩

散一递进扩散一界面分级交换反应联合控制的复合模型理论",并将其与本文实验结果作 对比讨论和定量模拟。

参考文献

刘莲生等,1986, 海水中 Cu(II)gn α-FeOOH 离子交换动力学研究——BAM 液膜和递进液膜扩散控制的复合模型,海洋与湖沼,17(5): 463-448.

张正斌、刘莲生著,1989,海洋物理化学,科学出版社(北京),811.

- 张正斌、刘莲生,1991,海洋中液-固界面分级离子/配位子交换理论及其应用研究的新进展,第四次中国海洋湖沼科学 会议论文集,科学出版社(北京) 81—93.
- Karlson, U. and Frankenberger, W.T., 1989, Accelerated rates of selenium volatilization from California soils, Soil Sci. Soc. Amer, J., 53: 749-753.
- Sparks, D. L. and Jarine, P.W., 1984, Comparison of kinetics equations to describe possium-calcium exchange in pure and mixed systems, Soil Sci., 138: 115-122.
- Pan Gang et al., 1990, An electrochemical monitor for studying the kinetics of solid-liquid surface adsorption in seawater, Marine chemistry, 30: 320-335.

Zhang Zhengbin (Editor in chief), 1993, Estuarine and Marine chemistry of Huanghe Estrary, Springer-Verlag, China Ocean press, 250pp.

Zhang Zhengbin, Liu Liansheng, 1985, Theory of Interfacial Stepwise Ion/coordination Particles exchange and its applications, China Ocean press (Beijing), 356pp.

A PLATEAU TYPE KINETIC CURVE OF INTERFACE BETWE-EN LIQUID AND SOLID IN SEAWATER

I. THE RULE OF GROWTH, DECLINE AND CHANGE OF PLATEAU TYPE KINETIC CURVES

Liu Liansheng, Zhang Zhengbin, Cai Weijun, Pan Gang, Du Hengqing

(Ocean University of Qingdao, 266003)

Abstract

This article made an experimental determination systemalically and comprehensive condition studies of the plateau type kinetic curve of liquid-solid interface for the thirty systems Zn (II), Cu(II), Cd(II) with clay minerals (kaolinite, illite and montmorillonite), hydrous ferrec oxide (amorphous ferric oxide, geothite and hematite) and hydrous manganese oxide (--MnOOH, Manganite and --MnO₂) etc. in seawater. The four main factors that decide the growth, decline and change of "plateau type"kinetic curves are: (1) initial concentration of metal ion, (2) quantity of solid exchanger (or solid-liquid ratio), (3) pH values of the system, (4) experimental temperature of the system.

Key words Liquid-solid Interface Plateau type kinetic curve