引用本文:
【打印本页】   【下载PDF全文】   View/Add Comment  Download reader   Close
←前一篇|后一篇→ 过刊浏览    高级检索
本文已被:浏览 1917次   下载 1504 本文二维码信息
码上扫一扫!
分享到: 微信 更多
基于神经网络和TM图像的大连湾海域悬浮物质量浓度的反演
丛丕福1,2, 牛铮1, 曲丽梅3,2, 林文鹏1,2, 王臣立1,2
1.中国科学院遥感应用研究所遥感科学国家重点实验室;2.中国科学院研究生院;3.中国科学院海洋研究所
摘要:
水体中的悬浮物是评价海洋水质的重要指标之一。采用卫星遥感方法可以获得大范围连续的悬浮物质量浓度。以1999年5月10日大连湾海上现场-卫星同步实验数据为基础,采用神经网络模型技术模拟了陆地卫星TM传感器中心波长分别为485,560和660nm3个波段的辐射亮度值与在该海域现场获取的悬浮物质量浓度之间的传递机理。以TM图像的3个可见光波段作为输入的神经网络模型的相关系数达0.79,在反演海水表层悬浮物质量浓度方面比传统的统计分析方法表现要好。这说明神经网络方法在模拟非线性关系进行遥感反演方面更具应用前景。
关键词:  神经网络  悬浮物质量浓度  TM(专题制图仪)  模型
DOI:
分类号:
基金项目:中国科学院知识创新工程重大项目(KZCX1-SW-01-02);国家重点基础研究发展规划项目(G2000077902)
Retrieval of suspended sediment concentration in Dalian Bay on basis of neural network model and TM imagery
Abstract:
Suspended sediment concentration is important for assessment of water quality in oceans. Remote sensing can provide large-scale and continuous suspended sediment concentration information. On the basis of satellite and synchronous in situ measurement data. Neural network was contructed to model the transfer function between in situ suspended sediment concentration and the radiances of 3 TM bands whose center-wavelengths are 485 nm, 560 nm, and 660 nm respectively. The correlation coefficient of neural network model with 3 visible-light bands as inputs is 0.79. It performs better than statistic models in retrieving surface suspended sediment concentration. It is shown that neural network is promising in modeling non-linear function in remote sensing retrieval.
Key words:  neural network  TM retrieval  Dalian Bay  suspended sediment
Copyright ©  Editorial Office for Marine Sciences Copyright©2008 All Rights Reserved
Supervised by: Chinese Academy of Sciences (CAS)   Sponsored by: Institute of Oceanology, CAS
Address: 7 Nanhai Road, Qingdao, China.  Postcode: 266071  Tel: 0532-82898755  E-mail: bjb@qdio.ac.cn
Technical support: Beijing E-Tiller Co.,Ltd.