引用本文:
【打印本页】   【下载PDF全文】   View/Add Comment  Download reader   Close
←前一篇|后一篇→ 过刊浏览    高级检索
本文已被:浏览 2531次   下载 2502 本文二维码信息
码上扫一扫!
分享到: 微信 更多
基于BP 神经网络的长江口北支河槽容积分析
陈 维1, 顾 杰1, 李雯婷1, 秦 欣1
上海海洋大学海洋科学学院
摘要:
根据实测水文及泥沙等资料, 采用现在较成熟的且应用广泛的BP 人工神经网络建立了北支0 m以下河槽容积与大通流量、大通输沙量及北支分流比3 个因子间的神经网络模型, 网络结构为3-1-7-1,通过选择合适的参数, 模型训练较好, 预测结果与线性回归模型预测结果相近, 说明BP 神经网络模型能够广泛应用于河口水文等方面的预报。
关键词:  BP 神经网络  长江口北支  河槽容积  北支分流比
DOI:
分类号:
基金项目:上海市教委重点学科项目(J50702) ; 上海市教育委员会科研创新重点项目(08ZZ81); 上海市科委“创新行动计划”部分地方院校计划项目(08230510700)
Analysis of the channel cubage of the North Branch of the Yangtze River Estuary with BP neural network
Abstract:
Based on the hydrology and sediment data, an artificial neural network model was established to study the relationship among the channel cubage under the 0 m-isobath in North Branch, the flow and sediment discharge at Datong gauging station and the flow split ratio of the North Branch. The structure of the network model was fixed on 3-1-7-1. The network model was trained and tested by choosing appropriate parameters. The computation results of BP artificial neural network agree well with that of multiple linear regressions. It can be concluded that BP artificial neural network may be used to predict the hydrological factors such as sediment discharge in estuary.
Key words:  BP neural network  North Branch  channel cubage  flow split ratio
Copyright ©  Editorial Office for Marine Sciences Copyright©2008 All Rights Reserved
Supervised by: Chinese Academy of Sciences (CAS)   Sponsored by: Institute of Oceanology, CAS
Address: 7 Nanhai Road, Qingdao, China.  Postcode: 266071  Tel: 0532-82898755  E-mail: bjb@qdio.ac.cn
Technical support: Beijing E-Tiller Co.,Ltd.