引用本文:
【打印本页】   【下载PDF全文】   View/Add Comment  Download reader   Close
←前一篇|后一篇→ 过刊浏览    高级检索
本文已被:浏览 2033次   下载 3325 本文二维码信息
码上扫一扫!
分享到: 微信 更多
基于神经网络的规则提取及其渔业应用研究
袁红春1,2, 胡倩倩1, 沈晓倩1, 陈新军2
1.上海海洋大学 信息学院;2.上海海洋大学 国际海洋研究中心
摘要:
为了解决远洋渔业中过度依赖经验而产生的盲目捕捞问题, 结合海洋环境数据和历史产量数据对渔场进行有效分析, 提出了一种基于径向基函数神经网络(Radial basis function neural network,RBFNN)的栖息地指数(HSI)预测方法, 并将其应用于印度洋海域大眼金枪鱼(Thunnus obesus)栖息地指数的预测。在RBFNN 训练过程中使用模糊C 均值(Fuzzy c-means, FCM)聚类算法, 在基于神经网络的规则提取过程中首次采用了和声搜索(Harmony search, HS)算法。实验研究表明, 利用FCM 改进后的RBFNN, 均方误差(Mean square error, MSE)达到0.021 6。和声搜索由于算法简单, 易于实现, 能够应用于训练后的FCM-RBFNN 提取分类规则, 提取出的规则能够反映该渔业现状。
关键词:  印度洋大眼金枪鱼(Thunnus obesus)  径向基函数神经网络(Radial basis function neural network,RBFNN)  和声搜索(Harmony search, HS)  规则提取  渔情预测
DOI:10.11759/hykx20121209001
分类号:
基金项目:上海市教委科研创新项目(12ZZ162); 上海市科学技术委员会重点支撑项目(12510502000)
Extracting rules based on neural network and its application in fisheries forecasting
Abstract:
In order to solve the issue of blind fishing, which arises from over-reliance on experience in offshore fishing, marine environmental and historical production data have been used to effectively analyze the fishery. This method was proposed to forecast indices of the Indian Ocean big eye tuna’s (Thunnus obesus) habitat based on radial basis function neural network (RBFNN). Fuzzy c-means clustering algorithm was utilized during training the neural network. While in the process of rule extraction, a harmony search algorithm was used to extract fishery rules from the trained RBFNN. Finally, the proposed method was used to forecast the fishery habitat indices of the Indian Ocean big eye tuna. Experiments showed that harmony search algorithm can extract classification rules from the trained neural network. The extracted rules reflected the status of the Indian Ocean big eye tuna fishery.
Key words:  the Indian Ocean big eye tuna (Thunnus obesus)  radial basis function neural network (RBFNN)  harmony search  rule extraction  fishery forecasting
Copyright ©  Editorial Office for Marine Sciences Copyright©2008 All Rights Reserved
Supervised by: Chinese Academy of Sciences (CAS)   Sponsored by: Institute of Oceanology, CAS
Address: 7 Nanhai Road, Qingdao, China.  Postcode: 266071  Tel: 0532-82898755  E-mail: bjb@qdio.ac.cn
Technical support: Beijing E-Tiller Co.,Ltd.