摘要: |
为获取高空间分辨率与空间覆盖率的海表面温度(Sea Surface Temperature, SST)产品, 基于最优插值方法, 对微波辐射计WindSat、AMSR-E、ASMR2、HY-2 RM和红外辐射计MODIS、AVHRR 的SST观测数据进行融合, 生成了一种0.1°空间分辨率的每日SST融合产品, 利用浮标数据在渤黄海区域进行了精度评估和修正, 并分析了该区域的SST时空分布特征。结果表明: SST融合产品的在中国近海的精度为1.1℃, 利用浮标数据修正后的精度略有改善; 利用修正的SST产品对渤黄海区域SST分布特征进行了分析, 分析结果显示, 渤黄海海域冬季海温最为均匀, 春季在海水升温过程中海温不均匀性明显。 |
关键词: 海表温度 数据融合 渤黄海 质量评估 时空分布特征 |
DOI:10.11759/hykx20160831001 |
分类号: |
基金项目:国家重点研发计划项目(2016YFA0600102); 国家高技术研究发展计划(863 计划)(2013AA122803); 海洋公益性行业科研专项(2013418032) |
|
Quality assessment and correction of SST fusion product in the Bohai Sea and the Huanghai Seas |
CAO Kai-xiang,JIN Xi-fang,SUN Wei-fu,WANG Jin
|
Abstract: |
Sea surface temperature (SST) is a key parameter used in physical ocean research and has an important influence on sea-air interaction and global climate change. Space-borne microwave and infrared radiometers are the main methods used in SST remote sensing. However, although microwave radiometers provide all-weather technology their spatial resolution is sparse, and although infrared radiometers have a good resolution they are affected by cloud. In this study, a 0.1° daily SST fusion product is analyzed using the optimum interpolation method. Data resources include WindSat, AMSR-E, ASMR2, HY-2 RM, MODIS, and AVHRR. Buoy data are used to validate and correct the fusion SST product and its SST characteristics in the Bohai and the Huanghai Seas are also studied. Results show that the RMS error of this SST product is 1.1℃, but this decreases slightly after correction. SST characteristics show the lowest standard deviation of SST is in winter, and SST tends to be inhomogeneous in spring when sea temperatures rise. |
Key words: SST(sea surface temperature) data fusion the Bohai Sea and the Huanghai Sea quality assessment distribution characteristics |