摘要: |
黄河三角洲湿地是我国暖温带最广阔、最完整、最年轻的滨海湿地,是黄河流域生态保护和高质量发展的重要组成部分,具有重要的生态保护和科学研究价值。物种多样、生境复杂、变化剧烈是黄河三角洲湿地的重要特点,高光谱遥感是黄河三角洲湿地生态监测的重要技术手段。本文首先阐述了高光谱遥感在河口湿地开展植被、土壤和水质等基本要素监测方面的优势,之后重点综述了其在黄河三角洲滨海湿地开展植被遥感监测、土壤参数反演和水质参数反演的研究进展,最后基于黄河三角洲湿地生态监测现状,提出了高光谱遥感的未来需求和发展展望。 |
关键词: 黄河三角洲湿地 高光谱遥感 植被遥感监测 土壤参数反演 水质参数反演 |
DOI:10.11759/hykx20221014003 |
分类号:TP79 |
基金项目:国家自然科学基金-山东省联合基金(U1906217);国家自然科学基金-面上项目(62071491);中央高校基本科研业务费专项资金资助(22CX01004A-8);国家自然科学基金(42076189);中国高分辨率对地观测系统专项项目(41-Y30F07-9001-20/22) |
|
Hyperspectral remote sensing in the Yellow River Delta wetland |
LI Zhong-wei1, GUO Fang-ming1, REN Guang-bo2, MA Yi2, XIN Zi-qi1, HUANG Wen-hao1, SUI Hao1, MENG Qiao1
|
1.China University of Petroleum(East China), Qingdao 266580, China;2.First Institute of Oceanology, Ministry of Natural Resources, Qingdao 266061, China
|
Abstract: |
The Yellow River Delta wetland is the broadest, the most complete and the youngest coastal wetland in the warm temperate zone in China; further, it is an integral part of the ecological conservation and high-quality development of the Yellow River Basin, with crucial environmental protection and scientific research values. Species diversity, habitat complexity, and drastic change are essential characteristics of the Yellow River Delta wetland. Hyperspectral remote sensing is an important technical method for the ecological monitoring of this wetland. First, this article expounds on the advantages of hyperspectral remote sensing in monitoring vegetation, soil, and water quality in estuarine wetlands. Second, this article summarizes the research progress of remote sensing–based vegetation monitoring, soil parameter retrieval, and water quality retrieval in the Yellow River Delta wetland. Finally, based on the ecological monitoring status of the Yellow River Delta wetland, this paper proposes the future requirements and prospects of hyperspectral remote sensing. |
Key words: Yellow River Delta wetland hyperspectral remote sensing remote sensing-based monitoring of vegetation soil parameter retrievals water quality retrievals |