|
|
|
本文已被:浏览 303次 下载 489次 |
码上扫一扫! |
|
制备羟基磷灰石的贝壳种类优选及方法比较 |
田璐琦1,2, 杨皓月1,3, 邢荣娥1,4,3, 刘松1,4,3, 李克成1,4,3, 于华华1,4,3, 李鹏程1,4,3
|
1.中国科学院海洋研究所 实验海洋生物学重点实验室, 山东 青岛 266071;2.中国科学院大学, 北京 100049;3.中国科学院海洋大科学研究中心, 山东 青岛 266071;4.青岛海洋科学与技术国家实验室 海洋药物与生物制品功能实验室, 山东 青岛 266237
|
|
摘要: |
本研究以CaO、煅烧后的牡蛎壳、蛤蜊壳、扇贝壳和脉红螺壳为原料, 分别采用反相微乳液法和聚乙二醇(PEG)辅助微波加热法制备了纳米羟基磷灰石(HA), 并从产物的物理化学特性以及形态学参数方面进行比较。利用傅里叶变换红外光谱、X射线衍射对各组产物进行了化学表征, 扫描电子显微镜观察样品的表面形貌, Zeta电位仪测定样品表面的电势差。结果表明, 反相微乳液法制备的HA尺寸在(104.10±1.95) nm至(207.90±3.75) nm范围内, 为近球形颗粒; 而PEG辅助微波加热法制备得到的HA尺寸在(61.17±3.11) nm与(182.70±1.05) nm范围内, 倾向于形成椭圆及棒状的颗粒, 稳定性更高, 且各组样品均表现出完全的亲水性。此外, 对比于CaO制备的HA, 以贝壳为原料制备的HA具有更好的纳米结构, 其中利用脉红螺壳制备的HA在粒径大小、稳定性以及亲水性等方面均具有优势, 并且具有更接近天然骨的钙磷比。因此脉红螺壳可以作为PEG辅助微波加热法制备羟基磷灰石的主要原料。 |
关键词: 贝壳 反相微乳液法 微波加热 聚乙二醇 羟基磷灰石 |
DOI:10.11759/hykx20230303001 |
分类号:TS209 |
基金项目:国家重点研发计划项目(2019YFD0902105); 福建省科技计划项目-STS计划(2021T3013); 中国科学院海洋大科学研究中心重点部署项目(技术研发类)(COMS2020J04) |
|
Comparison of raw materials and preparation methods for seashell hydroxyapatite |
TIAN Luqi1,2, YANG Haoyue1,3, XING Ronge1,4,3, LIU Song1,4,3, LI Kecheng1,4,3, YU Huahua1,4,3, LI Pengcheng1,4,3
|
1.Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China;2.University of Chinese Academy of Sciences, Beijing 100049, China;3.Marine Research Center, Chinese Academy of Sciences, Qingdao 266071, China;4.National Laboratory of Marine Science and Technology, Qingdao 266237, China
|
Abstract: |
In the present study, we used CaO and calcined oyster, clam, scallop, and snail shells as raw materials to synthesize nanohydroxyapatite (HA) using the reverse-phase microemulsion method and polyethylene glycol (PEG)-assisted microwave heating and compared the physicochemical characteristics and morphological parameters of HA. Fourier transform infrared spectroscopy and X-ray powder diffraction were used to characterize the product, scanning electron microscopy was employed to observe the surface morphology, and a Zeta potential analyzer was utilized for potential determination. The results showed that HA fabricated using the reverse-phase microemulsion method had a particle size between (104.10 ±1.95) and (207.90 ±3.75) nm and a sphere-like morphology; however, HA prepared using the PEG-assisted microwave method presented a smaller particle size that varied from (61.17 ±3.11) to (182.70 ±1.05) nm and tended to have an oval-like and rod-like shape, while showing better stability and hydrophilicity. In addition, compared with chemically synthesized HA, HA derived from seashells had a better nanostructure, and HA derived from snail shells outperformed others in terms of particle size, stability, and wettability. Furthermore, the Ca/P ratio of snail-shell HA was closer to that of the natural bone. Therefore, snail shells can be used as the main raw material for synthesizing HA using the PEG-assisted microwave method. |
Key words: sea shells microemulsion method microwave heating polyethylene glycol hydroxyapatite |
|
|
|
|
|
|