摘要: |
表面更新理论给出气体交换速率k与海面附近的海水湍动能耗散率呈1/4 次方关系, 而波浪能量耗散率Dt 与湍动能耗散率密切相关。本文利用两种海浪谱耗散模型——Hasselmann 模型和Phillips 模型, 结合深水浮标海浪频谱的观测数据计算了波浪能量耗散率。以前人给出的k与海面上10m 高度处的风速U10 关系式的平均值为标准, 采用最小二乘的方法得到了k与Dt 的经验关系。在此基础上, 进一步利用SWAN 和WAVEWATCHIII 海浪数值模式计算了理想深水情况下的波浪能量耗散率, 探讨了由海浪模式计算的波浪能量耗散率与气体交换速率之间的关系。结果表明, 与SWAN模式相比, WAVEWATCHIII 海浪数值模式结果与实际观测更为接近。 |
关键词: 气体交换速率 波浪能量耗散率 湍动能耗散率 SWAN WAVEWATCHIII |
DOI:10.11693/hyhz20140700202 |
分类号: |
基金项目:国家自然科学基金项目,41276015号;教育部博士学科点专项科研基金项目,20120132110004号。 |
附件 |
|
RELATIONSHIP BETWEEN BREAKING WAVES AND GAS TRANSFER VELOCITY IN DEEP WATER |
LI Zhu-Hua, ZHAO Dong-Liang, ZHOU Gui-Di
|
College of Physical and Environmental Oceanography, Ocean University of China, Qingdao 266100, China
|
Abstract: |
We studied the relation between gas transfer velocity k and the wave energy dissipation rate Dt in deep ocean, by dimensional analysis using turbulent kinetic energy dissipation. We obtained Dt with observational spectral data of the Hasselmann and Phillips models. Based on the average of the available relations between k and wind speeds at 10m, we derived the relation between k and Dt using the least-square fitting. Furthermore, we adapted the SWAN (Simulation Waves Nearshore) and WWATCH (WAVEWATCHIII) models in deep-water experiments under ideal conditions to derive the relation between the model-simulated Dt and k. The results show that the WAVEWATCHIII simulation is more consistent with the observations than that of the SWAN modeling. |
Key words: gas transfer velocity wave energy dissipation turbulent kinetic energy dissipation SWAN WAVEWATCHIII |