首页 | 期刊简介 | 编委会 | 投稿指南 | 常用下载 | 联系我们 | 期刊订阅 | In English
引用本文:张亚亚,闫国旺,吴海燕,谭志军,张志华,江涛,李玉.基于SPE与SPATT的水体中麻痹性贝类毒素检测方法构建与应用.海洋与湖沼,2020,51(2):298-306.
【打印本页】   【HTML】   【下载PDF全文】   查看/发表评论  下载PDF阅读器  关闭
←前一篇|后一篇→ 过刊浏览    高级检索
本文已被:浏览 2635次   下载 1538 本文二维码信息
码上扫一扫!
分享到: 微信 更多
基于SPE与SPATT的水体中麻痹性贝类毒素检测方法构建与应用
张亚亚1,2, 闫国旺1,2, 吴海燕2, 谭志军2,3, 张志华4, 江涛2, 李玉1
1.江苏海洋大学测绘与海洋信息学院 连云港 222005;2.中国水产科学研究院黄海水产研究所 青岛 266071;3.青岛海洋科学与技术试点国家实验室 青岛 266237;4.河北省水产品质量检验检测站 石家庄 050011
摘要:
为实现麻痹性贝类毒素(paralytic shellfish poisoning,PSP)的实时监控与提前预警,本研究构建了基于固相萃取技术(solid phase extraction,SPE)与固相吸附毒素跟踪技术(solid phase adsorption toxin tracking,SPATT)的水体中PSP检测方法,重点优化了吸附材料及前处理方法,评价了回收率、检出限等指标,并将方法应用于2019年春季秦皇岛山海关海域PSP消长过程的监测中,比较评估了两种方法的监控预警效果。结果表明:SPE方法选用ENVI-Carb 500mg/6mL固相萃取柱,过样体积为50mL,13种PSP组分的平均回收率为82.2%±10.0%、检出限为4.0-20.0ng/L;SPATT方法选用SP207大孔吸附树脂,洗脱时间为静置1d最佳,整体回收率约为9.2%;在实际应用中,结合产毒藻密度及贻贝富集毒素含量的变化,发现SPE方法的检测结果可实时表征海域PSP风险状况,对于贻贝中PSP的预警效果也显著优于SAPTT方法,后者不仅因监控方式相对滞后一个监测周期,且灵敏度及准确性均较差。对于秦皇岛海域,当SPE方法检测结果达到100ng STX eq/L时,该海域贻贝中PSP残留将具有潜在的食用安全风险,跟踪过程表明这一阈值可提前两周预警贻贝富集毒素含量超出我国限量标准(800μg STX eq/kg),这对于强化风险警示并制定防范措施具有积极作用。
关键词:  麻痹性贝类毒素(paralytic shellfish poisoning, PSP)  固相萃取技术(solid phase extraction, SPE)  固相吸附毒素跟踪技术(solid phase adsorption toxin tracking, SPATT)  SP207大孔吸附树脂  监控预警
DOI:10.11693/hyhz20190900182
分类号:R155
基金项目:国家重点研发计划项目,2017YFC1600701号;国家自然科学基金项目,31772075号;江苏省自然科学基金面上项目,BK20171262号;江苏省研究生科研与实践创新计划项目,KYCX18_2576号。
附件
ESTABLISHMENT AND APPLICATION OF DETECTION METHODS TO PARALYTIC SHELLFISH POISONING IN WATER BASED ON SPE AND SPATT METHODS
ZHANG Ya-Ya1,2, YAN Guo-Wang1,2, WU Hai-Yan2, TAN Zhi-Jun2,3, ZHANG Zhi-Hua4, JIANG Tao2, LI Yu1
1.School of Geomatics and Marine Information, Jiangsu Ocean University, Lianyungang 222005, China;2.Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China;3.Pilot National Laboratory for Marine Science and Technology(Qingdao), Qingdao 266237, China;4.Hebei Province Station for Quality Inspection and Test of Aquatic Products, Shijiazhuang 050011, China
Abstract:
To realize the real-time monitoring and early warning of paralytic shellfish toxin (PSP), two detection methods to PSP in water based on solid phase extraction (SPE) and solid phase adsorption toxin tracking (SPATT) were established. In laboratory, the two methods were optimized by screening adsorption materials and improving pretreatment methods. Furthermore, the indexes of methods such as recovery rate and detection limit were evaluated. Afterwards, the two methods were applied in the coastal area of Qinhuangdao sea area in the spring of 2019 to evaluate their performance of monitoring PSP. Results show that for the SPE method, it was applicable to select ENVI-Carb 500mg/6mL solid phase extraction column with the sample volume of 50mL. For 13 PSP components, the average recovery of the SPE method reached 82.2%±10.0% and the detection limit ranged from 4.0 to 20.0ng/L. In addition, the SPATT method was optimized using SP207 macroporous adsorption resin with the best elution time of standing for 1d, and its overall recovery rate increased to 9.2%. In practice, the sensitivity and accuracy of the SPE method was obviously better than SPATT by comparing the changes of Alexandrium abundances and toxins in mussels. The SPE method could demonstrate the PSP risk status in real time, whereas the SPATT method had a time lag of a monitor cycle and poorer sensitivity and accuracy. It was found that when the result of detection by SPE method reached 100ng STX eq/L for the study area, the accumulated PSP in mussels could exceed the limit standard (800μg STX eq/kg) in two weeks, which provided important and helpful information for the risk warning and preventive measures taking.
Key words:  paralytic shellfish poisoning (PSP)  solid phase extraction (SPE)  solid phase adsorption toxin tracking (SPATT)  SP207 macroporous adsorption resin  monitoring and early warning
版权所有 海洋与湖沼 Oceanologia et Limnlolgia Sinica Copyright©2008 All Rights Reserved
主管单位:中国科协技术协会 主办单位:中国海洋湖沼学会
地址:青岛市海军路88号  邮编:266400  电话:0532-82898753  E-mail:ols@qdio.ac.cn
技术支持:北京勤云科技发展有限公司