首页 | 期刊简介 | 编委会 | 投稿指南 | 常用下载 | 联系我们 | 期刊订阅 | In English
引用本文:杨兵,侯一筠.基于高分辨率风场的海洋近惯性能通量计算——时空特征及其影响因素.海洋与湖沼,2020,51(5):978-990.
【打印本页】   【HTML】   【下载PDF全文】   查看/发表评论  下载PDF阅读器  关闭
←前一篇|后一篇→ 过刊浏览    高级检索
本文已被:浏览 1106次   下载 726 本文二维码信息
码上扫一扫!
分享到: 微信 更多
基于高分辨率风场的海洋近惯性能通量计算——时空特征及其影响因素
杨兵1,2,3,4,5, 侯一筠1,2,3,4,5
1.中国科学院海洋研究所 青岛 266071;2.中国科学院海洋环流与波动重点实验室 青岛 266071;3.中国科学院海洋大科学研究中心 青岛 266071;4.青岛海洋科学与技术试点国家实验室海洋动力过程与气候功能实验室 青岛 266237;5.中国科学院大学 北京 100049
摘要:
基于高分辨率CFSR(climate forecast system reanalysis)风场资料、气候态海洋混合层厚度资料和卫星高度计海面高度异常资料,本文估计了大气风场向全球海洋混合层的近惯性能通量和近惯性能量输入功率,并探究了混合层厚度、风场时间分辨率、经验衰减系数和中尺度涡旋涡度对近惯性能通量和能量输入功率的影响。浮标实测风场和流速表明,本文所用的风场和阻尼平板模型可用于估计风场向全球海洋的近惯性能通量。本文计算得到的大气向全球海洋输入近惯性能量的功率为0.56TW(1TW=1012W),其中北半球贡献0.22TW,南半球贡献0.34TW。在时间上,风场的近惯性能通量呈现各个半球冬季最强、夏季最弱的特征,这和西风带风场的季节变化有关。在空间上,近惯性能通量的高值海域为南、北半球西风带海洋,尤其是南大洋。混合层厚度和风场空间不均匀性使得西风带近惯性能通量呈现纬向变化,即海盆西部强于海盆东部。风场时间分辨率对近惯性能通量的估计至关重要,低时间分辨率风场对近惯性能通量的低估达到13%—30%。阻尼平板模型中的经验衰减系数对近惯性能通量估计的影响不超过5%。中尺度涡旋涡度仅改变近惯性能通量的空间分布,而对全球近惯性能量输入功率的影响可以忽略。
关键词:  近惯性能通量  CFSR风场  阻尼平板模型  混合层厚度  经验衰减系数  中尺度涡旋
DOI:10.11693/hyhz20200100018
分类号:P731
基金项目:国家自然科学基金青年科学基金项目,41706017号
附件
WIND-GENERATED NEAR-INERTIAL ENERGY FLUX TO THE OCEANS——THE SPATIAL-TEMPORAL VARIATIONS AND IMPACT FACTORS
YANG Bing1,2,3,4,5, HOU Yi-Jun1,2,3,4,5
1.Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China;2.CAS Key Laboratory of Ocean Circulation and Waves, Chinese Academy of Sciences, Qingdao 266071, China;3.Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China;4.Laboratory for Ocean and Climate Dynamics, Pilot National Laboratory for Marine Science and Technology(Qingdao), Qingdao 266237, China;5.University of Chinese Academy of Sciences, Beijing 100049, China
Abstract:
Based on high-resolution CFSR (climate forecast system reanalysis) reanalysis wind, climatological ocean mixed layer depth, and remote sensing sea level anomaly data, the wind-generated near-inertial energy flux to oceans was estimated using the damped slab model, The spatial and temporal characteristics of the energy flux were revealed, and the roles of the mixed layer depth, empirical damping coefficient, and mesoscale eddy vorticity and wind data resolution were examined, Using wind and currents observed by buoy, the CFSR wind and the slab model were confirmed competent to estimate near-inertial energy flux from wind to ocean, Results show that the global wind-generated near-inertial energy input power was 0.56 TW, and the Northern and Southern Hemisphere contributed 0.22 and 0.34 TW, respectively, The global mean near-inertial energy flux was 1.94 mW/m2, of which the Northern and Southern Hemisphere contributed 2.02 and 1.90 mW/m2, respectively, The energy flux reached maximum (minimum) in winter (summer) of each hemisphere, which is related to seasonal variation of wind, The maximum near-inertial energy flux appeared in the mid-latitude westerly belt, especially the Southern Ocean, The spatial inhomogeneity of mixed layer depth and wind led to zonal variation of near-inertial energy flux, i.e., energy flux of western sea basin was stronger than that of the eastern sea basin, The temporal resolution of wind was vital to energy flux estimation, and low temporal resolution wind underestimated the energy flux by 13% to 30%, The empirical damping coefficient of the slab model could cause energy flux change of less than 5% only, The vorticity of mesoscale eddy only resulted in local spatial distribution of energy flux and did not influence the global power input.
Key words:  near-inertial energy flux  CFSR(climate forecast system reanalysis) wind  slab model  mixed layer depth  empirical damping coefficient  mesoscale eddy
版权所有 海洋与湖沼 Oceanologia et Limnlolgia Sinica Copyright©2008 All Rights Reserved
主管单位:中国科协技术协会 主办单位:中国海洋湖沼学会
地址:青岛市福山路32号  邮编:266071  电话:0532-82898753  E-mail:ols@qdio.ac.cn
技术支持:北京勤云科技发展有限公司