首页 | 期刊简介 | 编委会 | 投稿指南 | 常用下载 | 联系我们 | 期刊订阅 | In English
引用本文:何群,高艳秋,唐佑民,张继才.一种新的模式倾向误差估计算法及其在ENSO模拟中的应用.海洋与湖沼,2022,53(5):1067-1078.
【打印本页】   【HTML】   【下载PDF全文】   查看/发表评论  下载PDF阅读器  关闭
←前一篇|后一篇→ 过刊浏览    高级检索
本文已被:浏览 1257次   下载 826 本文二维码信息
码上扫一扫!
分享到: 微信 更多
一种新的模式倾向误差估计算法及其在ENSO模拟中的应用
何群1,2, 高艳秋2,3, 唐佑民2,3,4, 张继才1
1.浙江大学海洋学院 浙江舟山 316021;2.自然资源部第二海洋研究所卫星海洋环境动力学国家重点实验室 浙江杭州 310012;3.南方海洋科学与工程广东省实验室(珠海) 广东珠海 519082;4.河海大学海洋学院 江苏南京 210098
摘要:
气候模式是我们理解、模拟和预报气候演变的重要工具。然而即使是目前最先进的耦合模式,其模拟和预报与大气/海洋的真实状态相比,仍存在较大偏差,这是由于在模式的倾向方程中不可避免地存在系统性的误差(倾向误差)。因此,减小模式倾向误差对改进模式的模拟和预报效果具有重要意义。该研究首先发展了一种新的计算模式倾向误差的估计算法——基于局地集合变换卡尔曼滤波器(local ensemble transform kalman filter, LETKF)同化技术的倾向误差估计算法。在此基础上,将新发展的算法应用到Zebiak-Cane (ZC)模式,通过同化海表面温度异常(sea surface temperature anomaly, SSTA)数据,估计随时空变化的倾向误差,并使用计算得到的倾向误差订正模式,进行积分模拟。结果表明: (1)倾向误差和ZC模式的模拟偏差具有高度相关性; (2)订正后的模式改善了对厄尔尼诺-南方涛动(El Niño-Southern Oscillation, ENSO)的一些重要特征的模拟。这说明新发展的模式倾向误差估计算法十分有效且在ENSO模拟中具有较好的应用价值,此外,这种新的模式倾向误差估计算法,计算高效简便,可便捷地应用于各模式中,利于推广。
关键词:  模式倾向误差  参数估计  局地集合变换卡尔曼滤波器  Zebiak-Cane模式
DOI:10.11693/hyhz20220100009
分类号:P731
基金项目:国家重点研发计划“高影响海气环境事件预报模式的高分辨率海洋资料同化系统研发”,2017YFA0604202号;南方海洋科学与工程广东省实验室(珠海)自主科研项目,SML2021SP314号;自然资源部第二海洋研究所基本科研业务费专项项目资助,JG1809号。
附件
A NEW ALGORITHM OF ESTIMATION FOR MODEL TENDENCY ERRORS AND THE APPLICATION IN ENSO SIMULATION
HE Qun1,2, GAO Yan-Qiu2,3, TANG You-Min2,3,4, ZHANG Ji-Cai1
1.Ocean College, Zhejiang University, Zhoushan 316021, China;2.State Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, China;3.Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai 519082, China;4.College of Oceanography, Hohai University, Nanjing 210098, China
Abstract:
Climate models are important tools for us to understand,simulate and forecast the evolution of the climate.However,even with the current state-of-the-art coupled models,due to the inevitable systematic errors in the tendency equation of model,the model tendency error,the simulations and forecasts are still far from the true state of the atmosphere/ocean.Therefore,reducing the model tendency error is of great significance to improve the simulation and forecasting effect of the model.A novel algorithm was developed for estimating the tendency error of a model using assimilation technique with local ensemble transform Kalman filter (LETKF).The new algorithm was applied to the Zebiak-Cane (ZC) model to estimate the space-time dependent tendency error by assimilating the observed data of sea surface temperature anomaly (SSTA),and the calculated tendency error was used to correct the model,and then an integral simulation was carried out.Results reveal a high correlation between the tendency error and the simulation error of the ZC model.The corrected model improved some important characteristics of the simulation of El Niño-Southern Oscillation (ENSO).Overall,the new algorithm is very effective and simple computationally,shows good application value in ENSO simulation,and can be easily applied to various models,and thus shall be promoted.
Key words:  model tendency error  parameter estimation  local ensemble transform Kalman filter  Zebiak-Cane model
版权所有 海洋与湖沼 Oceanologia et Limnlolgia Sinica Copyright©2008 All Rights Reserved
主管单位:中国科协技术协会 主办单位:中国海洋湖沼学会
地址:青岛市海军路88号  邮编:266400  电话:0532-82898753  E-mail:ols@qdio.ac.cn
技术支持:北京勤云科技发展有限公司