摘要: |
以反映随机海浪非线性的破面高度分布高阶矩为参量,提出一种新形式的非线性随机海浪模型。在三阶近似下具体导出其波面高度的表达式和推导出二阶谱。本文模式为Longuet-Higgins模式的另一种新的数学表示。 |
关键词: 非线性 随机海浪 波面分布高阶矩 |
DOI: |
分类号: |
基金项目:国家自然科学基金资助项目,49476272号;国家海洋局青年海洋科学基金资助项目,95409号;华东师范大学河海岸动力沉积和动力地貌综合国家重点实验室开放基金资助项目 |
|
A NEW MODEL FOR NONLINEAR RANDOM WAVES |
Liu Xinan, Huang Peiji
|
First Institute of Oceanography,SOA,Qingdao 266003
|
Abstract: |
In this paper, the sea surface elevation for nonlinear random waves is represented by using Hermite polynomial expansion,
(For the equations please see the PDF file.)
in which, (For the equations please see the PDF file.), is normal process; Hn (Z) is n-order Hermite polynomial. The coefficients Cn (n=1, 2, 3, ---) in this model can be obtained from the moments of sea surface elevation, μm (m=2, 3, ---) through following relationship:
(For the equations please see the PDF file.)
In the third order approximation, the coefficients Cn (n= 1, 2, 3) are analytically expressed as follows:
(For the equations please see the PDF file.)
In addition, the bispectrum of nonlinear random waves under the second order approximation is derived,
(For the equations please see the PDF file.)
The new model in this paper is another formula of Longuet-Higgins’ nonlinear model for random waves. |
Key words: Nonlinear, Random waves, The moments of sea surface elevation |